Quantitative electroencephalography parameters as neurophysiological biomarkers of schizophrenia-related deficits: A Phase II substudy of patients treated with iclepertin (BI 425809)

Christian Schultheis, Holger Rosenbrock, Salome Rebecca Mack, Richard Vinisko, Niklas Schuelert, Andrea Plano, Sigurd D Süssmuth, Christian Schultheis, Holger Rosenbrock, Salome Rebecca Mack, Richard Vinisko, Niklas Schuelert, Andrea Plano, Sigurd D Süssmuth

Abstract

Patients with schizophrenia experience cognitive impairment related to neural network dysfunction and deficits in sensory processing. These deficits are thought to be caused by N-methyl-D-aspartate receptor hypofunction and can be assessed in patient populations using electroencephalography (EEG). This substudy from a Phase II, randomized, double-blind, placebo-controlled, parallel-group study investigating the safety and efficacy of the novel glycine transporter-1 inhibitor, iclepertin (BI 425809), assessed the potential of EEG parameters as clinically relevant biomarkers of schizophrenia and response to iclepertin treatment. Eligible patients were randomized to once-daily add-on iclepertin (2, 5, 10, or 25 mg), or placebo (1:1:1:1:2 ratio) for 12 weeks. EEG data were recorded from a subgroup of patients (n = 79) at baseline and end of treatment (EoT). EEG parameters of interest were mismatch negativity (MMN), auditory steady-state response (ASSR), and resting state gamma power, and their correlations with clinical assessments. At baseline, MMN and ASSR exhibited consistent correlations with clinical assessments, indicating their potential value as neurophysiological biomarkers of schizophrenia-related deficits. ASSR measures were positively correlated to the MATRICS Consensus Cognitive Battery overall and neurocognitive composite scores; MMN amplitude was positively correlated with Positive and Negative Syndrome Scale scores. However, correlations between change from baseline (CfB) at EoT in clinical assessments, and baseline or CfB at EoT for EEG parameters were modest and inconsistent between dose groups, which might indicate low potential of these EEG parameters as predictive and treatment response biomarkers. Further methodological refinement is needed to establish EEG parameters as useful drug development tools for schizophrenia.

Trial registration: ClinicalTrials.gov NCT02832037.

Conflict of interest statement

All authors are full-time employees of Boehringer Ingelheim. The sponsor was given the opportunity to review the manuscript for medical and scientific accuracy as well as intellectual property considerations.

© 2022. The Author(s).

Figures

Fig. 1. EEG parameters as neurophysiological biomarkers.
Fig. 1. EEG parameters as neurophysiological biomarkers.
Spearman correlation of amplitude of MMN deviants, ASSR parameters, and gamma band power with all clinical assessments (A), MCCB overall composite T-score (B), and PANSS total score (C) at baseline. + Correlation coefficient ≥0.3 and p < 0.05; − correlation coefficient ≤ −0.3 and p < 0.05. ASSR auditory steady-state response, EEG electroencephalography, LNS letter-number span, MATRICS Measurement and Treatment Research to Improve Cognition in Schizophrenia, MCCB MATRICS Consensus Cognitive Battery, MMN mismatch negativity, NAB neuropsychological assessment battery, PANSS positive and negative syndrome scale, PLF phase-locking factor, TMTA Trail Making Test Part A, WMS-III SS Wechsler Memory Scale 3rd edition, Spatial Span.
Fig. 2. EEG parameters as treatment response…
Fig. 2. EEG parameters as treatment response biomarkers.
Spearman correlation of CfB in EEG parameters with CfB in clinical assessments in combined 10 + 25 mg dose groups (A) and placebo group (B). + Correlation coefficient ≥0.3 and p < 0.05; − correlation coefficient ≤ −0.7 and p < 0.05; − correlation coefficient ≤ −0.3 and p < 0.05. ASSR auditory steadystate response, CfB change from baseline, EEG electroencephalography, LNS letter-number span, MATRICS Measurement and Treatment Research to Improve Cognition in Schizophrenia, MCCB MATRICS Consensus Cognitive Battery, MMN mismatch negativity, NAB neuropsychological assessment battery, PANSS positive and negative syndrome scale, PLF phase-locking factor, TMTA Trail Making Test Part A, WMS-III SS Wechsler Memory Scale 3rd edition, Spatial Span.
Fig. 3. EEG parameters as predictive biomarkers.
Fig. 3. EEG parameters as predictive biomarkers.
Spearman correlation of EEG parameters at baseline with CfB in clinical assessments in the combined 10 + 25 mg dose groups (A) and placebo group (B). + Correlation coefficient ≥0.3 and p < 0.05; − correlation coefficient ≤ −0.3 and p < 0.05. ASSR auditory steady-state response, CfB change from baseline, EEG electroencephalography, LNS letter-number span, MATRICS Measurement and Treatment Research to Improve Cognition in Schizophrenia, MCCB MATRICS Consensus Cognitive Battery, MMN mismatch negativity, NAB neuropsychological assessment battery, PANSS positive and negative syndrome scale, PLF phase-locking factor, TMT-A Trail Making Test Part A, WMS-III SS Wechsler Memory Scale 3rd edition, spatial span.

References

    1. Correll CU, Schooler NR. Negative symptoms in schizophrenia: A review and clinical guide for recognition, assessment, and treatment. Neuropsychiatr Dis Treat. 2020;16:519–34. doi: 10.2147/NDT.S225643..
    1. Tripathi A, Kar SK, Shukla R. Cognitive deficits in schizophrenia: Understanding the biological correlates and remediation strategies. Clin Psychopharmacol Neurosci. 2018;16:7–17. doi: 10.9758/cpn.2018.16.1.7..
    1. Sinkeviciute I, Begemann M, Prikken M, Oranje B, Johnsen E, Lei WU, et al. Efficacy of different types of cognitive enhancers for patients with schizophrenia: A meta-analysis. NPJ Schizophr. 2018;4:22. doi: 10.1038/s41537-018-0064-6.
    1. Javitt DC, Spencer KM, Thaker GK, Winterer G, Hajos M. Neurophysiological biomarkers for drug development in schizophrenia. Nat Rev Drug Discov. 2008;7:68–83. doi: 10.1038/nrd2463..
    1. O’Donnell BF, Vohs JL, Krishnan GP, Rass O, Hetrick WP, Morzorati SL. The auditory steady-state response (ASSR): A translational biomarker for schizophrenia. Suppl Clin Neurophysiol. 2013;62:101–12. doi: 10.1016/B978-0-7020-5307-8.00006-5.
    1. Roach BJ, Ford JM, Hoffman RE, Mathalon DH. Converging evidence for gamma synchrony deficits in schizophrenia. Suppl Clin Neurophysiol. 2013;62:163–80. doi: 10.1016/B978-0-7020-5307-8.00011-9.
    1. Schuelert N, Dorner-Ciossek C, Brendel M, Rosenbrock H. A comprehensive analysis of auditory event-related potentials and network oscillations in an NMDA receptor antagonist mouse model using a novel wireless recording technology. Physiol Rep. 2018;6:e13782. doi: 10.14814/phy2.13782..
    1. Takahashi H, Rissling AJ, Pascual-Marqui R, Kirihara K, Pela M, Sprock J, et al. Neural substrates of normal and impaired preattentive sensory discrimination in large cohorts of nonpsychiatric subjects and schizophrenia patients as indexed by MMN and P3a change detection responses. Neuroimage. 2013;66:594–603. doi: 10.1016/j.neuroimage.2012.09.074..
    1. Avissar M, Xie S, Vail B, Lopez-Calderon J, Wang Y, Javitt DC. Meta-analysis of mismatch negativity to simple versus complex deviants in schizophrenia. Schizophr Res. 2018;191:25–34. doi: 10.1016/j.schres.2017.07.009..
    1. Umbricht D, Krljes S. Mismatch negativity in schizophrenia: A meta-analysis. Schizophr Res. 2005;76:1–23. doi: 10.1016/j.schres.2004.12.002..
    1. Stefanescu RA, Shore SE. NMDA receptors mediate stimulus-timing-dependent plasticity and neural synchrony in the dorsal cochlear nucleus. Front Neural Circuits. 2015;9:75. doi: 10.3389/fncir.2015.00075..
    1. Cohen SM, Tsien RW, Goff DC, Halassa MM. The impact of NMDA receptor hypofunction on GABAergic neurons in the pathophysiology of schizophrenia. Schizophr Res. 2015;167:98–107. doi: 10.1016/j.schres.2014.12.026..
    1. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13. doi: 10.1038/nrn2774..
    1. Gonzalez-Burgos G, Lewis DA. NMDA receptor hypofunction, parvalbumin-positive neurons, and cortical gamma oscillations in schizophrenia. Schizophr Bull. 2012;38:950–7. doi: 10.1093/schbul/sbs010..
    1. Lisman J. Excitation, inhibition, local oscillations, or large-scale loops: what causes the symptoms of schizophrenia? Curr Opin Neurobiol. 2012;22:537–44. doi: 10.1016/j.conb.2011.10.018..
    1. Schoonover KE, Dienel SJ, Lewis DA. Prefrontal cortical alterations of glutamate and GABA neurotransmission in schizophrenia: Insights for rational biomarker development. Biomark Neuropsychiatry. 2020;3:100015. doi: 10.1016/j.bionps.2020.100015..
    1. Fromer M, Pocklington AJ, Kavanagh DH, Williams HJ, Dwyer S, Gormley P, et al. De novo mutations in schizophrenia implicate synaptic networks. Nature. 2014;506:179–84. doi: 10.1038/nature12929..
    1. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421–7. doi: 10.1038/nature13595..
    1. Collingridge GL, Volianskis A, Bannister N, France G, Hanna L, Mercier M, et al. The NMDA receptor as a target for cognitive enhancement. Neuropharmacology. 2013;64:13–26. doi: 10.1016/j.neuropharm.2012.06.051..
    1. Volianskis A, France G, Jensen MS, Bortolotto ZA, Jane DE, Collingridge GL. Long-term potentiation and the role of N-methyl-D-aspartate receptors. Brain Res. 2015;1621:5–16. 10.1016/j.brainres.2015.01.016.
    1. Fitzgerald K, Todd J. Making sense of mismatch negativity. Front Psychiatry. 2020;11:468. doi: 10.3389/fpsyt.2020.00468..
    1. Koshiyama D, Miyakoshi M, Thomas ML, Joshi YB, Molina JL, Tanaka-Koshiyama K, et al. Unique contributions of sensory discrimination and gamma synchronization deficits to cognitive, clinical, and psychosocial functional impairments in schizophrenia. Schizophr Res. 2021;228:280–7. doi: 10.1016/j.schres.2020.12.042..
    1. Greenwood LM, Leung S, Michie PT, Green A, Nathan PJ, Fitzgerald P, et al. The effects of glycine on auditory mismatch negativity in schizophrenia. Schizophr Res. 2018;191:61–69. doi: 10.1016/j.schres.2017.05.031..
    1. Kantrowitz JT, Epstein ML, Lee M, Lehrfeld N, Nolan KA, Shope C, et al. Improvement in mismatch negativity generation during d-serine treatment in schizophrenia: Correlation with symptoms. Schizophr Res. 2018;191:70–79. doi: 10.1016/j.schres.2017.02.027..
    1. Kantrowitz JT, Nolan KA, Epstein ML, Lehrfeld N, Shope C, Petkova E, et al. Neurophysiological effects of bitopertin in Schizophrenia. J Clin Psychopharmacol. 2017;37:447–51. doi: 10.1097/JCP.0000000000000722..
    1. Umbricht D, Alberati D, Martin-Facklam M, Borroni E, Youssef EA, Ostland M, et al. Effect of bitopertin, a glycine reuptake inhibitor, on negative symptoms of schizophrenia: a randomized, double-blind, proof-of-concept study. JAMA Psychiatry. 2014;71:637–46. doi: 10.1001/jamapsychiatry.2014.163..
    1. Bugarski-Kirola D, Blaettler T, Arango C, Fleischhacker WW, Garibaldi G, Wang A, et al. Bitopertin in negative symptoms of Schizophrenia-results from the phase III FlashLyte and DayLyte studies. Biol Psychiatry. 2017;82:8–16. doi: 10.1016/j.biopsych.2016.11.014..
    1. Moschetti V, Desch M, Goetz S, Liesenfeld KH, Rosenbrock H, Kammerer KP, et al. Safety, tolerability and pharmacokinetics of Oral BI 425809, a glycine transporter 1 inhibitor, in healthy male volunteers: A partially randomised, single-blind, placebo-controlled, first-in-human study. Eur J Drug Metab Pharmacokinet. 2018;43:239–49. doi: 10.1007/s13318-017-0440-z..
    1. Moschetti V, Schlecker C, Wind S, Goetz S, Schmitt H, Schultz A, et al. Multiple rising doses of Oral BI 425809, a GlyT1 inhibitor, in young and elderly healthy volunteers: A randomised, double-blind, phase I study investigating safety and pharmacokinetics. Clin Drug Investig. 2018;38:737–50. doi: 10.1007/s40261-018-0660-2.
    1. Rosenbrock H, Desch M, Kleiner O, Dorner-Ciossek C, Schmid B, Keller S, et al. Evaluation of pharmacokinetics and pharmacodynamics of BI 425809, a novel GlyT1 inhibitor: Translational studies. Clin Transl Sci. 2018;11:616–23. doi: 10.1111/cts.12578..
    1. Fleischhacker WW, Podhorna J, Gröschl M, Hake S, Zhao Y, Huang S, et al. Efficacy and safety of the novel glycine transporter inhibitor BI 425809 once daily in patients with schizophrenia: a double-blind, randomised, placebo-controlled phase 2 study. Lancet Psychiatry. 2021;8:191–201. doi: 10.1016/s2215-0366(20)30513-7..
    1. Nolan H, Whelan R, Reilly RB. FASTER: Fully automated statistical thresholding for EEG artifact rejection. J Neurosci Methods. 2010;192:152–62. doi: 10.1016/j.jneumeth.2010.07.015..
    1. Rahne T, von Specht H, Muhler R. Sorted averaging—application to auditory event-related responses. J Neurosci Methods. 2008;172:74–78. doi: 10.1016/j.jneumeth.2008.04.006..
    1. Sun C, Zhou P, Wang C, Fan Y, Tian Q, Dong F, et al. Defects of gamma oscillations in auditory steady-state evoked potential of schizophrenia. Shanghai Archives Psychiatry. 2018;30:27–36. doi: 10.11919/j.issn.1002-0829.217078.
    1. Kargel C, Sartory G, Kariofillis D, Wiltfang J, Muller BW. Mismatch negativity latency and cognitive function in schizophrenia. PLoS One. 2014;9:e84536. doi: 10.1371/journal.pone.0084536.
    1. Kim JS, Kwon YJ, Lee HY, Lee HS, Kim S, Shim SH. Mismatch negativity indices as a prognostic factor for remission in schizophrenia. Clin Psychopharmacol Neurosci. 2020;18:127–35. doi: 10.9758/cpn.2020.18.1.127..
    1. Salisbury DF, Shenton ME, Griggs CB, Bonner-Jackson A, McCarley RW. Mismatch negativity in chronic schizophrenia and first-episode schizophrenia. Arch Gen Psychiatry. 2002;59:686–94. doi: 10.1001/archpsyc.59.8.686.
    1. Hedge C, Powell G, Summer P. The reliability paradox: Why robust cognitive tasks do not produce reliable individual differences. Behav Res. 2018;50:1166–86. doi: 10.3758/s13428-017-0935-1.
    1. Hong LE, Summerfelt A, McMahon R, Adami H, Francis G, Elliott A, et al. Evoked gamma band synchronization and the liability for schizophrenia. Schizophr Res. 2004;70:293–302. doi: 10.1016/j.schres.2003.12.011..
    1. Alegre M, Molero P, Valencia M, Mayner G, Ortuño F, Artieda J. Atypical antipsychotics normalize low-gamma evoked oscillations in patients with schizophrenia. Psychiatry Res. 2017;247:214–21. doi: 10.1016/j.psychres.2016.11.030..
    1. Light GA, Hsu JL, Hsieh MH, Meyer-Gomes K, Sprock J, Swerdlow NR, et al. Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry. 2006;60:1231–40. doi: 10.1016/j.biopsych.2006.03.055..
    1. Povysheva NV, Johnson JW. Effects of memantine on the excitation-inhibition balance in prefrontal cortex. Neurobiol Dis. 2016;96:75–83. doi: 10.1016/j.nbd.2016.08.006..
    1. Kikuchi T. Is memantine effective as an NMDA-receptor antagonist in adjunctive therapy for schizophrenia? Biomolecules. 2020;10:1134. doi: 10.3390/biom10081134..
    1. Light GA, Zhang W, Joshi YB, Bhakta S, Talledo JA, Swerdlow NR. Single-dose memantine improves cortical oscillatory response dynamics in patients with schizophrenia. Neuropsychopharmacology. 2017;42:2633–9. doi: 10.1038/npp.2017.81..

Source: PubMed

3
Subskrybuj