Management and investigation of neonatal encephalopathy: 2017 update

Kathryn Martinello, Anthony R Hart, Sufin Yap, Subhabrata Mitra, Nicola J Robertson, Kathryn Martinello, Anthony R Hart, Sufin Yap, Subhabrata Mitra, Nicola J Robertson

Abstract

This review discusses an approach to determining the cause of neonatal encephalopathy, as well as current evidence on resuscitation and subsequent management of hypoxic-ischaemic encephalopathy (HIE). Encephalopathy in neonates can be due to varied aetiologies in addition to hypoxic-ischaemia. A combination of careful history, examination and the judicious use of investigations can help determine the cause. Over the last 7 years, infants with moderate to severe HIE have benefited from the introduction of routine therapeutic hypothermia; the number needed to treat for an additional beneficial outcome is 7 (95% CI 5 to 10). More recent research has focused on optimal resuscitation practices for babies with cardiorespiratory depression, such as delayed cord clamping after establishment of ventilation and resuscitation in air. Around a quarter of infants with asystole at 10 min after birth who are subsequently cooled have normal outcomes, suggesting that individualised decision making on stopping resuscitation is needed, based on access to intensive treatment unit and early cooling. The full benefit of cooling appears to have been exploited in our current treatment protocols of 72 hours at 33.5°C; deeper and longer cooling showed adverse outcome. The challenge over the next 5-10 years will be to assess which adjunct therapies are safe and optimise hypothermic brain protection in phase I and phase II trials. Optimal care may require tailoring treatments according to gender, genetic risk, injury severity and inflammatory status.

Keywords: hypoxic ischaemic encephalopathy; neonatal encephalopathy; neuroprotection; resuscitation of the newborn.

Conflict of interest statement

Competing interests: NJR has received a research grant from Chiesi Pharmaceuticals and from Air Liquid for preclinical work on melatonin and argon, respectively.

Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

Figures

Figure 1
Figure 1
Continued
Figure 1
Figure 1
Flow chart to help to determine the cause of neonatal encephalopathy where the history and courses are not typical of hypoxia ischaemia. aAASA, alpha amino adipic semialdehyde; aEEG, amplitude integrated EEG; CK, creatine kinase; CSF, cerebrospinal fluid; cUSS, cranial ultrasound scan; DCT, direct Coombs test; EEG, electroencephalogram; EMG; electromyography; FH, family history; FBC, full blood count; GABA, Gaba-aminobutyric acid; HIE, hypoxic-ischaemic encephalopathy; LFT, liver function test; IV, intravenous; NH3, ammonia; OA, organic acids; U&E, urea and electrolytes; WBC, white blood cell count; VLCFA, very long chain fatty acids.

References

    1. Executive summary: Neonatal encephalopathy and neurologic outcome, second edition. Report of the American College of Obstetricians and Gynecologists’ Task Force on Neonatal Encephalopathy. Obstet Gynaecol 2014;123:896–901. 10.1097/01.AOG.0000445580.65983.d2
    1. Enns G, Packman S. Diagnosing inborn errors of metabolism in the newborn: clinical features. NeoReviews 2001;2:e183–91. 10.1542/neo.2-8-e183
    1. Hart AR, Sharma R, Rittey CD, et al. Neonatal hypertonia – a diagnostic challenge. Dev Med Child Neurol. 2015;57:600–10.
    1. Burton B. Inborn errors of metabolism in infancy: a guide to diagnosis. Pediatrics 1988;102:e69 10.1542/peds.102.6.e69
    1. Volpe J. Metabolic encephalopathies. In: Neurology of the Newborn. Philadelphia: Saunders, 2008:589–744.
    1. Hart AR, Pilling EL, Alix JJ. Neonatal seizures: part two—the neonatal epilepsy syndromes, aetiologies and treatments. Arch Dis Child Educ Pract Ed 2015;100:226–32. 10.1136/archdischild-2014-306388
    1. Perlman JM, Wyllie J, Kattwinkel J, et al. . Neonatal Resuscitation: 2015 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2015;132(Suppl 1):S204–41. 10.1161/CIR.0000000000000276
    1. Hooper SB, Te Pas AB, Lang J, M K, et al. Cardiovascular transition at birth: a physiological sequence. Pediatr Res 2015;77:608–14. 10.1038/pr.2015.21
    1. Kluckow M, Hooper SB. Using physiology to guide time to cord clamping. Semin Fetal Neonatal Med 2015;20:225–31. 10.1016/j.siny.2015.03.002
    1. Bhatt S, Alison BJ, Wallace EM, et al. . Delaying cord clamping until ventilation onset improves cardiovascular function at birth in preterm lambs. J Physiol (Lond) 2013;591:2113–26. 10.1113/jphysiol.2012.250084
    1. Wyllie J, Bruinenberg J, Roehr C, et al. . European Resuscitation Council Guidelines for Resuscitation 2015: Section 7. Resuscitation and support of transition of babies at birth. Resuscitation 2015;95:249.–. 10.1016/j.resuscitation.2015.07.029
    1. Klingenberg C, Sobotka KS, Ong T, et al. . Effect of sustained inflation duration; resuscitation of near-term asphyxiated lambs. Arch Dis Child Fetal Neonatal Ed 2013;98:F222–7. 10.1136/archdischild-2012-301787
    1. Sobotka K, Hooper S, Crossley K, et al. . Single sustained inflation followed by ventilation leads to rapid cardiorespiratory recovery but causes cerebral vascular leakage in asphyxiated near-term lambs. PLoS ONE 2016;11:e0146574 10.1371/journal.pone.0146574
    1. Saugstad OD, Ramji S, Soll RF, et al. . Resuscitation of newborn infants with 21% or 100% oxygen: an updated systematic review and meta-analysis. Neonatology 2008;94:176–82. 10.1159/000143397
    1. Smit E, Liu X, Gill H, et al. . The effect of resuscitation in 100% oxygen on brain injury in a newborn rat model of severe hypoxic-ischaemic encephalopathy. Resuscitation 2015;96:214–19. 10.1016/j.resuscitation.2015.07.050
    1. Sobotka KS, Ong T, Polglase GR, et al. . The effect of oxygen content during an initial sustained inflation on heart rate in asphyxiated near-term lambs. Arch Dis Child Fetal Neonatal Ed 2015;100:F337–43. 10.1136/archdischild-2014-307319
    1. Dawson JA, Kamlin CO, Vento M, et al. . Defining the reference range for oxygen saturation for infants after birth. Pediatrics 2010;125:e1340–7. 10.1542/peds.2009-1510
    1. Perlman JM, Wyllie J, Kattwinkel J, et al. . Part 11: Neonatal resuscitation: 2010 International Consensus on Cardiopulmonary Resuscitation and Emergency Cardiovascular Care Science With Treatment Recommendations. Circulation 2010;122(Suppl 2):S516–38. 10.1161/CIRCULATIONAHA.110.971127
    1. Sobotka KS, Polglase GR, Schmölzer GM, et al. . Effects of chest compressions on cardiovascular and cerebral hemodynamics in asphyxiated near-term lambs. Pediatr Res 2015;78:395–400. 10.1038/pr.2015.117
    1. Kasdorf E, Laptook A, Azzopardi D, et al. . Improving infant outcome with a 10 min Apgar of 0. Arch Dis Child Fetal Neonatal Ed 2015;100:F102–5. 10.1136/archdischild-2014-306687
    1. Natarajan G, Shankaran S, Laptook AR, et al. . Apgar scores at 10 min and outcomes at 6–7 years following hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 2013;98:F473–9. 10.1136/archdischild-2013-303692
    1. Schierholz E. Therapeutic hypothermia on transport: providing safe and effective cooling therapy as the link between birth hospital and the neonatal intensive care unit. Adv Neonatal Care 2014;14(Suppl 5):S24–31. 10.1097/ANC.0000000000000121
    1. Akula VP, Joe P, Thusu K, et al. . A randomized clinical trial of therapeutic hypothermia mode during transport for neonatal encephalopathy. J Pediatr 2015;166:856–61. 10.1016/j.jpeds.2014.12.061
    1. Shah P, Riphagen S, Beyene J,, et al. . Multiorgan dysfunction in infants with post-asphyxial hypoxic-ischaemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 2004;89:F152–5. 10.1136/adc.2002.023093
    1. Basu SK, Kaiser JR, Guffey D, et al. . Hypoglycaemia and hyperglycaemia are associated with unfavourable outcome in infants with hypoxic ischaemic encephalopathy: a post hoc analysis of the CoolCap Study. Arch Dis Child Fetal Neonatal Ed 2016;101:F149–55. 10.1136/archdischild-2015-308733
    1. Nadeem M, Murray DM, Boylan GB, et al. . Early blood glucose profile and neurodevelopmental outcome at two years in neonatal hypoxic-ischaemic encephalopathy. BMC Pediatr 2011;11:10 10.1186/1471-2431-11-10
    1. Forman KR, Diab Y, Wong EC, et al. . Coagulopathy in newborns with hypoxic ischemic encephalopathy (HIE) treated with therapeutic hypothermia: a retrospective case-control study. BMC Pediatr 2014;14:277 10.1186/1471-2431-14-277
    1. Armstrong K, Franklin O, Sweetman D, et al. . Cardiovascular dysfunction in infants with neonatal encephalopathy. Arch Dis Child 2012;97:372–5. 10.1136/adc.2011.214205
    1. Güneś T, Oztürk M, Köklü S, et al. . Troponin-T levels in perinatally asphyxiated infants during the first 15 days of life. Acta Paediatr 2005;94:1638–43. 10.1080/08035250510041222
    1. Pappas A, Shankaran S, Laptook AR, et al. . Hypocarbia and adverse outcome in neonatal hypoxic-ischemic encephalopathy. J Pediatr 2011;158:752–8. 10.1016/j.jpeds.2010.10.019
    1. Klinger G, Beyene J, Shah P, et al. . Do hyperoxaemia and hypocapnia add to the risk of brain injury after intrapartum asphyxia? Arch Dis Child Fetal Neonatal Ed 2005;90:F49–52. 10.1136/adc.2003.048785
    1. Murray DM, Boylan GB, Ali I, et al. . Defining the gap between electrographic seizure burden, clinical expression and staff recognition of neonatal seizures. Arch Dis Child Fetal Neonatal Ed 2008;93:F187–91. 10.1136/adc.2005.086314
    1. Shah DK, Wusthoff CJ, Clarke P, et al. . Electrographic seizures are associated with brain injury in newborns undergoing therapeutic hypothermia. Arch Dis Child Fetal Neonatal Ed 2014;99:F219–24. 10.1136/archdischild-2013-305206
    1. Srinivasakumar P, Zempel J, Trivedi S, et al. . Treating EEG Seizures in Hypoxic Ischemic Encephalopathy: A Randomized Controlled Trial. Pediatrics 2015;136:e1302–9. 10.1542/peds.2014-3777
    1. Srinivasakumar P, Zempel J, Wallendorf M, et al. . Therapeutic hypothermia in neonatal hypoxic ischemic encephalopathy: electrographic seizures and magnetic resonance imaging evidence of injury. J Pediatr 2013;163:465–70. 10.1016/j.jpeds.2013.01.041
    1. Hellström-Westas L, Boylan G, Ågren J. Systematic review of neonatal seizure management strategies provides guidance on anti-epileptic treatment. Acta Pediatr 2015;104:123–9. 10.1111/apa.12812
    1. Painter MJ, Scher MS, Stein AD, et al. . Phenobarbital compared with phenytoin for the treatment of neonatal seizures. N Engl J Med 1999;341:485–9. 10.1056/NEJM199908123410704
    1. Tulloch JK, Carr RR, Ensom MH. A systematic review of the pharmacokinetics of antiepileptic drugs in neonates with refractory seizures. J Pediatr Pharmacol Ther 2012;17:31–44. 10.5863/1551-6776-17.1.31
    1. Pressler R, Boylan G, Marlow N, et al. . Bumetanide for the treatment of seizures in newborn babies with hypoxic ischaemic encephalopathy (NEMO): an open-label, dose finding, and feasibility phase 1/2 trial. Lancet Neurol 2015;14:469–77. 10.1016/S1474-4422(14)70303-5
    1. Evans D, Levene M, Tsakmakis M. Anticonvulsants for preventing mortality and morbidity in full term newborns with perinatal asphyxia. Cochrane Database Syst Rev 2007;18:CD001240.
    1. Merchant N, Azzopardi D. Early predictors of outcome in infants treated with hypothermia for hypoxic-ischaemic encephalopathy. Dev Med Child Neurol 2015;57(Suppl 3):8–16. 10.1111/dmcn.12726
    1. Mastrangelo M, Fiocchi I, Fontana P, et al. . Acute neonatal encephalopathy and seizures recurrence: a combined aEEG/EEG study. Seizure 2013;22: 703–7. 10.1016/j.seizure.2013.05.006
    1. Shellhaas RA, Barks AK. Impact of amplitude-integrated electroencephalograms on clinical care for neonates with seizures. Pediatr Neurol 2012;46:32–5. 10.1016/j.pediatrneurol.2011.11.004
    1. Thoresen M, Hellström-Westas L, Liu X, et al. . Effect of hypothermia on amplitude-integrated electroencephalogram in infants with asphyxia. Pediatrics 2010;126:e131–9. 10.1542/peds.2009-2938
    1. Awal M, Lai M, Azemi G, et al. . EEG background features that predict outcome in term neonates with hypoxic ischaemic encephalopathy: A structured review. Clin Neurophyiol 2016;127:285–96. 10.1016/j.clinph.2015.05.018
    1. Elstad M, Whitelaw A, Thoresen M. Cerebral Resistance Index is less predictive in Hypothermic Encephalopathic Newborns. Acta Pediatr 2011;100:1344–9. 10.1111/j.1651-2227.2011.02327.x
    1. BAPM. Fetal and Neonatal Brain Magnetic Resonance Imaging: Clinical Indications, Acquisitions and Reporting—a Framework for Practice. A Framework for Practice 2016.
    1. Martinez-Biarge M, Diez-Sebastian J, Kapellou O, et al. . Predicting motor outcome and death in term hypoxic-ischemic encephalopathy. Neurology 2011;76:2055–61. 10.1212/WNL.0b013e31821f442d
    1. Thayyil S, Chandrasekaran M, Taylor A, et al. . Cerebral magnetic resonance biomarkers in neonatal encephalopathy: a meta-analysis. Pediatrics 2010;125:e382–95. 10.1542/peds.2009-1046
    1. Rutherford M, Ramenghi LA, Edwards AD, et al. . Assessment of brain tissue injury after moderate hypothermia in neonates with hypoxic-ischaemic encephalopathy: a nested substudy of a randomised controlled trial. Lancet Neurol 2010;9: 39–45. 10.1016/S1474-4422(09)70295-9
    1. Rollins N, Booth T, Morriss MC, et al. . Predictive value of neonatal MRI showing no or minor degrees of brain injury after hypothermia. Pediatr Neurol 2014;50:447–51. 10.1016/j.pediatrneurol.2014.01.013
    1. Peng S, Boudes E, Tan X, et al. . Does near-infrared spectroscopy identify asphyxiated newborns at risk of developing brain injury during hypothermia treatment? Am J Perinatol 2015;32:555–64. 10.1055/s-0034-1396692
    1. Wintermark P, Hansen A, Warfield SK, et al. . Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia. Neuroimage 2014;85(Pt 1):287–93. 10.1016/j.neuroimage.2013.04.072
    1. Tian F, Tarumi T, Liu H, et al. . Wavelet coherence analysis of dynamic cerebral autoregulation in neonatal hypoxic-ischemic encephalopathy. Neuroimage 2016;11:124–32. 10.1016/j.nicl.2016.01.020
    1. Bainbridge A, Tachtsidis I, Faulkner SD, et al. . Brain mitochondrial oxidative metabolism during and after cerebral hypoxia-ischemia studied by simultaneous phosphorus magnetic-resonance and broadband near-infrared spectroscopy. Neuroimage 2014;102(Pt 1):173–83. 10.1016/j.neuroimage.2013.08.016
    1. Darsaklis V, Snider LM, Majnemer A, et al. . Predictive validity of Prechtl's Method on the Qualitative Assessment of General Movements: a systematic review of the evidence. Dev Med Child Neurol 2011;53:896–906. 10.1111/j.1469-8749.2011.04017.x
    1. Morgan C, Crowle C, Goyen T, et al. . Sensitivity and specificity of General Movements Assessment for diagnostic accuracy of detecting cerebral palsy early in an Australian context. J Pediatr Child Health 2016;52:54–9. 10.1111/jpc.12995
    1. Soleimani F, Badv RS, Momayezi A, et al. . General movements as a predictive tool of the neurological outcome in term born infants with hypoxic ischemic encephalopathy. Early Hum Dev 2015;91:479–82. 10.1016/j.earlhumdev.2015.05.007
    1. Ferrari F, Todeschini A, Guidotti I, et al. . General movements in full-term infants with perinatal asphyxia are related to Basal Ganglia and thalamic lesions. J Pediatr 2011;158:904–11. 10.1016/j.jpeds.2010.11.037
    1. Massaro AN, Chang T, Baumgart S, et al. . Biomarkers S100B and neuron-specific enolase predict outcome in hypothermia-treated encephalopathic newborns*. Pediatr Crit Care Med 2014;15:615–22. 10.1097/PCC.0000000000000155
    1. Chalak LF, Sánchez PJ, Adams-Huet B, et al. . Biomarkers for severity of neonatal hypoxic-ischemic encephalopathy and outcomes in newborns receiving hypothermia therapy. J Pediatr 2014;164:468–74. 10.1016/j.jpeds.2013.10.067
    1. Wassink G, Gunn ER, Drury PP, et al. . The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci 2014;8:40 10.3389/fnins.2014.00040
    1. Jacobs S, Berg M, Hunt R, et al. . Cooling for newborns with hypoxic ischaemic encephalopathy. Cochrane Database Sys Rev 2013;(1):CD003311 10.1002/14651858.CD003311.pub3
    1. Edwards AD, Brocklehurst P, Gunn AJ, et al. . Neurological outcomes at 18 months of age after moderate hypothermia for perinatal hypoxic ischaemic encephalopathy: synthesis and meta-analysis of trial data. BMJ 2010;340:C363 10.1136/bmj.c363
    1. Shankaran S, Pappas A, McDonald SA, et al. . Childhood outcomes after hypothermia for neonatal encephalopathy. N Engl J Med 2012;366: 2085–92. 10.1056/NEJMoa1112066
    1. Guillet R, Edwards AD, Thoresen M, et al. . Seven- to eight-year follow-up of the CoolCap trial of head cooling for neonatal encephalopathy. Pediatr Res 2012;71:205–9. 10.1038/pr.2011.30
    1. Azzopardi DV, Strohm B, Edwards AD, et al. . Moderate hypothermia to treat perinatal asphyxial encephalopathy. N Engl J Med 2009;361:1349–58. 10.1056/NEJMoa0900854
    1. Thoresen M, Tooley J, Liu X, et al. . Time is brain: starting therapeutic hypothermia within three hours after birth improves motor outcome in asphyxiated newborns. Neonatology 2013;104:228–33. 10.1159/000353948
    1. Gerrits L, Battin M, Bennet L, et al. . Epileptiform activity during rewarming from moderate cerebral hypothermia in the near-term fetal sheep. Pediatr Res 2005;57:342–6.
    1. Wang B, Armstrong J, Lee J, et al. . Rewarming from therapeutic hypothermia induces cortical neuron apoptosis in a swine model of neonatal hypoxic-ischemic encephalopathy. J Cereb Blood Flow Metab 2015;35:781–93. 10.1038/jcbfm.2014.245
    1. Shankaran S, Laptook A, Pappas A, et al. . Effect of depth and duration of cooling on deaths in the NICU among neonates with hypoxic ischemic encephalopathy: a randomized clinical trial. JAMA 2014;312:2629–39. 10.1001/jama.2014.16058
    1. Alonso-Alconada D, Broad K, Bainbridge A, et al. . Brain cell death is reduced with cooling by 3.5°C to 5°C but increased with cooling by 8.5°C in a piglet asphyxia model. Stroke 2015;46:275–8. 10.1161/STROKEAHA.114.007330
    1. Kelen D, Robertson N. Experimental treatments for hypoxic ischaemic encephalopathy. Early Hum Dev 2010;86:369–77. 10.1016/j.earlhumdev.2010.05.011
    1. Hassell J, EzzatI M, Alonso-Alconada D, et al. . New Horizons for Newborn Brain Protection:enhancing endogenous neuroprotection. Arch Dis Child Fetal Neonatal Ed 2015;100:F541–52.
    1. Macleod M, O'Collins T, Horky L, et al. . Systematic review and meta-analysis of the efficacy of melatonin in experimental stroke. J Pineal Res 2005;38:35–41. 10.1111/j.1600-079X.2004.00172.x
    1. Robertson N, Faulkner S, Fleiss B, et al. . Melatonin augments hypothermic neuroprotection in a perinatal asphyxia model. Brain 2013;136(Pt 1):90–105. 10.1093/brain/aws285
    1. Aly H, Elmahdy H, El-Dib M, et al. . Melatonin use for neuroprotection in perinatal asphyxia: a randomized controlled pilot study. J Perinatol 2015;35:186–91. 10.1038/jp.2014.186
    1. Traudt C, McPherson R, Bauer L, et al. . Concurrent erythropoietin and hypothermia treatment improve outcomes in a term nonhuman primate model of perinatal asphyxia. Dev Neurosci 2013;35:491–503.
    1. Wu Y, Bauer L, Ballard RA, et al. . Erythropoietin for neuroprotection in neonatal encephalopathy: safety and pharmacokinetics. Pediatrics 2012;130:683–91. 10.1542/peds.2012-0498
    1. Wu Y, Mathur A, Chang T, et al. . High-Dose Erythropoietin and Hypothermia for Hypoxic-Ischemic Encephalopathy: A Phase II Trial. Pediatrics 2016;137:e20160191 10.1542/peds.2016-0191
    1. Faulkner S, Bainbridge A, Kato T, et al. . Xenon augmented hypothermia reduces early lactate/N-acetylaspartate and cell death in Perinatal Asphyxia. Ann Neurol 2011;70:133–50. 10.1002/ana.22387
    1. Chakkarapani E, Dingley J, Liu X, et al. . Xenon enhances hypothermic neuroprotection in asphyxiated newborn pigs. Ann Neurol 2010;68:330–41. 10.1002/ana.22016
    1. Azzopardi D, Robertson NJ, Bainbridge A, et al. . Moderate hypothermia within 6 h of birth plus inhaled xenon versus moderate hypothermia alone after birth asphyxia (TOBY-Xe): a proof-of-concept, open-label, randomised controlled trial. Lancet Neurol 2016. 2016;15:145–5310.1016/S1474-4422(15)00347-6
    1. Broad KD, Fierens I, Fleiss B, et al. . Inhaled 45–50% argon augments hypothermic brain protection in a piglet model of perinatal asphyxia. Neurobiol Dis 2016;87:29.–. 10.1016/j.nbd.2015.12.001
    1. Peeters-Scholte C, Braun K, Koster J, et al. . Effects of allopurinol and deferoxamine on reperfusion injury of the brain in newborn piglets after neonatal hypoxia-ischemia. Pediatr Res 2003;54:516–22. 10.1203/01.PDR.0000081297.53793.C6
    1. Bennet L, Tan S, Van den Heuij L, et al. . Cell therapy for neonatal hypoxia-ischemia and cerebral palsy. Ann Neurol 2012;71:589–600. 10.1002/ana.22670
    1. Cotten CM, Murtha AP, Goldberg RN, et al. . Feasibility of autologous cord blood cells for infants with hypoxic-ischemic encephalopathy. J Pediatr 2014;164:973–9. 10.1016/j.jpeds.2013.11.036
    1. Penrice J, Amess PN, Punwani S, et al. . Magnesium sulfate after transient hypoxia-ischemia fails to prevent delayed cerebral energy failure in the newborn piglet. Pediatr Res 1997;41:443–7. 10.1203/00006450-199703000-00025
    1. Galinsky R, Bennet L, Groenendaal F, et al. . Magnesium is not consistently neuroprotective for perinatal hypoxia-ischemia in term-equivalent models in preclinical studies: a systematic review. Dev Neurosci 2014;36:73–82. 10.1159/000362206
    1. Rahman S, Siham A, Tuzun H, et al. . Multicenter randomized controlled trial of therapeutic hypothermia plus magnesium sulfate versus therapeutic hypothermia plus placebo in the management of term and near-term infants with hypoxic ischemic encephalopathy (The Mag Cool study): a pilot study. J Clin Neonatol 2015;4:158 10.4103/2249-4847.159863
    1. Robertson C, Perlman M. Follow-up of the term infant after hypoxic-ischemic encephalopathy. Pediatr Child Health 2006;11:278–82.
    1. Donn SM, Chiswick ML, Fanaroff JM. Medico-legal implications of hypoxic-ischemic birth injury. Semin Fetal Neonatal Med 2014;19:317–21. 10.1016/j.siny.2014.08.005
    1. MacLennan AH, Thompson SC, Gecz J. Cerebral palsy: causes, pathways, and the role of genetic variants. Am J Obstet Gynecol 2015;213:779–88. 10.1016/j.ajog.2015.05.034
    1. Nakagawa T, Ashwal S, Mathur M, et al. . Committee For Determination Of Brain Death In Infants Children. Guidelines for the determination of brain death in infants and children: an update of the 1987 task force recommendations-executive summary. Ann Neurol 2012;71:573–85. 10.1002/ana.23552
    1. http://wwwrcpchacuk/improving-child-health/clinical-guidelines-and-standards/published-rcpch/death-neurological-criteria 2015. Royal College of Pediatrics and Child Health: The diagnosis of death by neurological criteria (DNC) in infants less than two months old.
    1. Wright JC, Barlow AD. The current status of neonatal organ donation in the UK. Arch Dis Child Fetal Neonatal Ed 2015;100:F6–7. 10.1136/archdischild-2014-307053
    1. Stiers J, Aguayo C, Siatta A, et al. . Potential and actual neonatal organ and tissue donation after circulatory determination of death. JAMA Pediatr 2015;169:639–45. 10.1001/jamapediatrics.2015.0317
    1. Atreja G, Godambe S. First neonatal organ donation in the UK. Arch Dis Child Fetal Neonatal Ed 2015;100:F276–7. 10.1136/archdischild-2014-307022
    1. Bokisa AE, Bonachea EM, Jadcherla SR. Death by neurologic criteria in a neonate: Implications for organ donation. J Neonatal Perinatal Med 2015;8:263–7. 10.3233/NPM-15814074
    1. National Institute for Health and Care Excellence. Intrapartum care: Interpretation of cardiotocograph traces (2014 updated 2017) NICE guideline CG190.

Source: PubMed

3
Subskrybuj