Effects of Chronic Cannabidiol Treatment in the Rat Chronic Unpredictable Mild Stress Model of Depression

Zsolt Gáll, Szidónia Farkas, Ákos Albert, Elek Ferencz, Szende Vancea, Melinda Urkon, Melinda Kolcsár, Zsolt Gáll, Szidónia Farkas, Ákos Albert, Elek Ferencz, Szende Vancea, Melinda Urkon, Melinda Kolcsár

Abstract

Several neuropharmacological actions of cannabidiol (CBD) due to the modulation of the endocannabinoid system as well as direct serotonergic and gamma-aminobutyric acidergic actions have recently been identified. The current study aimed to reveal the effect of a long-term CBD treatment in the chronic unpredictable mild stress (CUMS) model of depression. Adult male Wistar rats (n = 24) were exposed to various stressors on a daily basis in order to induce anhedonia and anxiety-like behaviors. CBD (10 mg/kg body weight) was administered by daily intraperitoneal injections for 28 days (n = 12). The effects of the treatment were assessed on body weight, sucrose preference, and exploratory and anxiety-related behavior in the open field (OF) and elevated plus maze (EPM) tests. Hair corticosterone was also assayed by liquid chromatography-mass spectrometry. At the end of the experiment, CBD-treated rats showed a higher rate of body weight gain (5.94% vs. 0.67%) and sucrose preference compared to controls. A significant increase in vertical exploration and a trend of increase in distance traveled in the OF test were observed in the CBD-treated group compared to the vehicle-treated group. The EPM test did not reveal any differences between the groups. Hair corticosterone levels increased in the CBD-treated group, while they decreased in controls compared to baseline (+36.01% vs. -45.91%). In conclusion, CBD exerted a prohedonic effect in rats subjected to CUMS, demonstrated by the increased sucrose preference after three weeks of treatment. The reversal of the effect of CUMS on hair corticosterone concentrations might also point toward an anxiolytic or antidepressant-like effect of CBD, but this needs further confirmation.

Keywords: animal model; cannabidiol; chronic mild stress; depression; hair corticosterone.

Conflict of interest statement

The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Study timeline to illustrate the design of the acute and chronic experiments, the application of the chronic unpredictable mild stress (CUMS) protocol, and the timing of the behavioral assays and hair sampling. The diagonally striped box shows the 28-day stressing period preceded by a 21-day habituation to single housing. Stressors were applied twice daily starting at 10:00 and 17:00. Cannabidiol was administered in a single dose of 10 mg/kg by intraperitoneal injections in the acute experiment and daily, starting at day 0 until day 32, in the chronic experiment. Abbreviations: OF, open field test; EPM, elevated plus maze test.
Figure 2
Figure 2
Representative HPLC chromatograms obtained: A. blank solution (20 μL 0.1% formic acid (v/v) in deionized water in 150 μL methanol); B. standard solution (15 ng/mL), C. real sample (10.48 ng/mL).
Figure 3
Figure 3
Results of body weight measurements during a four-week CUMS procedure with or without concomitant cannabidiol (10 mg/kg body weight) treatment. Data are expressed as mean ± 95% confidence interval; * p < 0.05 vs. control.
Figure 4
Figure 4
Results of the sucrose preference test for rats submitted to a four-week CUMS treatment with or without cannabidiol administration (mean ± SEM, n = 18). (A.) Sucrose preference measured as % preference for sucrose; (B.) sucrose (mL of 1.0% sucrose solution ingested) and water intake on each testing day. CBD, cannabidiol; * p < 0.05 vs baseline.
Figure 5
Figure 5
Results of the open field test in the two experiments. The first column represents the acute experiment, where non-stressed animals received a single dose of vehicle or 10 mg/kg of CBD. The second column shows the chronic experiment, where the animals were treated for 32 days with vehicle or 10 mg/kg of CBD and were subjected to the CUMS protocol. Means ± SEM (n = 8–10) are presented. Data were analyzed with unpaired t-test or Mann–Whitney test. The dots represent individual values, * p < 0.05.
Figure 6
Figure 6
Hair corticosterone (CORT) levels in rats subjected to a four-week CUMS procedure and CBD treatment (10 mg/kg body weight) for 32 days. Samples were taken at day 0 and at day 32 (before and after CUMS). Means ± SEM (n = 8–10 per group) are presented. Data were analyzed by two-way ANOVA with repeated measures for the factors time and treatment. (A) Hair corticosterone change expressed as percentage with respect to baseline value; (B,C) hair corticosterone levels before and after CUMS. The dots represent individual values; * p < 0.05, ** p < 0.01.

References

    1. Matsuda L.A., Lolait S.J., Brownstein M.J., Young A.C., Bonner T.I. Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature. 1990;346:561–564. doi: 10.1038/346561a0.
    1. Gambi F., De Berardis D., Sepede G., Quartesan R., Calcagni E., Salerno R., Conti C., Ferro F. Cannabinoid Receptors and Their Relationships with Neuropsychiatric Disorders. Int. J. Immunopathol. Pharmacol. 2005;18:15–19. doi: 10.1177/039463200501800103.
    1. Chen J.W., Borgelt L.M., Blackmer A.B. Cannabidiol: A New Hope for Patients With Dravet or Lennox-Gastaut Syndromes. Ann. Pharmacother. 2019;53:603–611. doi: 10.1177/1060028018822124.
    1. Wise J. European drug agency approves cannabis-based medicine for severe forms of epilepsy. BMJ. 2019;366:l5708. doi: 10.1136/bmj.l5708.
    1. Silvestro S., Mammana S., Cavalli E., Bramanti P., Mazzon E. Use of Cannabidiol in the Treatment of Epilepsy: Efficacy and Security in Clinical Trials. Molecules. 2019;24:1459. doi: 10.3390/molecules24081459.
    1. Fernández-Trapero M., Pérez-Díaz C., Espejo-Porras F., De Lago E., Fernández-Ruiz J. Pharmacokinetics of Sativex® in Dogs: Towards a Potential Cannabinoid-Based Therapy for Canine Disorders. Biomolecules. 2020;10:279. doi: 10.3390/biom10020279.
    1. Turri M., Teatini F., Donato F., Zanette G., Tugnoli V., Deotto L., Bonetti B., Squintani G. Pain Modulation after Oromucosal Cannabinoid Spray (SATIVEX®) in Patients with Multiple Sclerosis: A Study with Quantitative Sensory Testing and Laser-Evoked Potentials. Medicines. 2018;5:59. doi: 10.3390/medicines5030059.
    1. Campos A.C., Moreira F.A., Gomes F., Del Bel E., Guimarães F.S. Multiple mechanisms involved in the large-spectrum therapeutic potential of cannabidiol in psychiatric disorders. Philos. Trans. R. Soc. B: Boil. Sci. 2012;367:3364–3378. doi: 10.1098/rstb.2011.0389.
    1. Crippa J.A.S., Derenusson G.N., Ferrari T.B., Wichert-Ana L., Souza-Duran F.L., Martin-Santos R., Simões M.V., Bhattacharyya S., Fusar-Poli P., Atakan Z., et al. Neural basis of anxiolytic effects of cannabidiol (CBD) in generalized social anxiety disorder: A preliminary report. J. Psychopharmacol. 2010;25:121–130. doi: 10.1177/0269881110379283.
    1. Soares V.P., Campos A.C. Evidences for the Anti-panic Actions of Cannabidiol. Curr. Neuropharmacol. 2017;15:291–299. doi: 10.2174/1570159X14666160509123955.
    1. Nardo M., Casarotto P.C., Gomes F., Guimaraes F.S. Cannabidiol reverses the mCPP-induced increase in marble-burying behavior. Fundam. Clin. Pharmacol. 2013;28:544–550. doi: 10.1111/fcp.12051.
    1. Bitencourt R.M., Takahashi R.N. Cannabidiol as a Therapeutic Alternative for Post-traumatic Stress Disorder: From Bench Research to Confirmation in Human Trials. Front. Mol. Neurosci. 2018;12:12. doi: 10.3389/fnins.2018.00502.
    1. Scherma M., Masia P., Deidda M., Fratta W., Tanda G., Fadda P. New Perspectives on the Use of Cannabis in the Treatment of Psychiatric Disorders. Medicines. 2018;5:107. doi: 10.3390/medicines5040107.
    1. Bonaccorso S., Ricciardi A., Zangani C., Chiappini S., Schifano F. Cannabidiol (CBD) use in psychiatric disorders: A systematic review. NeuroToxicology. 2019;74:282–298. doi: 10.1016/j.neuro.2019.08.002.
    1. Sales A., Fogaça M.V., Sartim A.G., Pereira V., Wegener G., Guimaraes F.S., Joca S.R. Cannabidiol Induces Rapid and Sustained Antidepressant-Like Effects Through Increased BDNF Signaling and Synaptogenesis in the Prefrontal Cortex. Mol. Neurobiol. 2018;56:1070–1081. doi: 10.1007/s12035-018-1143-4.
    1. Roehrig C.S. Mental Disorders Top The List Of The Most Costly Conditions In The United States: $201 Billion. Heal. Aff. 2016;35:1130–1135. doi: 10.1377/hlthaff.2015.1659.
    1. Akil H., Gordon J., Hen R., Javitch J.A., Mayberg H., McEwen B., Meaney M.J., Nestler E.J. Treatment resistant depression: A multi-scale, systems biology approach. Neurosci. Biobehav. Rev. 2018;84:272–288. doi: 10.1016/j.neubiorev.2017.08.019.
    1. Molero P., Ramos-Quiroga J.A., Martín-Santos R., Calvo-Sánchez E., Gutiérrez-Rojas L., Meana J.J. Antidepressant Efficacy and Tolerability of Ketamine and Esketamine: A Critical Review. CNS Drugs. 2018;32:411–420. doi: 10.1007/s40263-018-0519-3.
    1. Brien O., Lijffijt M., Wells A., Swann A.C., Mathew S.J., O’Brien B. The Impact of Childhood Maltreatment on Intravenous Ketamine Outcomes for Adult Patients with Treatment-Resistant Depression. Pharmaceuticals. 2019;12:133. doi: 10.3390/ph12030133.
    1. Shoval G., Shbiro L., Hershkovitz L., Hazut N., Zalsman G., Mechoulam R., Weller A. Prohedonic Effect of Cannabidiol in a Rat Model of Depression. Neuropsychobiology. 2016;73:123–129. doi: 10.1159/000443890.
    1. Shbiro L., Hen-Shoval D., Hazut N., Rapps K., Dar S., Zalsman G., Mechoulam R., Weller A., Shoval G. Effects of cannabidiol in males and females in two different rat models of depression. Physiol. Behav. 2019;201:59–63. doi: 10.1016/j.physbeh.2018.12.019.
    1. Willner P. Reliability of the chronic mild stress model of depression: A user survey. Neurobiol. Stress. 2016;6:68–77. doi: 10.1016/j.ynstr.2016.08.001.
    1. Hill M.N., Hellemans K.G., Verma P., Gorzalka B.B., Weinberg J. Neurobiology of chronic mild stress: Parallels to major depression. Neurosci. Biobehav. Rev. 2012;36:2085–2117. doi: 10.1016/j.neubiorev.2012.07.001.
    1. Wang Y.-L., Han Q.-Q., Gong W.-Q., Pan D.-H., Wang L.-Z., Hu W., Yang M., Li B., Yu J., Liu Q. Microglial activation mediates chronic mild stress-induced depressive- and anxiety-like behavior in adult rats. J. Neuroinflammation. 2018;15:21. doi: 10.1186/s12974-018-1054-3.
    1. Traslaviña G.A.A., Torres F.P., Filho P.C.G.D.B., Lucio-Oliveira F., Franci C.R. Hypothalamic-pituitary-adrenal axis responsivity to an acute novel stress in female rats subjected to the chronic mild stress paradigm. Brain Res. 2019;1723:146402. doi: 10.1016/j.brainres.2019.146402.
    1. Antoniuk S., Bijata M., Ponimaskin E., Wlodarczyk J. Chronic unpredictable mild stress for modeling depression in rodents: Meta-analysis of model reliability. Neurosci. Biobehav. Rev. 2019;99:101–116. doi: 10.1016/j.neubiorev.2018.12.002.
    1. Willner P. The chronic mild stress (CMS) model of depression: History, evaluation and usage. Neurobiol. Stress. 2016;6:78–93. doi: 10.1016/j.ynstr.2016.08.002.
    1. Rich E.L., Romero L.M. Exposure to chronic stress downregulates corticosterone responses to acute stressors. Am. J. Physiol. Integr. Comp. Physiol. 2005;288:R1628–R1636. doi: 10.1152/ajpregu.00484.2004.
    1. Scorrano F., Carrasco J., Pastor-Ciurana J., Belda X., Rami-Bastante A., Lavitrano M., Armario A. Validation of the long-term assessment of hypothalamic-pituitary-adrenal activity in rats using hair corticosterone as a biomarker. FASEB J. 2014;29:859–867. doi: 10.1096/fj.14-254474.
    1. Uarquin D.G., Meyer J.S., Cardenas F.P., Rojas M.J. Effect of Overcrowding on Hair Corticosterone Concentrations in Juvenile Male Wistar Rats. J. Am. Assoc. Lab. Anim. Sci. 2016;55:749–755.
    1. Campos A.C., Ortega Z., Palazuelos J., Fogaça M.V., Aguiar D.C., Díaz-Alonso J., Ortega-Gutiérrez S., Vázquez-Villa H., Moreira F.A., Guzmán M., et al. The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: Involvement of the endocannabinoid system. Int. J. Neuropsychopharmacol. 2013;16:1407–1419. doi: 10.1017/S1461145712001502.
    1. Zhang X., Song Y., Bao T., Yu M., Xu M., Guo Y., Wang Y., Zhang C., Zhao B. Antidepressant-like effects of acupuncture involved the ERK signaling pathway in rats. BMC Complement. Altern. Med. 2016;16:380. doi: 10.1186/s12906-016-1356-x.
    1. Papp M. Models of Affective Illness: Chronic Mild Stress in the Rat. Curr. Protoc. Pharmacol. 2012;57:1–11. doi: 10.1002/0471141755.ph0509s57.
    1. Murray R., Boss-Williams K.A., Weiss J.M. Effects of chronic mild stress on rats selectively bred for behavior related to bipolar disorder and depression. Physiol. Behav. 2013;119:115–129. doi: 10.1016/j.physbeh.2013.05.042.
    1. Özkartal C., Aricioğlu F., Tuzun E., Kucukali C.I. Chronic mild stress-induced anhedonia in rats is coupled with the upregulation of inflammasome sensors: A possible involvement of NLRP1. Psychiatry Clin. Psychopharmacol. 2018;28:236–244. doi: 10.1080/24750573.2018.1426694.
    1. Taksande B., Faldu D.S., Dixit M.P., Sakaria J.N., Aglawe M.M., Umekar M.J., Kotagale N. Agmatine attenuates chronic unpredictable mild stress induced behavioral alteration in mice. Eur. J. Pharmacol. 2013;720:115–120. doi: 10.1016/j.ejphar.2013.10.041.
    1. A Walf A., Frye C.A. The use of the elevated plus maze as an assay of anxiety-related behavior in rodents. Nat. Protoc. 2007;2:322–328. doi: 10.1038/nprot.2007.44.
    1. Kolcsar M., Zsolt G., Dogaru M. Dose dependent effects of serotonergic agents on anxiety. Acta Physiol. Hung. 2014;101:479–487. doi: 10.1556/APhysiol.101.2014.4.9.
    1. Elek F., Ferenc B., Zsolt G., Melinda K., Gabriella D.-N., Szende V. Determination of corticosterone from rat hair samples by HPLC-MS method. Bull. Med Sci. 2019;92:27–34. doi: 10.2478/orvtudert-2019-0008.
    1. Fleischhauer K., Fruci D., Van Endert P., Herman J., Tanzarella S., Wallny H.-J., Coulie P., Bordignon C., Traversari C. Characterization of antigenic peptides presented by HLA-B44 molecules on tumor cells expressing the geneMAGE-3. Int. J. Cancer. 1996;68:622–628. doi: 10.1002/(SICI)1097-0215(19961127)68:5<622::AID-IJC12>;2-3.
    1. Jacobson L., Sapolsky R. The Role of the Hippocampus in Feedback Regulation of the Hypothalamic-Pituitary-Adrenocortical Axis*. Endocr. Rev. 1991;12:118–134. doi: 10.1210/edrv-12-2-118.
    1. Belzung C., De Villemeur E.B. The design of new antidepressants. Behav. Pharmacol. 2010;21:677–689. doi: 10.1097/FBP.0b013e328340d630.
    1. Steiner M.A., Marsicano G., Nestler E.J., Holsboer F., Lutz B., Wotjak C.T. Antidepressant-like behavioral effects of impaired cannabinoid receptor type 1 signaling coincide with exaggerated corticosterone secretion in mice. Psychoneuroendocrinology. 2007;33:54–67. doi: 10.1016/j.psyneuen.2007.09.008.
    1. Linge R., Jiménez-Sánchez L., Campa L., Pilar-Cuéllar F., Vidal R., Pazos A., Adell A., Díaz Á. Cannabidiol induces rapid-acting antidepressant-like effects and enhances cortical 5-HT/glutamate neurotransmission: Role of 5-HT1A receptors. Neuropharmacology. 2016;103:16–26. doi: 10.1016/j.neuropharm.2015.12.017.
    1. Patel S., Roelke C.T., Rademacher D.J., Cullinan W.E., Hillard C.J. Endocannabinoid Signaling Negatively Modulates Stress-Induced Activation of the Hypothalamic-Pituitary-Adrenal Axis. Endocrinology. 2004;145:5431–5438. doi: 10.1210/en.2004-0638.
    1. Hill M.N., Hillard C.J., Bambico F.R., Patel S., Gorzalka B.B., Gobbi G. The Therapeutic Potential of the Endocannabinoid System for the Development of a Novel Class of Antidepressants. Trends Pharmacol. Sci. 2009;30:484–493. doi: 10.1016/j.tips.2009.06.006.
    1. Bakas T., Van Nieuwenhuijzen P.S., Devenish S., McGregor I.S., Arnold J., Chebib M. The direct actions of cannabidiol and 2-arachidonoyl glycerol at GABA A receptors. Pharmacol. Res. 2017;119:358–370. doi: 10.1016/j.phrs.2017.02.022.
    1. Gonçalves E.C.D., Baldasso G.M., Bicca M.A., Paes R.S., Capasso R., Dutra R.C. Terpenoids, Cannabimimetic Ligands, beyond the Cannabis Plant. Molecules. 2020;25:1567. doi: 10.3390/molecules25071567.
    1. Vieira G., Cavalli J., Gonçalves E.C.D., Braga S.F.P., Ferreira R.S., Santos A.R.S., Cola M., Raposo N.R.B., Capasso R., Dutra R.C. Antidepressant-Like Effect of Terpineol in an Inflammatory Model of Depression: Involvement of the Cannabinoid System and D2 Dopamine Receptor. Biomolecules. 2020;10:792. doi: 10.3390/biom10050792.
    1. Castagné V., Moser P., Roux S., Porsolt R.D. Rodent Models of Depression: Forced Swim and Tail Suspension Behavioral Despair Tests in Rats and Mice. Curr. Protoc. Neurosci. 2011;55 doi: 10.1002/0471142301.ns0810as55.
    1. Ignatowska-Jankowska B., Jankowski M., Swiergiel A.H. Cannabidiol decreases body weight gain in rats: Involvement of CB2 receptors. Neurosci. Lett. 2011;490:82–84. doi: 10.1016/j.neulet.2010.12.031.
    1. Parray H.A., Yun J.W. Cannabidiol promotes browning in 3T3-L1 adipocytes. Mol. Cell. Biochem. 2016;416:131–139. doi: 10.1007/s11010-016-2702-5.
    1. Osborne A., Solowij N., Babic I., Huang X.-F., Weston-Green K. Improved Social Interaction, Recognition and Working Memory with Cannabidiol Treatment in a Prenatal Infection (poly I:C) Rat Model. Neuropsychopharmacology. 2017;42:1447–1457. doi: 10.1038/npp.2017.40.
    1. Wierucka-Rybak M., Wolak M., Bojanowska E. The effects of leptin in combination with a cannabinoid receptor 1 antagonist, AM 251, or cannabidiol on food intake and body weight in rats fed a high-fat or a free-choice high sugar diet. J. Physiol. Pharmacol. 2014;65:487–496.
    1. He L.-W., Zeng L., Tian N., Li Y., He T., Tan D.-M., Zhang Q., Tan Y. Optimization of food deprivation and sucrose preference test in SD rat model undergoing chronic unpredictable mild stress. Anim. Model. Exp. Med. 2020;3:69–78. doi: 10.1002/ame2.12107.
    1. Kawasaki T., Kashiwabara A., Sakai T., Igarashi K., Ogata N., Watanabe H., Ichiyanagi K., Yamanouchi T. Long-term sucrose-drinking causes increased body weight and glucose intolerance in normal male rats. Br. J. Nutr. 2005;93:613–618. doi: 10.1079/BJN20051407.
    1. Goshen I., Kreisel T., Ben-Menachem-Zidon O., Licht T., Weidenfeld J., Ben-Hur T., Yirmiya R. Brain interleukin-1 mediates chronic stress-induced depression in mice via adrenocortical activation and hippocampal neurogenesis suppression. Mol. Psychiatry. 2007;13:717–728. doi: 10.1038/sj.mp.4002055.
    1. Zhou Q.-G., Hu Y., Wu D.-L., Zhu L., Chen C., Jin X., Luo C.-X., Wu H.-Y., Zhang J., Zhu D. Hippocampal Telomerase Is Involved in the Modulation of Depressive Behaviors. J. Neurosci. 2011;31:12258–12269. doi: 10.1523/JNEUROSCI.0805-11.2011.
    1. Remus J.L., Stewart L.T., Camp R., Novak C.M., Johnson J.D. Interaction of metabolic stress with chronic mild stress in altering brain cytokines and sucrose preference. Behav. Neurosci. 2015;129:321–330. doi: 10.1037/bne0000056.
    1. Strekalova T., Steinbusch H.W. Measuring behavior in mice with chronic stress depression paradigm. Prog. Neuro-Psychopharmacology Boil. Psychiatry. 2010;34:348–361. doi: 10.1016/j.pnpbp.2009.12.014.
    1. Molendijk M.L., De Kloet E.R. Immobility in the forced swim test is adaptive and does not reflect depression. Psychoneuroendocrinology. 2015;62:389–391. doi: 10.1016/j.psyneuen.2015.08.028.
    1. De Kloet E.R., Molendijk M.L. Coping with the Forced Swim Stressor: Towards Understanding an Adaptive Mechanism. Neural Plast. 2016;2016:1–13. doi: 10.1155/2016/6503162.
    1. Commons K.G., Cholanians A.B., Babb J.A., Ehlinger D.G. The Rodent Forced Swim Test Measures Stress-Coping Strategy, Not Depression-like Behavior. ACS Chem. Neurosci. 2017;8:955–960. doi: 10.1021/acschemneuro.7b00042.
    1. Zanelati T., Biojone C., Moreira F., Guimarães F., Joca S.R. Antidepressant-like effects of cannabidiol in mice: Possible involvement of 5-HT1A receptors. Br. J. Pharmacol. 2009;159:122–128. doi: 10.1111/j.1476-5381.2009.00521.x.
    1. El-Alfy A.T., Ivey K., Robinson K., Ahmed S., Radwan M., Slade D., Khan I., ElSohly M., Ross S. Antidepressant-like effect of Δ9-tetrahydrocannabinol and other cannabinoids isolated from Cannabis sativa L. Pharmacol. Biochem. Behav. 2010;95:434–442. doi: 10.1016/j.pbb.2010.03.004.
    1. Campos A.C., Guimaraes F.S. Involvement of 5HT1A receptors in the anxiolytic-like effects of cannabidiol injected into the dorsolateral periaqueductal gray of rats. Psychopharmacology. 2008;199:223–230. doi: 10.1007/s00213-008-1168-x.
    1. Sales A., Crestani C.C., Guimaraes F.S., Joca S.R. Antidepressant-like effect induced by Cannabidiol is dependent on brain serotonin levels. Prog. Neuro-Psychopharmacology Boil. Psychiatry. 2018;86:255–261. doi: 10.1016/j.pnpbp.2018.06.002.
    1. Sánchez C. Acute stress enhances anxiolytic-like drug responses of mice tested in a black and white test box. Eur. Neuropsychopharmacology. 1997;7:283–288. doi: 10.1016/S0924-977X(97)00035-7.
    1. Zimcikova E., Simko J., Karesova I., Kremlacek J., Malakova J. Behavioral effects of antiepileptic drugs in rats: Are the effects on mood and behavior detectable in open-field test? Seizure. 2017;52:35–40. doi: 10.1016/j.seizure.2017.09.015.
    1. Russell E., Koren G., Rieder M., Van Uum S. Hair cortisol as a biological marker of chronic stress: Current status, future directions and unanswered questions. Psychoneuroendocrinology. 2012;37:589–601. doi: 10.1016/j.psyneuen.2011.09.009.
    1. Yu T., Xu H., Wang W., Li S., Chen Z., Deng H. Determination of endogenous corticosterone in rodent’s blood, brain and hair with LC–APCI–MS/MS. J. Chromatogr. B. 2015;1002:267–276. doi: 10.1016/j.jchromb.2015.08.035.
    1. Davenport M.D., Tiefenbacher S., Lutz C.K., Novak M.A., Meyer J. Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen. Comp. Endocrinol. 2006;147:255–261. doi: 10.1016/j.ygcen.2006.01.005.
    1. Giralt M., Armario A. Individual housing does not influence the adaptation of the pituitary-adrenal axis and other physiological variables to chronic stress in adult male rats. Physiol. Behav. 1989;45:477–481. doi: 10.1016/0031-9384(89)90061-9.
    1. Steudte S., Stalder T., Dettenborn L., Klumbies E., Foley P., Beesdo-Baum K., Kirschbaum C. Decreased hair cortisol concentrations in generalised anxiety disorder. Psychiatry Res. Neuroimaging. 2011;186:310–314. doi: 10.1016/j.psychres.2010.09.002.

Source: PubMed

3
Subskrybuj