The mechanism of action for hyaluronic acid treatment in the osteoarthritic knee: a systematic review

R D Altman, A Manjoo, A Fierlinger, F Niazi, M Nicholls, R D Altman, A Manjoo, A Fierlinger, F Niazi, M Nicholls

Abstract

Background: Knee osteoarthritis (OA) is one of the leading causes of disability within the adult population. Current treatment options for OA of the knee include intra-articular (IA) hyaluronic acid (HA), a molecule found intrinsically within the knee joint that provides viscoelastic properties to the synovial fluid. A variety of mechanisms in which HA is thought to combat knee OA are reported in the current basic literature.

Methods: We conducted a comprehensive literature search to identify currently available primary non-clinical basic science articles focussing on the mechanism of action of IA-HA treatment. Included articles were assessed and categorized based on the mechanism of action described within them. The key findings and conclusions from each included article were obtained and analyzed in aggregate with studies of the same categorical assignment.

Results: Chondroprotection was the most frequent mechanism reported within the included articles, followed by proteoglycan and glycosaminoglycan synthesis, anti-inflammatory, mechanical, subchondral, and analgesic actions. HA-cluster of differentiation 44 (CD44) receptor binding was the most frequently reported biological cause of the mechanisms presented. High molecular weight HA was seen to be superior to lower molecular weight HA products. HA derived through a biological fermentation process is also described as having favorable safety outcomes over avian-derived HA products.

Conclusions: The non-clinical basic science literature provides evidence for numerous mechanisms in which HA acts on joint structures and function. These actions provide support for the purported clinical benefit of IA-HA in OA of the knee. Future research should not only focus on the pain relief provided by IA-HA treatment, but the disease modification properties that this treatment modality possesses as well.

Figures

Fig. 1
Fig. 1
Article screening process

References

    1. Cheng OT, Souzdalnitski D, Vrooman B, Cheng J. Evidence-based knee injections for the management of arthritis. Pain Med. 2012;13(6):740–753. doi: 10.1111/j.1526-4637.2012.01394.x.
    1. Moreland LW. Intra-articular hyaluronan (hyaluronic acid) and hylans for the treatment of osteoarthritis: mechanisms of action. Arthritis Res Therapy. 2003;5(2):54. doi: 10.1186/ar623.
    1. Bellamy N, Campbell J, Robinson V, Gee T, Bourne R, Wells G. Viscosupplementation for the treatment of osteoarthritis of the knee. Cochrane Database Syst Rev. 2006;2
    1. Trigkilidas D, Anand A. The effectiveness of hyaluronic acid intra-articular injections in managing osteoarthritic knee pain. Ann R Coll Surg Engl. 2013;95(8):545–551. doi: 10.1308/rcsann.2013.95.8.545.
    1. Colen S, van den Bekerom MP, Mulier M, Haverkamp D. Hyaluronic acid in the treatment of knee osteoarthritis: a systematic review and meta-analysis with emphasis on the efficacy of different products. BioDrugs. 2012;26(4):257–268. doi: 10.1007/BF03261884.
    1. Rutjes A, Juni P, da Costa B, Trelle S, Nuesch E, Reichenbach S. Viscosupplementation for osteoarthritis of the knee: a systematic review and meta-analysis. Ann Intern Med. 2012;157:180–191. doi: 10.7326/0003-4819-157-3-201208070-00473.
    1. Bannuru RR, Natov NS, Obadan IE, Price LL, Schmid CH, McAlindon TE. Therapeutic trajectory of hyaluronic acid versus corticosteroids in the treatment of knee osteoarthritis: a systematic review and meta-analysis. Arthritis Rheum. 2009;61(12):1704–1711. doi: 10.1002/art.24925.
    1. Habib GS. Systemic effects of intra-articular corticosteroids. Clin Rheumatol. 2009;28(7):749–756. doi: 10.1007/s10067-009-1135-x.
    1. Elmorsy S, Funakoshi T, Sasazawa F, Todoh M, Tadano S, Iwasaki N. Chondroprotective effects of high-molecular-weight cross-linked hyaluronic acid in a rabbit knee osteoarthritis model. Osteoarthritis Cartilage. 2014;22(1):121–127. doi: 10.1016/j.joca.2013.10.005.
    1. Kosinska MK, Ludwig TE, Liebisch G, Zhang R, Siebert HC, Wilhelm J, et al. Articular joint lubricants during osteoarthritis and rheumatoid arthritis display altered levels and molecular species. PLoS One. 2015;10(5) doi: 10.1371/journal.pone.0125192.
    1. Band PA, Heeter J, Wisniewski HG, Liublinska V, Pattanayak CW, Karia RJ, et al. Hyaluronan molecular weight distribution is associated with the risk of knee osteoarthritis progression. Osteoarthritis Cartilage. 2015;23(1):70–76. doi: 10.1016/j.joca.2014.09.017.
    1. Diaz-Gallego L, Prieto JG, Coronel P, Gamazo LE, Gimeno M, Alvarez AI. Apoptosis and nitric oxide in an experimental model of osteoarthritis in rabbit after hyaluronic acid treatment. J Orthop Res. 2005;23(6):1370–1376. doi: 10.1016/j.orthres.2005.05.003.1100230619.
    1. Lajeunesse D, Delalandre A, Martel-Pelletier J, Pelletier J-P. Hyaluronic acid reverses the abnormal synthetic activity of human osteoarthritic subchondral bone osteoblasts. Bone. 2003;33(4):703–710. doi: 10.1016/S8756-3282(03)00206-0.
    1. Pullman-Mooar S, Mooar P, Sieck M, Clayburne G, Schumacher HR. Are there distinctive inflammatory flares after hylan g-f 20 intraarticular injections? J Rheumatol Dec. 2002;29(12):2611–2614.
    1. Goldberg VM, Coutts RD. Pseudoseptic reactions to hylan viscosupplementation: diagnosis and treatment. Clin Orthop Relat Res Feb. 2004;419:130–137. doi: 10.1097/00003086-200402000-00021.
    1. Ando A, Hagiwara Y, Chimoto E, Hatori K, Onoda Y, Itoi E. Intra-articular injection of hyaluronan diminishes loss of chondrocytes in a rat immobilized-knee model. Tohoku J Exp Med. 2008;215(4):321–331. doi: 10.1620/tjem.215.321.
    1. Ariyoshi W, Okinaga T, Knudson CB, Knudson W, Nishihara T. High molecular weight hyaluronic acid regulates osteoclast formation by inhibiting receptor activator of NF-kappaB ligand through Rho kinase. Osteoarthritis Cartilage. 2014;22(1):111–120. doi: 10.1016/j.joca.2013.10.013.
    1. Asari A, Miyauchi S, Matsuzaka S, Itoh T, Uchiyama Y. Hyaluronate on heat shock protein and synovial cells in a canine model of osteoarthritis. Osteoarthritis Cartilage. 1996;4(3):213–215. doi: 10.1016/S1063-4584(96)80018-5.
    1. Brun P, Panfilo S, Daga Gordini D, Cortivo R, Abatangelo G. The effect of hyaluronan on CD44-mediated survival of normal and hydroxyl radical-damaged chondrocytes. Osteoarthritis Cartilage. 2003;11(3):208–216. doi: 10.1016/S1063-4584(02)00352-7.
    1. Brun P, Zavan B, Vindigni V, Schiavinato A, Pozzuoli A, Iacobellis C, et al. In vitro response of osteoarthritic chondrocytes and fibroblast-like synoviocytes to a 500-730 kDa hyaluronan amide derivative. J Biomed Mater Res B Appl Biomater. 2012;100(8):2073–2081. doi: 10.1002/jbm.b.32771.
    1. Chang CC, Hsieh MS, Liao ST, Chen YH, Cheng CW, Huang PT, et al. Hyaluronan regulates PPARgamma and inflammatory responses in IL-1beta-stimulated human chondrosarcoma cells, a model for osteoarthritis. Carbohydr Polym. 2012;90(2):1168–1175. doi: 10.1016/j.carbpol.2012.06.071.
    1. Creamer P, Sharif M, George E, Meadows K, Cushnaghan J, Shinmei M, et al. Intra-articular hyaluronic acid in osteoarthritis of the knee: an investigation into mechanisms of action. Osteoarthritis Cartilage. 1994;2(2):133–140. doi: 10.1016/S1063-4584(05)80063-9.
    1. Ding M, Christian Danielsen C, Hvid I. Effects of hyaluronan on three-dimensional microarchitecture of subchondral bone tissues in guinea pig primary osteoarthrosis. Bone. 2005;36(3):489–501. doi: 10.1016/j.bone.2004.12.010.
    1. Ehlers EM, Behrens P, Wunsch L, Kuhnel W, Russlies M. Effects of hyaluronic acid on the morphology and proliferation of human chondrocytes in primary cell culture. Ann Anat. 2001;183(1):13–17. doi: 10.1016/S0940-9602(01)80007-8.
    1. Galois L, Etienne S, Henrionnet C, Scala-Bertola J, Grossin L, Mainard D, et al. Ambivalent properties of hyaluronate and hylan during post-traumatic OA in the rat knee. Biomed Mater Eng. 2012;22(4):235–242.
    1. Gonzalez-Fuentes AM, Green DM, Rossen RD, Ng B. Intra-articular hyaluronic acid increases cartilage breakdown biomarker in patients with knee osteoarthritis. Clin Rheumatol. 2010;29(6):619–624. doi: 10.1007/s10067-010-1376-8.
    1. Greenberg DD, Stoker A, Kane S, Cockrell M, Cook JL. Biochemical effects of two different hyaluronic acid products in a co-culture model of osteoarthritis. Osteoarthritis Cartilage. 2006;14(8):814–822. doi: 10.1016/j.joca.2006.02.006.
    1. Grishko V, Xu M, Ho R, Mates A, Watson S, Kim JT, et al. Effects of hyaluronic acid on mitochondrial function and mitochondria-driven apoptosis following oxidative stress in human chondrocytes. J Biol Chem. 2009;284(14):9132–9139. doi: 10.1074/jbc.M804178200.
    1. Hashizume M, Mihara M. Desirable effect of combination therapy with high molecular weight hyaluronate and NSAIDs on MMP production. Osteoarthritis Cartilage. 2009;17(11):1513–1518. doi: 10.1016/j.joca.2009.04.018.
    1. Homandberg GA, Hui F, Wen C, Kuettner KE, Williams JM. Hyaluronic acid suppresses fibronectin fragment mediated cartilage chondrolysis: I. In vitro. Osteoarthritis Cartilage. 1997;5(5):309–319. doi: 10.1016/S1063-4584(97)80035-0.
    1. Ishijima M, Nakamura T, Shimizu K, Hayashi K, Kikuchi H, Soen S, et al. Different changes in the biomarker CTX-II following intra-articular injection of high molecular weight hyaluronic acid and oral non-steroidal anti-inflammatory drugs for patients with knee osteoarthritis: a multi-center randomized controlled study. Osteoarthr Cartil. 2013;21:S292. doi: 10.1016/j.joca.2013.02.612.
    1. Julovi SM, Yasuda T, Shimizu M, Hiramitsu T, Nakamura T. Inhibition of interleukin-1beta-stimulated production of matrix metalloproteinases by hyaluronan via CD44 in human articular cartilage. Arthritis Rheum. 2004;50(2):516–525. doi: 10.1002/art.20004.
    1. Kalaci A, Yilmaz HR, Aslan B, Sogut S, Yanat AN, Uz E. Effects of hyaluronan on nitric oxide levels and superoxide dismutase activities in synovial fluid in knee osteoarthritis. Clin Rheumatol. 2007;26(8):1306–1311. doi: 10.1007/s10067-006-0504-y.
    1. Karna E, Miltyk W, Surazynski A, Palka JA. Protective effect of hyaluronic acid on interleukin-1-induced deregulation of beta1-integrin and insulin-like growth factor-I receptor signaling and collagen biosynthesis in cultured human chondrocytes. Mol Cell Biochem. 2008;308(1-2):57–64. doi: 10.1007/s11010-007-9612-5.
    1. Kobayashi K, Amiel M, Harwood FL, Healey RM, Sonoda M, Moriya H, et al. The long-term effects of hyaluronan during development of osteoarthritis following partial meniscectomy in a rabbit model. Osteoarthritis Cartilage. 2000;8(5):359–365. doi: 10.1053/joca.1999.0310.
    1. Koga H. Effects of hyaluronic acid on arthritic articular cartilage. Connect Tissue Res. 2012;53(1):48–93. doi: 10.3109/03008207.2011.637147.
    1. Lazaro J, Granado P, del Sol G, Medina A, Gallego L, Sandoval D, Fernandez J. The role of different hyaluronic acids in the articular cartilage of rabbit. Open Orthopaedics J. 2010;4:44–47. doi: 10.2174/1874325001004010044.
    1. Li J, Gorski DJ, Anemaet W, Velasco J, Takeuchi J, Sandy JD, et al. Hyaluronan injection in murine osteoarthritis prevents TGFbeta 1-induced synovial neovascularization and fibrosis and maintains articular cartilage integrity by a CD44-dependent mechanism. Arthritis Res Ther. 2012;14(3):R151. doi: 10.1186/ar3887.
    1. Li P, Raitcheva D, Hawes M, Moran N, Yu X, Wang F, et al. Hylan G-F 20 maintains cartilage integrity and decreases osteophyte formation in osteoarthritis through both anabolic and anti-catabolic mechanisms. Osteoarthritis Cartilage. 2012;20(11):1336–1346. doi: 10.1016/j.joca.2012.07.004.
    1. Lisignoli G, Grassi F, Zini N, Toneguzzi S, Piacentini A, Guidolin D, et al. Anti-Fas-induced apoptosis in chondrocytes reduced by hyaluronan: evidence for CD44 and CD54 (intercellular adhesion molecule 1) invovement. Arthritis Rheum. 2001;44(8):1800–1807. doi: 10.1002/1529-0131(200108)44:8<1800::AID-ART317>;2-1.
    1. Lu HT, Sheu MT, Lin YF, Lan J, Chin YP, Hsieh MS, et al. Injectable hyaluronic-acid-doxycycline hydrogel therapy in experimental rabbit osteoarthritis. BMC Vet Res. 2013;9:68. doi: 10.1186/1746-6148-9-68.
    1. Maneiro E, de Andres MC, Fernandez-Sueiro JL, Galdo F, Blanco FJ. The biological action of hyaluronan on human osteoartritic articular chondrocytes: the importance of molecular weight. Clin Exp Rheumatol. 2004;22(3):307–312.
    1. Mihara M, Hashizume M. The effect of high molecular hyaluronic acid on the induction of matrix degradation enzymes By IL-6, IL-1β and TNF-α. Osteoarthr Cartil. 2012;20:S134–S135. doi: 10.1016/j.joca.2012.02.181.
    1. Miki Y, Teramura T, Tomiyama T, Onodera Y, Matsuoka T, Fukuda K, et al. Hyaluronan reversed proteoglycan synthesis inhibited by mechanical stress: possible involvement of antioxidant effect. Inflamm Res. 2010;59(6):471–477. doi: 10.1007/s00011-009-0147-y.
    1. Mladenovic Z, Saurel AS, Berenbaum F, Jacques C. Potential role of hyaluronic acid on bone in osteoarthritis: matrix metalloproteinases, aggrecanases, and RANKL expression are partially prevented by hyaluronic acid in interleukin 1-stimulated osteoblasts. J Rheumatol. 2014;41(5):945–954. doi: 10.3899/jrheum.130378.
    1. Mongkhon JM, Thach M, Shi Q, Fernandes JC, Fahmi H, Benderdour M. Sorbitol-modified hyaluronic acid reduces oxidative stress, apoptosis and mediators of inflammation and catabolism in human osteoarthritic chondrocytes. Inflamm Res. 2014;63(8):691–701. doi: 10.1007/s00011-014-0742-4.
    1. Ohno S, Im HJ, Knudson CB, Knudson W. Hyaluronan oligosaccharide-induced activation of transcription factors in bovine articular chondrocytes. Arthritis Rheum. 2005;52(3):800–809. doi: 10.1002/art.20937.
    1. Peng H, Zhou JL, Liu SQ, Hu QJ, Ming JH, Qiu B. Hyaluronic acid inhibits nitric oxide-induced apoptosis and dedifferentiation of articular chondrocytes in vitro. Inflamm Res. 2010;59(7):519–530. doi: 10.1007/s00011-010-0156-x.
    1. Plaas A, Li J, Riesco J, Das R, Sandy JD, Harrison A. Intraarticular injection of hyaluronan prevents cartilage erosion, periarticular fibrosis and mechanical allodynia and normalizes stance time in murine knee osteoarthritis. Arthritis Res Ther. 2011;13(2):R46. doi: 10.1186/ar3286.
    1. Qiu B, Liu SQ, Peng H. Influence of sodium hyaluronate on iNOS expression in synovium and NO content in synovial fluid of rabbits with traumatic osteoarthritis. Chin J Traumatol. 2008;11(5):293–296. doi: 10.1016/S1008-1275(08)60059-0.
    1. Sakakibara Y, Miura T, Iwata H, Kikuchi T, Yamaguchi T, Yoshimi T, et al. Effect of high-molecular-weight sodium hyaluronate on immobilized rabbit knee. Clin Orthop Relat Res. 1994;299:282–292.
    1. Sasaki A, Sasaki K, Konttinen YT, Santavirta S, Takahara M, Takei H, et al. Hyaluronate inhibits the interleukin-1beta-induced expression of matrix metalloproteinase (MMP)-1 and MMP-3 in human synovial cells. Tohoku J Exp Med. 2004;204(2):99–107. doi: 10.1620/tjem.204.99.
    1. Shimizu C, Yoshioka M, Coutts RD, Harwood FL, Kubo T, Hirasawa Y, et al. Long-term effects of hyaluronan on experimental osteoarthritis in the rabbit knee. Osteoarthritis Cartilage. 1998;6(1):1–9. doi: 10.1053/joca.1997.0086.
    1. Smith MM, Cake MA, Ghosh P, Schiavinato A, Read RA, Little CB. Significant synovial pathology in a meniscectomy model of osteoarthritis: modification by intra-articular hyaluronan therapy. Rheumatology (Oxford) 2008;47(8):1172–1178. doi: 10.1093/rheumatology/ken219.
    1. Smith MM, Russell AK, Schiavinato A, Little CB. A hexadecylamide derivative of hyaluronan (HYMOVIS(R)) has superior beneficial effects on human osteoarthritic chondrocytes and synoviocytes than unmodified hyaluronan. J Inflamm (Lond) 2013;10:26. doi: 10.1186/1476-9255-10-26.
    1. Takahashi K, Goomer RS, Harwood F, Kubo T, Hirasawa Y, Amiel D. The effects of hyaluronan on matrix metalloproteinase-3 (MMP-3), interleukin-1beta(IL-1beta), and tissue inhibitor of metalloproteinase-1 (TIMP-1) gene expression during the development of osteoarthritis. Osteoarthritis Cartilage. 1999;7(2):182–190. doi: 10.1053/joca.1998.0207.
    1. Takahashi K, Hashimoto S, Kubo T, Hirasawa Y, Lotz M, Amiel D. Hyaluronan suppressed nitric oxide production in the meniscus and synovium of rabbit osteoarthritis model. J Orthop Res. 2001;19(3):500–503. doi: 10.1016/S0736-0266(00)90024-X.
    1. Tanaka M, Masuko-Hongo K, Kato T, Nishioka K, Nakamura H. Suppressive effects of hyaluronan on MMP-1 and RANTES production from chondrocytes. Rheumatol Int. 2006;26(3):185–190. doi: 10.1007/s00296-004-0547-9.
    1. Waddell DD, Kolomytkin OV, Dunn S, Marino AA. Hyaluronan suppresses IL-1beta-induced metalloproteinase activity from synovial tissue. Clin Orthop Relat Res. 2007;465:241–248.
    1. Yasuda T. Nuclear factor-kappaB activation by type II collagen peptide in articular chondrocytes: its inhibition by hyaluronan via the receptors. Mod Rheumatol. 2013;23(6):1116–1123. doi: 10.3109/s10165-012-0804-9.
    1. Yasui T, Akatsuka M, Tobetto K, Hayaishi M, Ando T. The effect of hyaluronan on interleukin-1 alpha-induced prostaglandin E2 production in human osteoarthritic synovial cells. Agents Actions. 1992;37(1-2):155–156. doi: 10.1007/BF01987905.
    1. Yatabe T, Mochizuki S, Takizawa M, Chijiiwa M, Okada A, Kimura T, et al. Hyaluronan inhibits expression of ADAMTS4 (aggrecanase-1) in human osteoarthritic chondrocytes. Ann Rheum Dis. 2009;68(6):1051–1058. doi: 10.1136/ard.2007.086884.
    1. Yoshimi T, Kikuchi T, Obara T, Yamaguchi T, Sakakibara Y, Itoh H, et al. Effects of high-molecular-weight sodium hyaluronate on experimental osteoarthrosis induced by the resection of rabbit anterior cruciate ligament. Clin Orthop Relat Res. 1994;298:296–304.
    1. Yoshioka M, Shimizu C, Harwood FL, Coutts RD, Amiel D. The effects of hyaluronan during the development of osteoarthritis. Osteoarthritis Cartilage. 1997;5(4):251–260. doi: 10.1016/S1063-4584(97)80021-0.
    1. Yu CJ, Ko CJ, Hsieh CH, Chien CT, Huang LH, Lee CW, et al. Proteomic analysis of osteoarthritic chondrocyte reveals the hyaluronic acid-regulated proteins involved in chondroprotective effect under oxidative stress. J Proteomics. 2014;99:40–53. doi: 10.1016/j.jprot.2014.01.016.
    1. Zhang FJ, Gao SG, Cheng L, Tian J, Xu WS, Luo W, et al. The effect of hyaluronic acid on osteopontin and CD44 mRNA of fibroblast-like synoviocytes in patients with osteoarthritis of the knee. Rheumatol Int. 2013;33(1):79–83. doi: 10.1007/s00296-011-2339-3.
    1. Zhou JL, Liu SQ, Qiu B, Hu QJ, Ming JH, Peng H. The protective effect of sodium hyaluronate on the cartilage of rabbit osteoarthritis by inhibiting peroxisome proliferator-activated receptor-gamma messenger RNA expression. Yonsei Med J. 2009;50(6):832–837. doi: 10.3349/ymj.2009.50.6.832.
    1. Zhou PH, Liu SQ, Peng H. The effect of hyaluronic acid on IL-1beta-induced chondrocyte apoptosis in a rat model of osteoarthritis. J Orthop Res. 2008;26(12):1643–1648. doi: 10.1002/jor.20683.
    1. Williams J. The effects of hyaluronic acid on fibronectin fragment mediated cartilage chondrolysis in skeletally mature rabbits. Osteoarthr Cartil. 2003;11(1):44–49. doi: 10.1053/joca.2002.0864.
    1. Xu H, Ito T, Tawada A, Maeda H, Yamanokuchi H, Isahara K, et al. Effect of hyaluronan oligosaccharides on the expression of heat shock protein 72. J Biol Chem. 2002;277(19):17308–17314. doi: 10.1074/jbc.M112371200.
    1. Zhou J-L, Liu S-Q, Qiu B, Hu Q-J, Ming J-H, Peng H. Effects of hyaluronan on vascular endothelial growth factor and receptor-2 expression in a rabbit osteoarthritis model. J Orthop Sci. 2009;14(3):313–319. doi: 10.1007/s00776-009-1329-8.
    1. Huang TL, Hsu HC, Yang KC, Yao CH, Lin FH. Effect of different molecular weight hyaluronans on osteoarthritis-related protein production in fibroblast-like synoviocytes from patients with tibia plateau fracture. J Trauma. 2010;68(1):146–152. doi: 10.1097/TA.0b013e3181a92cf8.
    1. Amiel D, Toyoguchi T, Kobayashi K, Bowden K, Amiel ME, Healey RM. Long-term effect of sodium hyaluronate (Hyalgan) on osteoarthritis progression in a rabbit model. Osteoarthritis and cartilage / OARS, Osteoarthritis Res Soc. 2003;11(9):636–643. doi: 10.1016/S1063-4584(03)00119-5.
    1. Kim NH, Han CD, Lee HM, Yang IH. Effect of sodium hyaluronate on prevention of osteoarthritis. Yonsei Med J. 1991;32(2):139–146. doi: 10.3349/ymj.1991.32.2.139.
    1. Liu J, Song W, Yuan T, Xu Z, Jia W, Zhang C. A comparison between platelet-rich plasma (PRP) and hyaluronate acid on the healing of cartilage defects. PLoS One. 2014;9(5) doi: 10.1371/journal.pone.0097293.
    1. Mihara M, Higo S, Uchiyama Y, Tanabe K, Saito K. Different effects of high molecular weight sodium hyaluronate and NSAID on the progression of the cartilage degeneration in rabbit OA model. Osteoarthritis Cartilage / OARS, Osteoarthritis Res Soc. 2007;15(5):543–549. doi: 10.1016/j.joca.2006.11.001.
    1. Qiu B, Liu SQ, Peng H, Wang HB. The effects of sodium hyaluronate on mRNA expressions of matrix metalloproteinase-1, -3 and tissue inhibitor of metalloproteinase-1 in cartilage and synovium of traumatic osteoarthritis model. Chin J Traumatol. 2005;8(1):8–12.
    1. Ozkan FU, Ozkan K, Ramadan S, Guven Z. Chondroprotective effect of N-acetylglucosamine and hyaluronate in early stages of osteoarthritis--an experimental study in rabbits. Bull NYU Hosp Jt Dis. 2009;67(4):352–357.
    1. Yang L, Zhang J, Wang G. The effect of sodium hyaluronate treating knee osteoarthritis on synovial fluid interleukin -1beta and clinical treatment mechanism. Pak J Pharm Sci. 2015;28(1 Suppl):407–410.
    1. Yoshioka K, Yasuda Y, Kisukeda T, Nodera R, Tanaka Y, Miyamoto K. Pharmacological effects of novel cross-linked hyaluronate, Gel-200, in experimental animal models of osteoarthritis and human cell lines. Osteoarthritis Cartilage. 2014;22(6):879–887. doi: 10.1016/j.joca.2014.04.019.
    1. Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL. A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip Rev Syst Biol Med. 2012;4(1):15–37. doi: 10.1002/wsbm.157.
    1. Lin EA, Liu CJ. The role of ADAMTSs in arthritis. Protein Cell. 2010;1(1):33–47. doi: 10.1007/s13238-010-0002-5.
    1. Asari A, Miyauchi S, Matsuzaka S, Ito T, Kominami E, Uchiyama Y. Molecular weight-dependent effects of hyaluronate on the arthritic synovium. Arch Histol Cytol. 1998;61(2):125–135. doi: 10.1679/aohc.61.125.
    1. Bagga H, Burkhardt D, Sambrook P, March L. Longterm effects of intraarticular hyaluronan on synovial fluid in osteoarthritis of the knee. J Rheumatol. 2006;33(5):946–950.
    1. Bauer C, Baumgartner R, Hornof M, Halbwirth F, Niculescu-Morzsa E, Zwickl H, et al. Cross-linked hyaluronic acid scaffolds: a potential usage in cartilage regeneration? Osteoarthr Cartil. 2013;21:S312. doi: 10.1016/j.joca.2013.02.646.
    1. Forsey R, Fisher J, Thompson J, Stone M, Bell C, Ingham E. The effect of hyaluronic acid and phospholipid based lubricants on friction within a human cartilage damage model. Biomaterials. 2006;27(26):4581–4590. doi: 10.1016/j.biomaterials.2006.04.018.
    1. Frean S, Abraham L, Lees P. In vitro stimulation of equine articular cartilage proteoglycan synthesis by hyaluronan and carprofen. Res Vet Sci. 1999;67:181–188. doi: 10.1053/rvsc.1999.0328.
    1. Han F, Ishiguro N, Ito T, Sakai T, Iwata H. Effects of sodium hyaluronate on experimental osteoarthritis in rabbit knee joints. Med Sci. 1999;62.
    1. Homandberg GA, Ummadi V, Kang H. The role of insulin-like growth factor-I in hyaluronan mediated repair of cultured cartilage explants. Inflamm Res. 2004;53:8.
    1. Hulmes D. Intra-articular hyaluronate in experimental rabbit osteoarthritis can prevent changes in cartilage proteoglycan content. Osteoarthr Cartil. 2004;12(3):232–238. doi: 10.1016/j.joca.2003.11.007.
    1. Kang Y, Eger W, Koepp H, Williams JM, Kuettner KE, Homandberg GA. Hyaluronan suppresses fibronectin fragment-mediated damage to human cartilage explant cultures by enhancing proteoglycan synthesis. J Orthop Res. 1999;17(6):858–869. doi: 10.1002/jor.1100170611.
    1. Kikuchi T, Yamada H, Fujikawa K. Effects of high molecular weight hyaluronan on the distribution and movement of proteoglycan around chondrocytes cultured in alginate beads. Osteoarthr Cartil. 2001;9(4):351–356. doi: 10.1053/joca.2000.0395.
    1. Kobayashi K, Matsuzaka S, Yoshida Y, Miyauchi S, Wada Y, Moriya H. The effects of intraarticularly injected sodium hyaluronate on levels of intact aggrecan and nitric oxide in the joint fluid of patients with knee osteoarthritis. Osteoarthr Cartil. 2004;12(7):536–542. doi: 10.1016/j.joca.2004.03.005.
    1. Nishida Y, Knudson CB, Knudson W. Extracellular matrix recovery by human articular chondrocytes after treatment with hyaluronan hexasaccharides or Streptomyces hyaluronidase. Mod Rheumatol. 2003;13(1):62–68. doi: 10.3109/s101650300009.
    1. Smith GN, Jr, Mickler EA, Myers SL, Brandt KD. Effect of intraarticular hyaluronan injection on synovial fluid hyaluronan in the early stage of canine post-traumatic osteoarthritis. J Rheumatol. 2001;28(6):1341–1346.
    1. Stove J, Gerlach C, Huch K, Gunther KP, Puhl W, Scharf HP. Effects of hyaluronan on proteoglycan content of osteoarthritic chondrocytes in vitro. J Orthop Res. 2002;20(3):551–555. doi: 10.1016/S0736-0266(01)00141-3.
    1. Wang C, Lin Y, Chiang B, Hou S. High molecular weight hyaluronic acid down-regulates the gene expression of osteoarthritis-associated cytokines and enzymes in fibroblast-like synoviocytes from patients with early osteoarthritis. Osteoarthr Cartil. 2006;14(12):1237–1247. doi: 10.1016/j.joca.2006.05.009.
    1. Abatangelo G, Botti P, Del Bue M, Gei G, Samson JC, Cortivo R, et al. Intraarticular sodium hyaluronate injections in the Pond-Nuki experimental model of osteoarthritis in dogs. I. Biochemical results. Clin Orthop Relat Res. 1989;241:278–285.
    1. Asari A, Mizuno S, Tanaka I, Sunose A, Kuriyama S, Miyazaki K, et al. Suppression of hyaluronan and prostaglandin E2 production in traumatic arthritic synovial cells by sodium hyaluronate. Connective Tissue. 1997;29:1–5.
    1. Lisignoli G, Grassi F, Piacentini A, Cocchini B, Remiddi G, Bevilacqua C, et al. Hyaluronan does not affect cytokine and chemokine expression in osteoarthritic chondrocytes and synoviocytes. Osteoarthritis Cartilage. 2001;9(2):161–168. doi: 10.1053/joca.2000.0372.
    1. Oliviero F, Scanu A, Ramonda R, Frallonardo P, Sfriso P, Dayer J, et al. Mechanisms involved in inhibition of inflammation in THP-1 cells by the hexadecylamide derivative of hyaluronic acid. Osteoarthr Cartil. 2014;22:S292–S293. doi: 10.1016/j.joca.2014.02.544.
    1. Sezgin M, Demirel AÇ, Karaca C, Ortancıl Ö, Ülkar GB, Kanık A, et al. Does hyaluronan affect inflammatory cytokines in knee osteoarthritis? Rheumatol Int. 2004;25(4):264–269. doi: 10.1007/s00296-003-0428-7.
    1. Sheehan KM, Delott LB, Day SM, Deheer DH. Hyalgan® has a dose-dependent differential effect on macrophage proliferation and cell death. J Orthop Res. 2003;21(4):744–751. doi: 10.1016/S0736-0266(03)00007-X.
    1. Yasuda T. Hyaluronan inhibits Akt, leading to nuclear factor-kappaB down-regulation in lipopolysaccharide-stimulated U937 macrophages. J Pharmacol Sci. 2011;115(4):509–515. doi: 10.1254/jphs.10244FP.
    1. Campo GM, Avenoso A, D'Ascola A, Prestipino V, Scuruchi M, Nastasi G, et al. Inhibition of hyaluronan synthesis reduced inflammatory response in mouse synovial fibroblasts subjected to collagen-induced arthritis. Arch Biochem Biophys. 2012;518(1):42–52. doi: 10.1016/j.abb.2011.12.005.
    1. Campo GM, Avenoso A, Nastasi G, Micali A, Prestipino V, Vaccaro M, et al. Hyaluronan reduces inflammation in experimental arthritis by modulating TLR-2 and TLR-4 cartilage expression. Biochim Biophys Acta. 2011;1812(9):1170–1181. doi: 10.1016/j.bbadis.2011.06.006.
    1. Schumacher HR, Paul C, Hitchon CA, El-Gabalawy H, Zonay L, Clayburne G, et al. Hyaluronate effects on synovium and synovial fluid. A prospective blinded study in patients with osteoarthritis of the knee. Osteoarthritis Cartilage. 2006;14(5):501–503. doi: 10.1016/j.joca.2005.11.013.
    1. Bell CJ, Ingham E, Fisher J. Influence of hyaluronic acid on the time-dependent friction response of articular cartilage under different conditions. Proc Inst Mech Eng H. 2006;220(1):23–31. doi: 10.1243/095441105X69060.
    1. Ghosh P, Read R, Numata Y, Smith S, Armstrong S, Wilson D. The effects of intraarticular administration of hyaluronan in a model of early osteoarthritis in sheep. II. Cartilage composition and proteoglycan metabolism. Semin Arthritis Rheum. 1993;22(6 Suppl 1):31–42. doi: 10.1016/S0049-0172(10)80017-4.
    1. Obara T, Mabuchi K, Iso T, Yamaguchi T. Increased friction of animal joints by experimental degeneration and recovery by addition of hyaluronic acid. Clin Biomech (Bristol, Avon) 1997;12(4):246–252. doi: 10.1016/S0268-0033(97)00004-1.
    1. Waller KA, Zhang LX, Fleming BC, Jay GD. Preventing friction-induced chondrocyte apoptosis: comparison of human synovial fluid and Hylan G-F 20. J Rheumatol. 2012;39(7):1473–1480. doi: 10.3899/jrheum.111427.
    1. Yu L-P, Yang H, Voschin E, Skrabut E. Viscoelastic properties and molecular weight of hylan G-F 20 compared with other commercial hyaluronan based viscosupplements. Osteoarthr Cartil. 2011;19(S1):S235. doi: 10.1016/S1063-4584(11)60535-9.
    1. Mori S, Naito M, Moriyama S. Highly viscous sodium hyaluronate and joint lubrication. Int Orthop. 2002;26(2):116–121. doi: 10.1007/s00264-002-0330-z.
    1. Tang SF, Chen CP, Chen MJ, Pei YC, Lau YC, Leong CP. Changes in sagittal ground reaction forces after intra-articular hyaluronate injections for knee osteoarthritis. Arch Phys Med Rehabil. 2004;85(6):951–955. doi: 10.1016/j.apmr.2003.08.095.
    1. Armstrong S, Read R, Ghosh P. The effects of intraarticular hyaluronan on cartilage and subchondral bone changes in an ovine model of early osteoarthritis. J Rheumatol. 1994;21(4):680–688.
    1. Hiraoka N, Takahashi Y, Arai K, Honjo S, Nakawaga S, Tsuchida S, et al. Hyaluronan and intermittent hydrostatic pressure synergistically suppressed MMP-13 and Il-6 expressions in osteoblasts from OA subchondral bone. Osteoarthr Cartil. 2009;17(1):S97. doi: 10.1016/S1063-4584(09)60186-2.
    1. Hiraoka N, Takahashi KA, Arai Y, Sakao K, Mazda O, Kishida T, et al. Intra-articular injection of hyaluronan restores the aberrant expression of matrix metalloproteinase-13 in osteoarthritic subchondral bone. J Orthop Res. 2011;29(3):354–360. doi: 10.1002/jor.21240.
    1. Prasadam I, Crawford R, Xiao Y. Aggravation of ADAMTS and matrix metalloproteinase production and role of ERK1/2 pathway in the interaction of osteoarthritic subchondral bone osteoblasts and articular cartilage chondrocytes -- possible pathogenic role in osteoarthritis. J Rheumatol. 2012;39(3):621–634. doi: 10.3899/jrheum.110777.
    1. Boettger MK, Kummel D, Harrison A, Schaible HG. Evaluation of long-term antinociceptive properties of stabilized hyaluronic acid preparation (NASHA) in an animal model of repetitive joint pain. Arthritis Res Ther. 2011;13(4):R110. doi: 10.1186/ar3394.
    1. Gomis A, Miralles A, Schmidt RF, Belmonte C. Intra-articular injections of hyaluronan solutions of different elastoviscosity reduce nociceptive nerve activity in a model of osteoarthritic knee joint of the guinea pig. Osteoarthr Cartil. 2009;17(6):798–804. doi: 10.1016/j.joca.2008.11.013.
    1. Gotoh S, Onaya J, Abe M, Miyazaki K, Hamai A, Horie K, et al. Effects of the molecular weight of hyaluronic acid and its action mechanisms on experimental joint pain in rats. Ann Rheum Dis. 1993;52(11):817–822. doi: 10.1136/ard.52.11.817.
    1. Pena Ede L, Sala S, Rovira JC, Schmidt RF, Belmonte C. Elastoviscous substances with analgesic effects on joint pain reduce stretch-activated ion channel activity in vitro. Pain. 2002;99(3):501–508. doi: 10.1016/S0304-3959(02)00260-9.
    1. Dougados M. Sodium hyaluronate therapy in osteoarthritis: arguments for a potential beneficial structural effect. Semin Arthritis Rheum. 2000;30(2 Suppl 1):19–25. doi: 10.1053/sarh.2000.0246.
    1. Balazs EA, Denlinger JL. Viscosupplementation: a new concept in the treatment of osteoarthritis. J Rheumatol Suppl. 1993;39:3–9.
    1. Karbownik MS, Nowak JZ. Hyaluronan: towards novel anti-cancer therapeutics. Pharmacol Rep. 2013;65(5):1056–1074. doi: 10.1016/S1734-1140(13)71465-8.
    1. Fakhari A, Berkland C. Applications and emerging trends of hyaluronic acid in tissue engineering, as a dermal filler and in osteoarthritis treatment. Acta Biomater. 2013;9(7):7081–7092. doi: 10.1016/j.actbio.2013.03.005.
    1. Harris E, Weigel PH. Functional Aspects of the Hyaluronan and Chondroitin Sulfate Receptors. In: Raton B, ed: CRC Press; 2009:171-192.
    1. Ghosh P, Guidolin D. Potential mechanism of action of intra-articular hyaluronan therapy in osteoarthritis: are the effects molecular weight dependent? Semin Arthritis Rheum. 2002;32(1):10–37. doi: 10.1053/sarh.2002.33720.
    1. Jiang D, Liang J, Noble PW. Hyaluronan as an immune regulator in human diseases. Physiol Rev. 2011;91(1):221–264. doi: 10.1152/physrev.00052.2009.
    1. Camenisch TD, McDonald JA. Hyaluronan: is bigger better? Am J Respir Cell Mol Biol. 2000;23(4):431–433. doi: 10.1165/ajrcmb.23.4.f201.
    1. Mizrahy S, Raz SR, Hasgaard M, Liu H, Soffer-Tsur N, Cohen K, et al. Hyaluronan-coated nanoparticles: the influence of the molecular weight on CD44-hyaluronan interactions and on the immune response. J Control Release. 2011;156(2):231–238. doi: 10.1016/j.jconrel.2011.06.031.
    1. Jevsevar DS, Jones DL, Matzkin EG, Manner PA, Mooar P, Schousboe JT, et al. American academy of orthopaedic surgeons. Treatment of osteoarthritis of the knee: evidence based guideline 2nd Edition. JBJS. 2013;95(20):1885–1886.
    1. Lee PB, Kim YC, Lim YJ, Lee CJ, Sim WS, Ha CW, et al. Comparison between high and low molecular weight hyaluronates in knee osteoarthritis patients: open-label, randomized, multicentre clinical trial. J Int Med Res. 2006;34(1):77–87. doi: 10.1177/147323000603400110.
    1. Kirchner M, Marshall D. A double-blind randomized controlled trial comparing alternate forms of high molecular weight hyaluronan for the treatment of osteoarthritis of the knee. Osteoarthr Cartil. 2006;14(2):154–162. doi: 10.1016/j.joca.2005.09.003.
    1. Chen AL, Desai P, Adler EM, Di Cesare PE. Granulomatous inflammation after Hylan G-F 20 viscosupplementation of the knee : a report of six cases. J Bone Joint Surg Am. 2002;84-A(7):1142–1147.
    1. Zardawi IM, Chan I. Synvisc perisynovitis. Pathology. 2001;33(4):519–520. doi: 10.1080/00313020120083296.

Source: PubMed

3
Subskrybuj