Advantages of the Parent Nucleoside GS-441524 over Remdesivir for Covid-19 Treatment

Victoria C Yan, Florian L Muller, Victoria C Yan, Florian L Muller

Abstract

While remdesivir has garnered much hope for its moderate anti-Covid-19 effects, its parent nucleoside, GS-441524, has been overlooked. Pharmacokinetic analysis of remdesivir evidences premature serum hydrolysis to GS-441524; GS-441524 is the predominant metabolite reaching the lungs. With its synthetic simplicity and in vivo efficacy in the veterinary setting, we contend that GS-441524 is superior to remdesivir for Covid-19 treatment.

Conflict of interest statement

The authors declare no competing financial interest.

Copyright © 2020 American Chemical Society.

Figures

Figure 1
Figure 1
McGuigan prodrugs on remdesivir are prematurely hydrolyzed in serum. (A) The ideal bioactivation of remdesivir predominately occurs in vitro. (B) The presence of serum enzymes in vivo predominately results in premature hydrolysis of the phosphate prodrugs, followed by dephosphorylation to the nucleoside, GS-441524.
Figure 2
Figure 2
McGuigan prodrugs on remdesivir are preferentially bioactivated in the liver. (A) Labile prodrug moieties on remdesivir with corresponding bioactivation enzymes. (B) Relative tissue mRNA expression of initial prodrug bioactivating enzymes for RDV (CES1/CTSA/HINT1) adapted from the HPA data set on the Human Protein Atlas reported as median-centered protein-coding transcripts per million (pTPM). Overall, McGuigan prodrug bioactivating enzymes are more highly expressed in the liver than in the lungs. (C) Immunohistochemistry images from the Human Protein Atlas indicating expression for ProTide bioactivating enzymes. Brown regions indicate enzyme expression while blue regions indicate absent expression. For the lung, pneumocytes—cells frequently infected by Covid-19—are characterized by a threadlike appearance. Expression in the liver is generally higher compared to lung for all enzymes. For CTSA, darkly stained regions are associated with macrophages. IHC images for the skin are included to show lack of enzyme expression. Antibodies used: CTSA (CAB024930), CES1 (HPA046717), HINT1 (HPA044577).
Figure 3
Figure 3
Unlike remdesivir, GS-441524 persists in serum at concentrations above the EC50 value required against SARS-CoV-infected primary HAE cells for long durations. (A) In vitro potency data replotted from Agostini et al. mBio, 2018. Primary HAE cells were infected with either MERS-CoV or SARS-CoV and treated with either GS-441524 (open squares) or remdesivir (closed circles). Mean EC50 of GS-441524 for SARS-CoV-infected HAE cells was found to be 0.18 ± 0.14 μM (note large standard deviations, red arrows). A study by Murphy et al. shows that GS-441524 has an EC50 value of 0.78 μM against FCoV-infected CRFK cells (red dashed line), which is higher than the EC50 value for GS-441524 against SARS-CoV-infected primary HAE cells. (B) Estimated metabolite concentrations for a PK experiment in a SARS-CoV-2 primate model replotted from Williamson et al. Nature, 2020. Primates were initially injected IV with 10 mg/kg of remdesivir 12 h postinoculation with SARS-CoV-2 and then 5 mg/kg of remdesivir every 24 h after. Throughout the experiment, GS-441524 is present in serum at concentrations ∼1000-fold higher than remdesivir; the concentration of GS-441524 is consistently above the EC50 value in SARS-CoV-infected primary HAE cells (red dashed line) at all time points taken in the experiment. In contrast, the concentration of remdesivir in serum never exceeds that required to give the EC50 value against SARS-CoV-infected primary HAE cells (gray dashed line). (C) PK data replotted from Warren et al. Nature, 2016 following IV injection (10 mg/kg) of remdesivir in NHP. Dashed lines indicate the approximate EC50 values of GS-441524 (red) or remdesivir (gray) needed to reach EC50 in SARS-CoV primary HAE cells obtained in (A). Unlike remdesivir, the concentration of drug required to give the EC50 value against SARS-CoV primary HAE cells is maintained for significantly longer with GS-441524 than with remdesivir.

References

    1. Cohen E.; Azad A.. The US Government’s Supply of Covid-19 Drug Remdesivir Runs out at the End of the Month. CNN. June 8, 2020.
    1. Siegel D.; Hui H. C.; Doerffler E.; Clarke M. O.; Chun K.; Zhang L.; Neville S.; Carra E.; Lew W.; Ross B.; et al. Discovery and Synthesis of a Phosphoramidate Prodrug of a Pyrrolo[2,1- f ][Triazin-4-Amino] Adenine C -Nucleoside (GS-5734) for the Treatment of Ebola and Emerging Viruses. J. Med. Chem. 2017, 60 (5), 1648–1661. 10.1021/acs.jmedchem.6b01594.
    1. Yan V. C.; Muller F. L.. Gilead Should Ditch Remdesivir and Focus on Its Simpler and Safer Ancestor. STAT. May 14, 2020.
    1. Warren T. K.; Jordan R.; Lo M. K.; Ray A. S.; Mackman R. L.; Soloveva V.; Siegel D.; Perron M.; Bannister R.; Hui H. C.; et al. Therapeutic Efficacy of the Small Molecule GS-5734 against Ebola Virus in Rhesus Monkeys. Nature 2016, 531, 381–385. 10.1038/nature17180.
    1. Sheahan T. P.; Sims A. C.; Graham R. L.; Menachery V. D.; Gralinski L. E.; Case J. B.; Leist S. R.; Pyrc K.; Feng J. Y.; Trantcheva I.; et al.Broad-Spectrum Antiviral GS-5734 Inhibits Both Epidemic and Zoonotic Coronaviruses. Sci. Transl. Med. 2017, 9 ( (396), ), eaal3653.10.1126/scitranslmed.aal3653
    1. Williamson B. N.; Feldmann F.; Schwarz B.; Meade-White K.; Porter D. P.; Schulz J.; Van Doremalen N.; Leighton I.; Yinda C. K.; Pérez-Pérez L.; et al. Clinical Benefit of Remdesivir in Rhesus Macaques Infected with SARS-CoV-2. Nature 2020, 10.1038/s41586-020-2423-5.
    1. Gordon C. J.; Tchesnokov E. P.; Feng J. Y.; Porter D. P.; Gotte M. The Antiviral Compound Remdesivir Potently Inhibits RNA-Dependent RNA Polymerase from Middle East Respiratory Syndrome Coronavirus. J. Biol. Chem. 2020, 295, 4773.10.1074/jbc.AC120.013056.
    1. Alanazi A. S.; James E.; Mehellou Y. The ProTide Prodrug Technology: Where Next?. ACS Med. Chem. Lett. 2019, 10 (1), 2–5. 10.1021/acsmedchemlett.8b00586.
    1. Murakami E.; Wang T.; Babusis D.; Lepist E.-I.; Sauer D.; Park Y.; Vela J. E.; Shih R.; Birkus G.; Stefanidis D.; et al. Metabolism and Pharmacokinetics of the Anti-Hepatitis C Virus Nucleotide Prodrug GS-6620 Downloaded From. Antimicrob. Agents Chemother. 2014, 58, 1943–1951. 10.1128/AAC.02350-13.
    1. Bieganowski P.; Garrison P. N.; Hodawadekar S. C.; Faye G.; Barnes L. D.; Brenner C. Adenosine Monophosphoramidase Activity of Hint and Hnt1 Supports Function of Kin28, Ccl1, and Tfb3. J. Biol. Chem. 2002, 277 (13), 10852–10860. 10.1074/jbc.M111480200.
    1. Chou T.-F.; Baraniak J.; Kaczmarek R.; Zhou X.; Cheng J.; Ghosh B.; Wagner C. R. Phosphoramidate Pronucleotides: A Comparison of the Phosphoramidase Substrate Specificity of Human and Escherichia Coli Histidine Triad Nucleotide Binding Proteins. Mol. Pharmaceutics 2007, 4 (2), 208–217. 10.1021/mp060070y.
    1. Wichmann D.; Sperhake J.-P.; Lütgehetmann M.; Steurer S.; Edler C.; Heinemann A.; Heinrich F.; Mushumba H.; Kniep I.; Schröder A. S.; et al. Autopsy Findings and Venous Thromboembolism in Patients With COVID-19. Ann. Intern. Med. 2020, M20–2003. 10.7326/M20-2003.
    1. Beigel J. H.; Tomashek K. M.; Dodd L. E.; Mehta A. K.; Zingman B. S.; Kalil A. C.; Hohmann E.; Chu H. Y.; Luetkemeyer A.; Kline S.; et al. Remdesivir for the Treatment of Covid-19 — Preliminary Report. N. Engl. J. Med. 2020, 10.1056/NEJMoa2007764.
    1. Cooke A. M.; Baron D. N.. Section of Medicine with Section of Pathology-Serum Enzymes in Clinical Practice; 1963; Vol. 56.
    1. Testa B.; Mayer J. M.. Hydrolysis in Drug and Prodrug Metabolism: Chemistry, Biochemistry, and Enzymology; VHCA, 2003.
    1. Bahar F. G.; Ohura K.; Ogihara T.; Imai T. Species Difference of Esterase Expression and Hydrolase Activity in Plasma. J. Pharm. Sci. 2012, 101 (10), 3979–3988. 10.1002/jps.23258.
    1. Yong J. M. Origins of Serum Alkaline Phosphatase. J. Clin. Pathol. 1967, 20 (4), 647–653. 10.1136/jcp.20.4.647.
    1. Pruijssers A. J.; George A. S.; Schäfer A.; Leist S. R.; Gralinksi L. E.; Dinnon Iii K. H.; Yount B. L.; Agostini M. L.; Stevens L. J.; Chappell J. D.; et al. Remdesivir Potently Inhibits SARS-CoV-2 in Human Lung Cells and Chimeric SARS-CoV Expressing the SARS-CoV-2 RNA Polymerase in Mice. bioRxiv 2020, 10.1101/2020.04.27.064279.
    1. Lo M. K.; Jordan R.; Arvey A.; Sudhamsu J.; Shrivastava-Ranjan P.; Hotard A. L.; Flint M.; McMullan L. K.; Siegel D.; Clarke M. O.; et al. GS-5734 and Its Parent Nucleoside Analog Inhibit Filo-, Pneumo-, and Paramyxoviruses. Sci. Rep. 2017, 7 (1), 43395.10.1038/srep43395.
    1. Choy K.-T.; Wong A. Y.-L.; Kaewpreedee P.; Sia S. F.; Chen D.; Hui K. P. Y.; Chu D. K. W.; Chan M. C. W.; Cheung P. P.-H.; Huang X.; et al. Remdesivir, Lopinavir, Emetine, and Homoharringtonine Inhibit SARS-CoV-2 Replication in Vitro. Antiviral Res. 2020, 178, 104786.10.1016/j.antiviral.2020.104786.
    1. Pedersen N. C.; Perron M.; Bannasch M.; Montgomery E.; Murakami E.; Liepnieks M.; Liu H. Efficacy and Safety of the Nucleoside Analog GS-441524 for Treatment of Cats with Naturally Occurring Feline Infectious Peritoniti. J. Feline Med. Surg. 2019, 21 (4), 271–281. 10.1177/1098612X19825701.
    1. Murphy B. G.; Perron M.; Murakami E.; Bauer K.; Park Y.; Eckstrand C.; Liepnieks M.; Pedersen N. C. The Nucleoside Analog GS-441524 Strongly Inhibits Feline Infectious Peritonitis (FIP) Virus in Tissue Culture and Experimental Cat Infection Studies. Vet. Microbiol. 2018, 219, 226–233. 10.1016/j.vetmic.2018.04.026.
    1. Dickinson P. J.; Bannasch M.; Thomasy S. M.; Murthy V. D.; Vernau K. M.; Liepnieks M.; Montgomery E.; Knickelbein K. E.; Murphy B.; Pedersen N. C. Antiviral Treatment Using the Adenosine Nucleoside Analogue GS −441524 in Cats with Clinically Diagnosed Neurological Feline Infectious Peritonitis. J. Vet. Intern. Med. 2020, 10.1111/jvim.15780.
    1. Addie D.; Belák S.; Boucraut-Baralon C.; Egberink H.; Frymus T.; Gruffydd-Jones T.; Hartmann K.; Hosie M. J.; Lloret A.; Lutz H.; et al. Feline Infectious Peritonitis. ABCD Guidelines on Prevention and Management. J. Feline Med. Surg. 2009, 11 (7), 594–604. 10.1016/j.jfms.2009.05.008.
    1. Wang Y.; Zhang D.; Du G.; Du R.; Zhao J.; Jin Y.; Fu S.; Gao L.; Cheng Z.; Lu Q.; et al. Remdesivir in Adults with Severe COVID-19: A Randomised, Double-Blind, Placebo-Controlled, Multicentre Trial. Lancet 2020, 395 (10236), 1569–1578. 10.1016/S0140-6736(20)31022-9.
    1. Murphy B. G.; Perron M.; Murakami E.; Bauer K.; Park Y.; Eckstrand C.; Liepnieks M.; Pedersen N. C. The Nucleoside Analog GS-441524 Strongly Inhibits Feline Infectiousperitonitis (FIP) Virus in Tissue Culture and Experimental Cat Infection Studies. Vet. Microbiol. 2018, 219, 226–233. 10.1016/j.vetmic.2018.04.026.
    1. Agostini M. L.; Andres E. L.; Sims A. C.; Graham R. L.; Sheahan T. P.; Lu X.; Clinton Smith E.; Brett Case J.; Feng J. Y.; Jordan R.; et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease Downloaded From. mBio 2018, 9 (2), ee00221–18. 10.1128/mBio.00221-18.
    1. Jarvis L. M.Scaling up Remdesivir amid the Coronavirus Crisis. C&EN. April 20, 2020.
    1. Williamson B. N.; Feldmann F.; Schwarz B.; Meade-White K.; Porter D. P.; Schulz J.; Doremalen N.; van Leighton I.; Yinda C. K.; Pérez-Pérez L.; et al. Clinical Benefit of Remdesivir in Rhesus Macaques Infected with SARS-CoV-2. bioRxiv 2020, 2020.04.15.043166.
    1. Cho A.; Saunders O. L.; Butler T.; Zhang L.; Xu J.; Vela J. E.; Feng J. Y.; Ray A. S.; Kim C. U. Synthesis and Antiviral Activity of a Series of 1′-Substituted 4-Aza-7,9-Dideazaadenosine C-Nucleosides. Bioorg. Med. Chem. Lett. 2012, 22 (8), 2705–2707. 10.1016/j.bmcl.2012.02.105.

Source: PubMed

3
Subskrybuj