Spontaneous breathing trial and post-extubation work of breathing in morbidly obese critically ill patients

Martin Mahul, Boris Jung, Fabrice Galia, Nicolas Molinari, Audrey de Jong, Yannaël Coisel, Rosanna Vaschetto, Stefan Matecki, Gérald Chanques, Laurent Brochard, Samir Jaber, Martin Mahul, Boris Jung, Fabrice Galia, Nicolas Molinari, Audrey de Jong, Yannaël Coisel, Rosanna Vaschetto, Stefan Matecki, Gérald Chanques, Laurent Brochard, Samir Jaber

Abstract

Background: Predicting whether an obese critically ill patient can be successfully extubated may be specially challenging. Several weaning tests have been described but no physiological study has evaluated the weaning test that would best reflect the post-extubation inspiratory effort.

Methods: This was a physiological randomized crossover study in a medical and surgical single-center Intensive Care Unit, in patients with body mass index (BMI) >35 kg/m2 who were mechanically ventilated for more than 24 h and underwent a weaning test. After randomization, 17 patients were explored using five settings : pressure support ventilation (PSV) 7 and positive end-expiratory pressure (PEEP) 7 cmH2O; PSV 0 and PEEP 7cmH2O; PSV 7 and PEEP 0 cmH2O; PSV 0 and PEEP 0 cmH2O; and a T piece, and after extubation. To further minimize interaction between each setting, a period of baseline ventilation was performed between each step of the study. We hypothesized that the post-extubation work of breathing (WOB) would be similar to the T-tube WOB.

Results: Respiratory variables and esophageal and gastric pressure were recorded. Inspiratory muscle effort was calculated as the esophageal and trans-diaphragmatic pressure time products and WOB. Sixteen obese patients (BMI 44 kg/m2 ± 8) were included and successfully extubated. Post-extubation inspiratory effort, calculated by WOB, was 1.56 J/L ± 0.50, not statistically different from the T piece (1.57 J/L ± 0.56) or PSV 0 and PEEP 0 cmH2O (1.58 J/L ± 0.57), whatever the index of inspiratory effort. The three tests that maintained pressure support statistically underestimated post-extubation inspiratory effort (WOB 0.69 J/L ± 0.31, 1.15 J/L ± 0.39 and 1.09 J/L ± 0.49, respectively, p < 0.001). Respiratory mechanics and arterial blood gases did not differ between the five tests and the post-extubation condition.

Conclusions: In obese patients, inspiratory effort measured during weaning tests with either a T-piece or a PSV 0 and PEEP 0 was not different to post-extubation inspiratory effort. In contrast, weaning tests with positive pressure overestimated post-extubation inspiratory effort.

Trial registration: Clinical trial.gov (reference NCT01616901 ), 2012, June 4th.

Keywords: Acute respiratory failure; Mechanical ventilation; Obese; Weaning; Work of breathing.

Figures

Fig. 1
Fig. 1
Study design. Eleven morbidly obese patients ventilated in pressure support ventilation (PSV) and positive end-expiratory pressure (PEEP), considered as baseline settings, were included to randomly perform the five weaning test modalities of the study before extubation: PSV 7 cmH2O + PEEP 7 cm H2O; PSV 0 cmH2O + PEEP 7 cmH2O; PSV 7 cmH2O + PEEP 0 cmH2O; PSV 0 cmH2O + PEEP 0 cmH2O or the T piece. All measurements were obtained after 15 minutes of each test. A 10-minute period of return to baseline state (with initial settings of ventilation parameters before the first weaning test) was performed between each test and before extubation. WT weaning test
Fig. 2
Fig. 2
Flow chart of the study. One patient fulfilled the inclusion criteria but was not included because of extubation during the weekend with no investigator available. BMI body mass index, SBT spontaneous breathing trial
Fig. 3
Fig. 3
Esophageal (a) and trans-diaphragmatic (b) swings. Individual and mean changes in esophageal and trans-diaphragmatic swings during the five weaning tests and 20 minutes after extubation. All the tests show that the weaning tests that best reproduce respiratory muscle work after extubation were pressure support ventilation (PSV) 0 cmH2O + positive end-expiratory pressure (PEEP) 0 cmH2O and the T piece, with no statistically significant difference between the two. *p < 0.001 when compared with after extubation. Pdi transdiaphragmatic pressure, pes esophageal pressure
Fig. 4
Fig. 4
Esophageal (a) and trans-diaphragmatic (b) pressure time products. Individual and mean changes in esophageal and trans-diaphragmatic pressure time products during the five weaning tests and 20 minutes after extubation. All the tests show that the weaning tests that best reproduce respiratory muscle work after extubation were pressure support ventilation (PSV) 0 cmH2O+ positive end-expiratory pressure (PEEP) 0 cmH2O and the T piece, with no statistically significant difference between the two. *p < 0.001 when compared with after extubation. PTPdi trans-diaphragmatic pressure-time product, PTPes trans-esophageal pressure-time product
Fig. 5
Fig. 5
Work of breathing (WOB) in J/L (a) and in J/minute (b). Individual and mean changes in the WOB during the five weaning tests and 20 minutes after extubation. All the tests show that the weaning tests that best reproduced respiratory muscle work after extubation were pressure support ventilation (PSV) 0 cmH2O cmH2O + positive end-expiratory pressure (PEEP) 0 cmH2O and the T piece, with no statistically significant difference between the two. *p < 0.001 when compared with after extubation
Fig. 6
Fig. 6
Ventilatory pattern during the five weaning tests and twenty minutes after extubation. One patient is presented with the acquisition of flow (L/s), esophageal (Pes, cmH2O), airway (Paw, cmH2O), gastric (Pga, cmH2O) and trans-diaphragmatic (Pdi, cmH2O) pressure signals. PSV pressure support ventilation, PEEP positive end-expiratory pressure

References

    1. Sellares J, Ferrer M, Cano E, Loureiro H, Valencia M, Torres A. Predictors of prolonged weaning and survival during ventilator weaning in a respiratory ICU. Intensive Care Med. 2011;37:775–84. doi: 10.1007/s00134-011-2179-3.
    1. Brochard L, Rauss A, Benito S, Conti G, Mancebo J, Rekik N, et al. Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation. Am J Respir Crit Care Med. 1994;150:896–903. doi: 10.1164/ajrccm.150.4.7921460.
    1. Boles JM, Bion J, Connors A, Herridge M, Marsh B, Melot C, et al. Weaning from mechanical ventilation. Eur Respir J. 2007;29:1033–56. doi: 10.1183/09031936.00010206.
    1. Thille AW, Richard J-CM, Brochard L. The decision to extubate in the intensive care unit. Am J Respir Crit Care Med. 2013;187:1294–302. doi: 10.1164/rccm.201208-1523CI.
    1. Jubran A, Grant BJB, Laghi F, Parthasarathy S, Tobin MJ. Weaning prediction: esophageal pressure monitoring complements readiness testing. Am J Respir Crit Care Med. 2005;171:1252–9. doi: 10.1164/rccm.200503-356OC.
    1. MacIntyre NR, Cook DJ, Ely EW, Jr, Epstein SK, Fink JB, Heffner JE, et al. Evidence-based guidelines for weaning and discontinuing ventilatory support: a collective task force facilitated by the American College of Chest Physicians; the American Association for Respiratory Care; and the American College of Critical Care Medicine. Chest. 2001;120:375S–95. doi: 10.1378/chest.120.6_suppl.375S.
    1. McConville JF, Kress JP. Weaning patients from the ventilator. New England J Med. 2012;367:2233–9. doi: 10.1056/NEJMra1203367.
    1. Cabello B, Thille AW, Roche-Campo F, Brochard L, Gómez FJ, Mancebo J. Physiological comparison of three spontaneous breathing trials in difficult-to-wean patients. Intensive Care Med. 2010;36:1171–9. doi: 10.1007/s00134-010-1870-0.
    1. Tobin MJ. Extubation and the myth of “minimal ventilator settings”. Am J Respir Crit Care Med. 2012;185:349–50. doi: 10.1164/rccm.201201-0050ED.
    1. Jones RL, Nzekwu M-MU. The effects of body mass index on lung volumes. Chest. 2006;130:827–33. doi: 10.1378/chest.130.3.827.
    1. Kress JP, Pohlman AS, Alverdy J, Hall JB. The impact of morbid obesity on oxygen cost of breathing (VO(2RESP)) at rest. Am J Respir Crit Care Med. 1999;160:883–6. doi: 10.1164/ajrccm.160.3.9902058.
    1. Littleton SW. Impact of obesity on respiratory function. Respirology. 2012;17:43–9. doi: 10.1111/j.1440-1843.2011.02096.x.
    1. Salome CM, King GG, Berend N. Physiology of obesity and effects on lung function. J Appl Physiol. 2010;108:206–11. doi: 10.1152/japplphysiol.00694.2009.
    1. El-Solh AA, Aquilina A, Pineda L, Dhanvantri V, Grant B, Bouquin P. Noninvasive ventilation for prevention of post-extubation respiratory failure in obese patients. Eur Respir J. 2006;28:588–95. doi: 10.1183/09031936.06.00150705.
    1. Zoremba M, Kalmus G, Begemann D, Eberhart L, Zoremba N, Wulf H, et al. Short term non-invasive ventilation post-surgery improves arterial blood-gases in obese subjects compared to supplemental oxygen delivery - a randomized controlled trial. BMC Anesthesiol. 2011;11:10. doi: 10.1186/1471-2253-11-10.
    1. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults–the evidence report. national institutes of health. Obes Res. 1998;6 Suppl 2:51S–209S.
    1. Persichini R, Gay F, Schmidt M, Mayaux J, Demoule A, Morélot-Panzini C, et al. Diagnostic accuracy of respiratory distress observation scales as surrogates of dyspnea self-report in intensive care unit patients. Anesthesiology. 2015;123:830–7. doi: 10.1097/ALN.0000000000000805.
    1. Coisel Y, Chanques G, Jung B, Constantin J-M, Capdevila X, Matecki S, et al. Neurally adjusted ventilatory assist in critically ill postoperative patients: a crossover randomized study. Anesthesiology. 2010;113:925–35. doi: 10.1097/ALN.0b013e3181ee2ef1.
    1. Clavieras N, Wysocki M, Coisel Y, Galia F, Conseil M, Chanques G, et al. Prospective randomized crossover study of a new closed-loop control system versus pressure support during weaning from mechanical ventilation. Anesthesiology. 2013;119:631–41. doi: 10.1097/ALN.0b013e3182952608.
    1. Baillard C, Fosse J-P, Sebbane M, Chanques G, Vincent F, Courouble P, et al. Noninvasive ventilation improves preoxygenation before intubation of hypoxic patients. Am J Respir Crit Care Med. 2006;174:171–7. doi: 10.1164/rccm.200509-1507OC.
    1. Jaber S, Chanques G, Jung B. Postoperative noninvasive ventilation. Anesthesiology. 2010;112:453–61. doi: 10.1097/ALN.0b013e3181c5e5f2.
    1. Deye N, Lellouche F, Maggiore SM, Taillé S, Demoule A, L’Her E, et al. The semi-seated position slightly reduces the effort to breathe during difficult weaning. Intensive Care Med. 2013;39:85–92. doi: 10.1007/s00134-012-2727-5.
    1. Jaber S, Carlucci A, Boussarsar M, Fodil R, Pigeot J, Maggiore S, et al. Helium-oxygen in the postextubation period decreases inspiratory effort. Am J Respir Crit Care Med. 2001;164:633–7. doi: 10.1164/ajrccm.164.4.2008027.
    1. Sassoon CS, Light RW, Lodia R, Sieck GC, Mahutte CK. Pressure-time product during continuous positive airway pressure, pressure support ventilation, and T-piece during weaning from mechanical ventilation. Am Rev Respir Dis. 1991;143:469–75. doi: 10.1164/ajrccm/143.3.469.
    1. Straus C, Louis B, Isabey D, Lemaire F, Harf A, Brochard L. Contribution of the endotracheal tube and the upper airway to breathing workload. Am J Respir Crit Care Med. 1998;157:23–30. doi: 10.1164/ajrccm.157.1.96-10057.
    1. Brochard L, Rua F, Lorino H, Lemaire F, Harf A. Inspiratory pressure support compensates for the additional work of breathing caused by the endotracheal tube. Anesthesiology. 1991;75:739–45. doi: 10.1097/00000542-199111000-00004.
    1. Mehta S, Nelson DL, Klinger JR, Buczko GB, Levy MM. Prediction of post-extubation work of breathing. Crit Care Med. 2000;28:1341–6. doi: 10.1097/00003246-200005000-00014.
    1. Lyazidi A, Thille AW, Carteaux G, Galia F, Brochard L, Richard J-CM. Bench test evaluation of volume delivered by modern ICU ventilators during volume-controlled ventilation. Intensive Care Med. 2010;36:2074–80. doi: 10.1007/s00134-010-2044-9.
    1. Jaber S, Tassaux D, Sebbane M, Pouzeratte Y, Battisti A, Capdevila X, et al. Performance characteristics of five new anesthesia ventilators and four intensive care ventilators in pressure-support mode: a comparative bench study. Anesthesiology. 2006;105:944–52. doi: 10.1097/00000542-200611000-00015.
    1. Thille AW, Lyazidi A, Richard J-CM, Galia F, Brochard L. A bench study of intensive-care-unit ventilators: new versus old and turbine-based versus compressed gas-based ventilators. Intensive Care Med. 2009;35:1368–76. doi: 10.1007/s00134-009-1467-7.
    1. Nathan SD, Ishaaya AM, Koerner SK, Belman MJ. Prediction of minimal pressure support during weaning from mechanical ventilation. Chest. 1993;103:1215–9. doi: 10.1378/chest.103.4.1215.
    1. Zerah F, Harf A, Perlemuter L, Lorino H, Lorino AM, Atlan G. Effects of obesity on respiratory resistance. Chest. 1993;103:1470–6. doi: 10.1378/chest.103.5.1470.
    1. Vaschetto R, De Jong A, Conseil M, Galia F, Mahul M, Coisel Y, et al. Comparative evaluation of three interfaces for non-invasive ventilation: a randomized cross-over design physiologic study on healthy volunteers. Crit Care. 2014;18:R2. doi: 10.1186/cc13175.
    1. Mancebo J, Isabey D, Lorino H, Lofaso F, Lemaire F, Brochard L. Comparative effects of pressure support ventilation and intermittent positive pressure breathing (IPPB) in non-intubated healthy subjects. Eur Respir J. 1995;8:1901–9. doi: 10.1183/09031936.95.08111901.
    1. Kirton OC, DeHaven CB, Morgan JP, Windsor J, Civetta JM. Elevated imposed work of breathing masquerading as ventilator weaning intolerance. Chest. 1995;108:1021–5. doi: 10.1378/chest.108.4.1021.

Source: PubMed

3
Subskrybuj