Structural and functional brain biomarkers of clinical response to rTMS of medication-resistant auditory hallucinations in schizophrenia patients: study protocol for a randomized sham-controlled double-blind clinical trial

Fanny Thomas, Noomane Bouaziz, Cécile Gallea, Palmyre Schenin-King Andrianisaina, Florence Durand, Ombline Bolloré, René Benadhira, Clémence Isaac, Sonia Braha-Zeitoun, Virginie Moulier, Antoni Valero-Cabré, Dominique Januel, Fanny Thomas, Noomane Bouaziz, Cécile Gallea, Palmyre Schenin-King Andrianisaina, Florence Durand, Ombline Bolloré, René Benadhira, Clémence Isaac, Sonia Braha-Zeitoun, Virginie Moulier, Antoni Valero-Cabré, Dominique Januel

Abstract

Background: The potential of non-invasive repetitive transcranial magnetic stimulation (rTMS) to improve auditory verbal hallucinations (AVH) in schizophrenia patients has been increasingly explored over the past decade. Despite highly promising results, high inter-individual variability of clinical response and ineffective outcomes in a significant number of patients underscored the need to identify factors associated with the clinical response to rTMS. It should help improve the efficacy of rTMS in patients with medication-resistant AVH, and allow a better understanding of its neural impact. Here, we describe an exploratory study protocol which aims to identify structural and functional brain biomarkers associated with clinical response after an rTMS treatment for medication-resistant AVH in schizophrenia.

Methods: Forty-five schizophrenia patients with medication-resistant AVH will be enrolled in a double-blind randomized sham-controlled monocentric clinical trial. Patients will be assigned to a regime of 20 sessions of active or sham 1 Hz rTMS delivered twice a day, 5 days a week for 2 weeks over the left temporo-parietal junction. Response will be assessed after rTMS and patients will be classified in responders or non-responders to treatment. Magnetic resonance imaging (MRI) sessions including diffusion weighted imaging and resting-state functional MRI sequences will be recorded before the onset of the rTMS treatment and 3 days following its discontinuation. The primary outcome measure is difference in fractional anisotropy between responder and non-responder patients at baseline. Differences in resting-state functional MRI data at baseline will be also investigated between responder and non-responder groups. Clinical, neuropsychological, neurophysiological, and blood serum BDNF assessments will be performed at baseline, 3 days, 1 month, and 3 months following rTMS.

Discussion: The aim of this research project is to identify and assess the biomarker value of MRI-based structural and functional biomarkers predicting clinical response to rTMS for AVH in schizophrenia patients. The outcome of the trial should improve patient care by offering them a novel suitable therapy and deepen our understanding on how rTMS may impact AVH and develop more effective therapies adapted to individual patient needs.

Trial registration: ClinicalTrials.gov, NCT02755623 . Registered on 22 April 2016.

Keywords: Schizophrenia; auditory verbal hallucinations; clinical response; clinical trial; functional connectivity; non-invasive brain stimulation; predictive biomarkers; repetitive transcranial magnetic stimulation; structural connectivity.

Conflict of interest statement

Ethics approval and consent to participate

The protocol was approved by the CPP Ile-de-France III ethics committee (reference: ID RCB N°2014-A01595–420) and is in accordance with the Declaration of Helsinki and French legislation (article L1121–1 and R1121–1 of the Public Health Code). All participants gave written informed consent, which were gathered by the main investigator. This study is registered on ClinicalTrials.gov (NCT02755623).

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Flow chart of the study design
Fig. 2
Fig. 2
Description of the enrolment, treatment, and assessments during the study protocol AHRS Auditory Hallucinations Rating Scale, BDI Beck Depression Inventory, BDNF brain-derived neurotrophic factor, HCS Hallucination Change Score, MRI magnetic resonance imaging, PANSS Positive And Negative Syndrome Scale, MEP motor-evoked potentials, PSYRATS Psychotic Symptom Rating Scale, rTMS repetitive transcranial magnetic stimulation, t time point, W week.
Fig. 3
Fig. 3
TMS-targeted region and coil placement. The left TPJ will be targeted using established spatial coordinates for the Wernicke’s area in the left TPJ (Montreal Neurological Institute (MNI) coordinates: x = − 69, y = − 41, z = 11; Hoffman et al. [25]). Axial (a), coronal (b), and sagittal (c) MRI views of the location for the TMS targeted left TPJ are shown in this figure. This brain area will be labeled on a 3D rendering of the patient’s individual T1 MRI sequence on each patient. The TMS coil will be positioned tangential to the scalp location overlying the left TPJ using an MRI-based frameless stereotactic neuronavigation system (d and e)

References

    1. Friston KJ, Frith CD. Schizophrenia: a disconnection syndrome? Clin Neurosci. 1995;3:89–97.
    1. Friston KJ. The disconnection hypothesis. Schizophr Res. 1998;30:115–125. doi: 10.1016/S0920-9964(97)00140-0.
    1. Andreasen NC, Flaum M. Schizophrenia: the characteristic symptoms. Schizophr Bull. 1991;17:27–49. doi: 10.1093/schbul/17.1.27.
    1. Llorca PM, Pereira B, Jardri R, et al. Hallucinations in schizophrenia and Parkinson’s disease: An analysis of sensory modalities involved and the repercussion on patients. Sci Rep. 2016;6:1–9. doi: 10.1038/srep38152.
    1. Geoffroy PA, Houenou J, Duhamel A, Amad A, De Weijer AD, Curčić-Blake B, Linden DEJ, Thomas P, Jardri R. The arcuate fasciculus in auditory-verbal hallucinations: A meta-analysis of diffusion-tensor-imaging studies. Schizophr Res. 2014;159:234–237. doi: 10.1016/j.schres.2014.07.014.
    1. Thomas F, Moulier V, Valéro-Cabré A, Januel D. Brain connectivity and auditory hallucinations: In search of novel noninvasive brain stimulation therapeutic approaches for schizophrenia. Rev Neurol (Paris). 2016. 10.1016/j.neurol.2016.09.001.
    1. Ćurčić-Blake B, Liemburg E, Vercammen A, Swart M, Knegtering H, Bruggeman R, Aleman A. When Broca goes uninformed: reduced information flow to Broca’s area in schizophrenia patients with auditory hallucinations. Schizophr Bull. 2013;39:1087–1095. doi: 10.1093/schbul/sbs107.
    1. Alonso-Solís A, Vives-Gilabert Y, Grasa E, et al. Resting-state functional connectivity alterations in the default network of schizophrenia patients with persistent auditory verbal hallucinations. Schizophr Res. 2015;161:261–268. doi: 10.1016/j.schres.2014.10.047.
    1. Vercammen A, Knegtering H, den Boer JA, Liemburg EJ, Aleman A. Auditory hallucinations in schizophrenia are associated with reduced functional connectivity of the temporo-parietal area. Biol Psychiatry. 2010;67:912–918. doi: 10.1016/j.biopsych.2009.11.017.
    1. Jardri R, Thomas P, Delmaire C, Delion P, Pins D. The neurodynamic organization of modality-dependent hallucinations. Cereb Cortex. 2013;23:1108–1117. doi: 10.1093/cercor/bhs082.
    1. Paus T. Cortico-cortical connectivity of the human mid-dorsolateral frontal cortex and its modulation by repetitive transcranial magnetic stimulation. Eur J Neurosci. 2001;14:1405–1411. doi: 10.1046/j.0953-816x.2001.01757.x.
    1. Aleman A, Sommer IEC, Kahn RS. Efficacy of slow repetitive transcranial magnetic stimulation in the treatment of resistant auditory hallucinations in schizophrenia: a meta-analysis. J Clin Psychiatry. 2007;68:416–421. doi: 10.4088/JCP.v68n0310.
    1. Tranulis C, Sepehry AA, Galinowski A, Stip E. Should we treat auditory hallucinations with repetitive transcranial magnetic stimulation? A metaanalysis. Can J Psychiatr. 2008;53:577–586. doi: 10.1177/070674370805300904.
    1. Freitas C, Fregni F, Pascual-Leone A. Meta-analysis of the effects of repetitive transcranial magnetic stimulation (rTMS) on negative and positive symptoms in schizophrenia. Schizophr Res. 2009;108:11–24. doi: 10.1016/j.schres.2008.11.027.
    1. Slotema CW, Blom JD, Hoek HW, Sommer IEC. Should we expand the toolbox of psychiatric treatment methods to include Repetitive Transcranial Magnetic Stimulation (rTMS)? A meta-analysis of the efficacy of rTMS in psychiatric disorders. J Clin Psychiatry. 2010;71:873–884. doi: 10.4088/JCP.08m04872gre.
    1. Demeulemeester M, Amad A, Bubrovszky M, Pins D, Thomas P, Jardri R. What is the real effect of 1-Hz repetitive transcranial magnetic stimulation on hallucinations? Controlling for publication bias in neuromodulation trials. Biol Psychiatry. 2012;71:15–16. doi: 10.1016/j.biopsych.2011.10.010.
    1. Otani VHO, Shiozawa P, Cordeiro Q, Uchida RR. A systematic review and meta-analysis of the use of repetitive transcranial magnetic stimulation for auditory hallucinations treatment in refractory schizophrenic patients. Int J Psychiatry Clin Pract. 2014;1501:1–6.
    1. He H, Lu J, Yang L, Zheng J, Gao F, Zhai Y, Feng J, Fan Y, Ma X. Repetitive transcranial magnetic stimulation for treating the symptoms of schizophrenia: a PRISMA compliant meta-analysis. Clin Neurophysiol. 2017;128:716–724. doi: 10.1016/j.clinph.2017.02.007.
    1. Kennedy NI, Lee WH, Frangou S. Efficacy of non-invasive brain stimulation on the symptom dimensions of schizophrenia: a meta-analysis of randomized controlled trials. Eur Psychiatry. 2018;49:69–77. doi: 10.1016/j.eurpsy.2017.12.025.
    1. Du L, Liu H, Du W, Chao F, Zhang L, Wang K, Huang C, Gao Y, Tang Y. Stimulated left DLPFC-nucleus accumbens functional connectivity predicts the anti-depression and anti-anxiety effects of rTMS for depression. Transl Psychiatry. 2018;7:3. doi: 10.1038/s41398-017-0005-6.
    1. Andoh J, Matsushita R, Zatorre RJ. Asymmetric interhemispheric transfer in the auditory network: evidence from TMS, resting-state fMRI, and diffusion imaging. J Neurosci. 2015;35:14602–14611. doi: 10.1523/JNEUROSCI.2333-15.2015.
    1. Quentin R, Chanes L, Migliaccio R, Valabrègue R, Valero-Cabré A. Fronto-tectal white matter connectivity mediates facilitatory effects of non-invasive neurostimulation on visual detection. Neuroimage. 2013;82:344–354. doi: 10.1016/j.neuroimage.2013.05.083.
    1. Voineskos AN, Farzan F, Barr MS, Lobaugh NJ, Mulsant BH, Chen R, Fitzgerald PB, Daskalakis ZJ. The role of the corpus callosum in transcranial magnetic stimulation induced interhemispheric signal propagation. Biol Psychiatry. 2010;68:825–831. doi: 10.1016/j.biopsych.2010.06.021.
    1. Horacek J, Brunovsky M, Novak T, et al. Effect of low-frequency rTMS on electromagnetic tomography (LORETA) and regional brain metabolism (PET) in schizophrenia patients with auditory hallucinations. Neuropsychobiology. 2007;55:132–142. doi: 10.1159/000106055.
    1. Hoffman RE, Wu K, Pittman B, Cahill JD, Hawkins KA, Fernandez T, Hannestad J. Transcranial magnetic stimulation of Wernicke’s and Right homologous sites to curtail “voices”: a randomized trial. Biol Psychiatry. 2013;73:1008–1014. doi: 10.1016/j.biopsych.2013.01.016.
    1. Rossi S, Ferro M, Cincotta M, Ulivelli M, Bartalini S, Miniussi C, Giovannelli F, Passero S. A real electro-magnetic placebo (REMP) device for sham transcranial magnetic stimulation (TMS) Clin Neurophysiol. 2007;118:709–716. doi: 10.1016/j.clinph.2006.11.005.
    1. Hoffman RE, Hawkins KA, Gueorguieva R, Boutros NN, Rachid F, Carroll K, Krystal JH. Transcranial magnetic stimulation of left temporoparietal cortex and medication-resistant auditory hallucinations. Arch Gen Psychiatry. 2003;60:49–56. doi: 10.1001/archpsyc.60.1.49.
    1. Hoffman RE, Gueorguieva R, Hawkins KA, Varanko M, Boutros NN, Wu YT, Carroll K, Krystal JH. Temporoparietal transcranial magnetic stimulation for auditory hallucinations: Safety, efficacy and moderators in a fifty patient sample. Biol Psychiatry. 2005;58:97–104. doi: 10.1016/j.biopsych.2005.03.041.
    1. Colby JB, Soderberg L, Lebel C, Dinov ID, Thompson PM, Sowell ER. Along-tract statistics allow for enhanced tractography analysis. Neuroimage. 2012;59:3227–3242. doi: 10.1016/j.neuroimage.2011.11.004.
    1. Song XW, Dong ZY, Long XY, Li SF, Zuo XN, Zhu CZ, He Y, Yan CG, Zang YF. REST: a toolkit for resting-state functional magnetic resonance imaging data processing. PLoS One. 2011. 10.1371/journal.pone.0025031.
    1. Di X, Biswal BB. Identifying the default mode network structure using dynamic causal modeling on resting-state functional magnetic resonance imaging. Neuroimage. 2014;86:53–59. doi: 10.1016/j.neuroimage.2013.07.071.
    1. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9:97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Hoffman RE, Boutros NN, Hu S, Berman RM, Krystal JH, Charney DS. Transcranial magnetic stimulation and auditory hallucinations in schizophrenia. Lancet. 2000;355:1073–1075. doi: 10.1016/S0140-6736(00)02043-2.
    1. Kay S, Flszbein A, Opfer L. The positive and negative syndrome scale (PANSS) for schizophrenia. Schizophr Bull. 1987;13:261–276. doi: 10.1093/schbul/13.2.261.
    1. Haddock G, McCarron J, Tarrier N, Faragher EB. Scales to measure dimensions of hallucinations and delusions: the psychotic symptom rating scales (PSYRATS) Psychol Med. 1999;29:879–889. doi: 10.1017/S0033291799008661.
    1. Andreasen NC. The Scale for the Assessment of Negative Symptoms (SANS): conceptual and theoretical foundations. Br J Psychiatry Suppl. 1989;(7):49–58.
    1. Beck A, Ward C, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry. 1961;4:561–571. doi: 10.1001/archpsyc.1961.01710120031004.
    1. Addington D, Addington J, Maticka-Tyndale E. Assessing depression in schizophrenia: the Calgary Depression Scale. Br J Psychiatry Suppl. 1993;(22):39–44.
    1. Ware JE, Sherbourne CD. The MOS 36-item short-form health survey (SF-36). I. Conceptual framework and item selection. Med Care. 1992;30:473–483. doi: 10.1097/00005650-199206000-00002.
    1. Godefroy O, Grefex. Fonctions exécutives et pathologies neurologiques et psychiatriques : Evaluation en pratique clinique. Marseille: Solal; 2008.
    1. Golden C. Stroop Color and Word Test. Chicago: Stoelting; 1978.
    1. Simon HA. The functional equivalence of problem solving skills. Cogn Psychol. 1975;7:268–288. doi: 10.1016/0010-0285(75)90012-2.
    1. Poitrenaud J, Deweer B, Kalafat M, Van der Linden M. Adaptation en Langue Française du California Verbal Learning Test. Paris: ECPA; 2007.
    1. Wechsler D. Echelle clinique de mémoire – troisième édition (MEM-III). Paris: Editions du Centre de Psychologie Appliquée; 2001.
    1. Danion JM, Cuervo C, Piolino P, Huron C, Riutort M, Peretti CS, Eustache F. Conscious recollection in autobiographical memory: an investigation in schizophrenia. Conscious Cogn. 2005;14:535–547. doi: 10.1016/j.concog.2005.01.005.
    1. Roux FE, Durand JB, Réhault E, Planton S, Draper L, Démonet JF. The neural basis for writing from dictation in the temporoparietal cortex. Cortex. 2014;50:64–75. doi: 10.1016/j.cortex.2013.09.012.
    1. Radhu N, de Jesus DR, Ravindran LN, Zanjani A, Fitzgerald PB, Daskalakis ZJ. A meta-analysis of cortical inhibition and excitability using transcranial magnetic stimulation in psychiatric disorders. Clin Neurophysiol. 2013;124:1309–1320. doi: 10.1016/j.clinph.2013.01.014.
    1. Thomas F, Bouaziz N, Amengual JL, Schenin-King Andrianisaina P, Gaudeau-Bosma C, Moulier V, Valero-Cabré A, Januel D. Unexpected improvement of hand motor function with a left temporoparietal low-frequency repetitive transcranial magnetic stimulation regime suppressing auditory hallucinations in a brainstem chronic stroke patient. Front Psychiatry. 2017;8:1–10. doi: 10.3389/fpsyt.2017.00262.
    1. Brunoni AR, Boggio PS, Fregni F. Can the “yin and yang” BDNF hypothesis be used to predict the effects of rTMS treatment in neuropsychiatry? Med Hypotheses. 2008;71:279–282. doi: 10.1016/j.mehy.2008.02.011.
    1. Schaller G, Sperling W, Richter-Schmidinger T, Mühle C, Heberlein A, Maihöfner C, Kornhuber J, Lenz B. Serial repetitive transcranial magnetic stimulation (rTMS) decreases BDNF serum levels in healthy male volunteers. J Neural Transm. 2014;121:307–313. doi: 10.1007/s00702-013-1102-1.
    1. Catani M, Craig MC, Forkel SJ, Kanaan R, Picchioni M, Toulopoulou T, Shergill S, Williams S, Murphy DG, McGuire P. Altered integrity of perisylvian language pathways in schizophrenia: relationship to auditory hallucinations. Biol Psychiatry. 2011;70:1143–1150. doi: 10.1016/j.biopsych.2011.06.013.
    1. Homan P, Kindler J, Hauf M, Hubl D, Dierks T. Cerebral blood flow identifies responders to transcranial magnetic stimulation in auditory verbal hallucinations. Transl Psychiatry. 2012;2:e189. doi: 10.1038/tp.2012.114.
    1. Matthew Brett, Jean-Luc Anton, Romain Valabregue, Jean-Baptiste Poline. Region of interest analysis using an SPM toolbox [abstract]. Presented at the 8th International Conferance on Functional Mapping of the Human Brain, Sendai, Japan. NeuroImage. 2002;16(2):497.
    1. Tournier J-D, Calamante F, Connelly A. Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. Neuroimage. 2007;35:1459–1472. doi: 10.1016/j.neuroimage.2007.02.016.
    1. Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38(1):95–113. Epub 2007 Jul 18. PubMed PMID: 17761438.
    1. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34:537–541. doi: 10.1002/mrm.1910340409.
    1. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A. 2003;100:253–258. doi: 10.1073/pnas.0135058100.
    1. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A. 2005;102:9673–9678. doi: 10.1073/pnas.0504136102.
    1. Fransson P. Spontaneous low-frequency BOLD signal fluctuations: an fMRI investigation of the resting-state default mode of brain function hypothesis. Hum Brain Mapp. 2005;26:15–29. doi: 10.1002/hbm.20113.
    1. Friston K, Frith C, Liddle P, Frackowiak R. Functional connectivity: the principal--component analysis of large ({PET}) data sets. J Cereb Blood Flow Metab. 1993;13:5–14. doi: 10.1038/jcbfm.1993.4.
    1. Horwitz B. The elusive concept of brain connectivity. Neuroimage. 2003;19:466–470. doi: 10.1016/S1053-8119(03)00112-5.
    1. Rosner B. Fundamentals of Biostatistics. 6th International Edition. Belmont: Brooks Cole; 2006.
    1. Chao-Gan Y, Yu-Feng Z. DPARSF: A MATLAB toolbox for “Pipeline” data analysis of resting-state fMRI. Front Syst Neurosci. 2010;4:13.
    1. Stephan KE, Penny WD, Daunizeau J, Moran RJ, Friston KJ. Bayesian model selection for group studies. Neuroimage. 2009;46:1004–1017. doi: 10.1016/j.neuroimage.2009.03.025.
    1. Stephan KE, Penny WD, Moran RJ, den Ouden HEM, Daunizeau J, Friston KJ. Ten simple rules for dynamic causal modeling. Neuroimage. 2010;49:3099–3109. doi: 10.1016/j.neuroimage.2009.11.015.
    1. Lefaucheur J-P, André-Obadia N, Antal A, et al. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS) Clin Neurophysiol. 2014;125:1–57. doi: 10.1016/j.clinph.2014.05.021.
    1. Slotema CW, Aleman A, Daskalakis ZJ, Sommer IE. Meta-analysis of repetitive transcranial magnetic stimulation in the treatment of auditory verbal hallucinations: update and effects after one month. Schizophr Res. 2012;142:40–45. doi: 10.1016/j.schres.2012.08.025.
    1. Slotema CW, Blom JD, Van Lutterveld R, Hoek HW, Sommer IEC. Review of the efficacy of transcranial magnetic stimulation for auditory verbal hallucinations. Biol Psychiatry. 2014;76:101–110. doi: 10.1016/j.biopsych.2013.09.038.
    1. Zhang Y, Liang W, Yang S, Dai P, Shen L, Wang C. Repetitive transcranial magnetic stimulation for hallucination in schizophrenia spectrum disorders: a meta-analysis. Neural Regen Res. 2013;8:2666–2676.
    1. Robertson EM, Pascual-Leone A. Prefrontal cortex: procedural sequence learning and awareness. Curr Biol. 2003;13:65–67. doi: 10.1016/S0960-9822(02)01431-8.
    1. Touge T, Gerschlager W, Brown P, Rothwell JC. Are the after-effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol. 2001;112:2138–2145. doi: 10.1016/S1388-2457(01)00651-4.
    1. Hoffman R, Hampson M, Wu K. Probing the pathophysiology of auditory/verbal hallucinations by combining functional magnetic resonance imaging and transcranial magnetic stimulation. Cereb Cortex. 2007;17:2733–2743. doi: 10.1093/cercor/bhl183.
    1. Fitzgerald PB, Benitez J, Daskalakis JZ, Brown TL, Marston N a U, de Castella A, Kulkarni J. A double-blind sham-controlled trial of repetitive transcranial magnetic stimulation in the treatment of refractory auditory hallucinations. J Clin Psychopharmacol. 2005;25:358–362. doi: 10.1097/01.jcp.0000168487.22140.7f.
    1. Fitzgerald PB, Sritharan A, Benitez J, Daskalakis ZJ, Jackson G, Kulkarni J, Egan GF. A preliminary fMRI study of the effects on cortical activation of the treatment of refractory auditory hallucinations with rTMS. Psychiatry Res. 2007;155:83–88. doi: 10.1016/j.pscychresns.2006.12.011.
    1. Blumberger DM, Christensen BK, Zipursky RB, Moller B, Chen R, Fitzgerald PB, Daskalakis ZJ. MRI-targeted repetitive transcranial magnetic stimulation of Heschl’s gyrus for refractory auditory hallucinations. Brain Stimul. 2012;5:577–585. doi: 10.1016/j.brs.2011.12.002.
    1. Jandl M, Steyer J, Weber M, Linden DEJ, Rothmeier J, Maurer K, Kaschka WP. Treating auditory hallucinations by transcranial magnetic stimulation: a randomized controlled cross-over trial. Neuropsychobiology. 2006;53:63–69. doi: 10.1159/000091721.
    1. Vercammen A, Knegtering H, Bruggeman R, Westenbroek HM, Jenner JA, Slooff CJ, Wunderink L, Aleman A. Effects of bilateral repetitive transcranial magnetic stimulation on treatment resistant auditory-verbal hallucinations in schizophrenia: a randomized controlled trial. Schizophr Res. 2009;114:172–179. doi: 10.1016/j.schres.2009.07.013.
    1. Baquet ZC, Gorski JA, Jones KR. Early striatal dendrite deficits followed by neuron loss with advanced age in the absence of anterograde cortical brain-derived neurotrophic factor. J Neurosci. 2004;24:4250–4258. doi: 10.1523/JNEUROSCI.3920-03.2004.

Source: PubMed

3
Subskrybuj