Vitamin B₁₂-containing plant food sources for vegetarians

Fumio Watanabe, Yukinori Yabuta, Tomohiro Bito, Fei Teng, Fumio Watanabe, Yukinori Yabuta, Tomohiro Bito, Fei Teng

Abstract

The usual dietary sources of Vitamin B12 are animal-derived foods, although a few plant-based foods contain substantial amounts of Vitamin B12. To prevent Vitamin B12 deficiency in high-risk populations such as vegetarians, it is necessary to identify plant-derived foods that contain high levels of Vitamin B12. A survey of naturally occurring plant-derived food sources with high Vitamin B12 contents suggested that dried purple laver (nori) is the most suitable Vitamin B12 source presently available for vegetarians. Furthermore, dried purple laver also contains high levels of other nutrients that are lacking in vegetarian diets, such as iron and n-3 polyunsaturated fatty acids. Dried purple laver is a natural plant product and it is suitable for most people in various vegetarian groups.

Figures

Figure 1
Figure 1
Structural formula of Vitamin B12 and partial structures of Vitamin B12 compounds. The partial structures of the Vitamin B12 compounds only show the regions of the molecule that differ from Vitamin B12. (1) 5′-Deoxyadenosylcobalamin; (2) methylcobalamin; (3) hydroxocobalamin; and (4) cyanocobalamin or Vitamin B12.
Figure 2
Figure 2
Various types of dried green and purple lavers are Vitamin B12 sources: (1) a Japanese green laver, (Suji-aonori, Entromopha prolifera); (2) ordinary purple lavers (Porphyra sp.; nori, which has been formed into a sheet and dried); (3) Taiwan purple laver (Hong-mao-tai, Bangia atropurpurea); and (4) New Zealand purple laver (Karengo, a mixture of Porphyra cinnamomea and Porphyra virididentata).
Figure 3
Figure 3
Structural formulae of Vitamin B12 and pseudovitamin B12. (1) Vitamin B12 and (2) pseudovitamin B12 (7-adeninyl cyanocobamide).
Figure 4
Figure 4
Proposed method for improving nutrient imbalance in vegetarian diets using dried purple laver as a Vitamin B12 source in addition to other plant-based food sources.

References

    1. Watanabe F., Miyamoto E. Hydrophilic Vitamins. In: Sherma J., Fried B., editors. Handbook of Thin-Layer Chromatography. 3rd ed. Marcel Dekker, Inc.; New York, NY, USA: 2003. pp. 589–605.
    1. Chen Z., Crippen K., Gulati S., Banerjee R. Purification and kinetic mechanism of a mammalian methionine synthase from pig liver. J. Biol. Chem. 1994;269:27193–27197.
    1. Fenton W.A., Hack A.M., Willard H.F., Gertler A., Rosenberg L.E. Purification and properties of methylmalonyl coenzyme A mutase from human liver. Arch. Biochem. 1982;228:323–329.
    1. Watanabe F. Vitamin B12 sources and bioavailability. Exp. Biol. Med. 2007;232:1266–1274. doi: 10.3181/0703-MR-67.
    1. Watanabe F., Yabuta Y., Tanioka Y., Bito T. Biologically active vitamin B12 compounds in foods for preventing deficiency among vegetarians and elderly subjects. J. Agric. Food Chem. 2013;61:6769–6775. doi: 10.1021/jf401545z.
    1. Institute of Medicine . Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic, Acid, Biotin, and Choline. Institute of Medicine, National Academy Press; Washington, DC, USA: 1998. Vitamin B12; pp. 306–356.
    1. Shibata K., Fukuwatari T., Imai E., Hayakawa H., Watanabe F., Takimoto H., Watanabe T., Umegaki K. Dietary reference intakes for Japanese 2010: Water-soluble vitamins. J. Nutr. Sci. Vitaminol. 2013;59:S67–S82.
    1. Millet P., Guilland J.C., Fuchs F., Klepping J. Nutrient intake and vitamin status of healthy French vegetarians and nonvegetarians. Am. J. Clin. Nutr. 1989;50:718–727.
    1. Pawlak R., Parrott S.J., Raj S., Cullum-Dugan D., Lucus D. How prevalent is vitamin B12 deficiency among vegetarians? Nutr. Rev. 2013;71:110–117. doi: 10.1111/nure.12001.
    1. Yen C.E., Yen C.H., Cheng C.H., Huang Y.C. Vitamin B12 status is not associated with plasma homocysteine in parents and their preschool children: Lacto-ovo, lacto, and ovo-vegetarians and omnivores. J. Am. Coll. Nutr. 2010;29:7–13. doi: 10.1080/07315724.2010.10719811.
    1. Donaldson M.S. Metabolic vitamin B12 status on a mostly raw vegan diet with follow-up using tablets, nutritional yeast, or probiotic supplements. Ann. Nutr. Metab. 2000;44:229–234. doi: 10.1159/000046689.
    1. Dwyer J. Convergence of plant-rich and plant-only diets. Am. J. Clin. Nutr. 1999;70:620S–622S.
    1. Lee Y., Krawinkel M. The nutritional status of iron, folate, and vitamin B12 of Buddhist vegetarians. Asia Pac. J. Clin. Nutr. 2011;20:42–49.
    1. Van Dusseldorp M., Schneede J., Refsum H., Ueland P.M., Thomas C.M., de Boer E., van Staveren W.A. Risk of persistent cobalamin deficiency in adolescents fed a macrobiotic diet in early life. Am. J. Clin. Nutr. 1999;69:664–671.
    1. Bhatti A.S., Mahida V.I., Gupte S.C. Iron status of Hindu brahmin, Jain and Muslim communities in Surat, Gujarat. Indian J. Hematol. Blood Transfus. 2007;23:82–87. doi: 10.1007/s12288-008-0004-0.
    1. Key T.J., Appleby P.N., Rosell M.S. Health effects of vegetarian and vegan diets. Proc. Nutr. Soc. 2006;65:35–41. doi: 10.1079/PNS2005481.
    1. Craig W.J. Nutrition concerns and health effects of vegetarian diets. Nutr. Clin. Pract. 2010;25:613–620. doi: 10.1177/0884533610385707.
    1. Li D. Chemistry behind vegetarianism. J. Agric. Food Chem. 2011;59:777–784. doi: 10.1021/jf103846u.
    1. Van Loo-Bouwman C.A., Naber T.H., Schaafsma G. A review of vitamin A equivalency of β-carotene in various food matrices for human consumption. Br. J. Nutr. 2014;11:1–14. doi: 10.1017/S0007114514000166.
    1. Keegan R.J., Lu Z., Bogusz J.M., Williams J.E., Holick M.F. Photobiology of vitamin D in mushrooms and its bioavailability in humans. Dermatoendocrinology. 2013;1:165–176.
    1. Lehmann B., Querings K., Reichrath J. Vitamin D and skin: New aspects for dermatology. Exp. Dermatol. 2004;13:11–15. doi: 10.1111/j.1600-0625.2004.00257.x.
    1. Squires M.W., Naber E.C. Vitamin profiles of eggs as indicators of nutritional status in the laying hen: Vitamin B12 study. Poult. Sci. 1992;71:275–282.
    1. Doscherholmen A., McMahon J., Ripley D. Vitamin B12 absorption from eggs. Proc. Soc. Exp. Biol. Med. 1975;149:987–990. doi: 10.3181/00379727-149-38940.
    1. Doscherholmen A., McMahon J., Ripley D. Inhibitory effect of eggs on vitamin B12 absorption: Description of a simple ovalbumin 57Co vitamin B12 absorption test. Br. J. Haematol. 1976;33:261–272. doi: 10.1111/j.1365-2141.1976.tb03537.x.
    1. Ball G.F.M. Bioavailability and Analysis of Vitamins in Foods. Chapman & Hall; London, UK: 1998. Vitamin B12; pp. 497–515.
    1. Watanabe F., Abe K., Fujita T., Goto M., Hiemori M., Nakano Y. Effects of microwave heating on the loss of vitamin B12 in foods. J. Agric. Food Chem. 1998;46:206–210. doi: 10.1021/jf970670x.
    1. Arkbage K., Witthoft C., Fonden R., Jagerstad M. Retention of vitamin B12 during manufacture of six fermented dairy products using a validated radio protein-binding assay. Int. Dairy J. 2003;13:101–109.
    1. Sato K., Wang X., Mizoguchi K. A modified form of a vitamin B12 compound extracted from whey fermented by Lactobacillus helveticus. J. Dairy Sci. 1997;80:2701–2705. doi: 10.3168/jds.S0022-0302(97)76230-1.
    1. Baik H.W., Russell R.M. Vitamin B12 deficiency in the elderly. Annu. Rev. Nutr. 1999;19:357–377.
    1. Cuskelly G.J., Mooney K.M., Young I.S. Folate and vitamin B12: Friendly or enemy nutrients for the elderly. Proc. Nutr. Soc. 2007;66:548–558.
    1. Mahalle N., Kulkarni M.V., Garg M.K., Naik S.S. Vitamin B12 deficiency and hyperhomocysteinemia as correlates of cardiovascular risk factors in Indian subjects with coronary artery disease. J. Cardiol. 2013;61:289–294.
    1. Lachner C., Steinle N.I., Regenold W.T. The neuropsychiatry of vitamin B12 deficiency in elderly patients. J. Neuropsychiatry Clin. Neurosci. 2012;24:5–15.
    1. Allen L.H., Rosenberg I.H., Oakley G.P., Omenn G.S. Considering the case for vitamin B12 fortification of flour. Food Nutr. Bull. 2010;31:S36–S46.
    1. Tucker K.L., Olson B., Bakun P., Dallal G.E., Selhub J., Rosenberg I.H. Breakfast cereal fortified with folic acid, vitamin B6, and vitamin B12 increases vitamin concentrations and reduces homocysteine concentrations: A randomized trial. Am. J. Clin. Nutr. 2004;79:805–811.
    1. Mozafar A. Enrichment of some B-vitamins in plants with application of organic fertilizers. Plant Soil. 1994;167:305–311. doi: 10.1007/BF00007957.
    1. Bito T., Ohishi N., Takenaka S., Yabuta Y., Miyamoto E., Nishihara E., Watanabe F. Characterization of vitamin B12 compounds in biofertilizers containing purple photosynthetic bacteria. Trends Chromatogr. 2012;7:23–28.
    1. Allen R.H., Stabler S.P. Identification and quantitation of cobalamin and cobalamin analogues in human feces. Am. J. Clin. Nutr. 2008;87:1324–1335.
    1. Sato K., Kudo Y., Muramatsu K. Incorporation of a high level of vitamin B12 into a vegetable, kaiware daikon (Japanese radish sprout), by the absorption from its seeds. Biochim. Biophys. Acta . 2004;1672:135–137.
    1. Bito T., Ohishi N., Hatanaka Y., Takenaka S., Nishihara E., Yabuta Y., Watanabe F. Production and characterization of cyanocobalamin-enriched lettuce (Lactuca sativa L.) grown using hydroponics. J. Agric. Food Chem. 2013;61:3852–3858.
    1. Nout M.J.R., Rombouts F.M. Recent developments in tempe research. J. Appl. Bacteriol. 1990;69:609–633.
    1. Denter J., Bisping B. Formation of B-vitamins by bacteria during the soaking process of soybeans for tempe fermentation. Int. J. Food Microbiol. 1994;22:23–31.
    1. Okada N., Hadioetomo P.S., Nikkuni S., Katoh K., Ohta T. Vitamin B12 content of fermented foods in the tropics. Rept. Nalt. Food Res. Inst. 1983;43:126–129.
    1. Kwak C.S., Hwang J.Y., Watanabe F., Park S.C. Vitamin B12 contents in some Korean fermented foods and edible seaweeds. Korean J. Nutr. 2008;41:439–447.
    1. Miyamoto E., Kittaka-Katsura H., Adachi S., Watanabe F. Assay of vitamin B12 in edible bamboo shoots. Vitamins. 2005;79:329–332.
    1. Gupta U., Rudramma Rati E.R., Joseph R. Nutritional quality of lactic fermented bitter gourd and fenugreek leaves. Int. J. Food Sci. Nutr. 1998;49:101–108.
    1. Babuchowski A., Laniewska-Moroz L., Warminska-Radyko I. Propionibacteria in fermented vegetables. Lait. 1999;79:113–124.
    1. Kittaka-Katsura H., Watanabe F., Nakano Y. Occurrence of vitamin B12 in green, blue, red, and black tea leaves. J. Nutr. Sci. Vitaminol. 2004;50:438–440. doi: 10.3177/jnsv.50.438.
    1. Kittaka-Katsura H., Ebara S., Watanabe F., Nakano Y. Characterization of corrinoid compounds from a Japanese black tea (Batabata-cha) fermented by bacteria. J. Agric. Food Chem. 2004;52:909–911. doi: 10.1021/jf030585r.
    1. Watanabe F., Schwarz J., Takenaka S., Miyamoto E., Ohishi N., Nelle E., Hochstrasser R., Yabuta Y. Characterization of vitamin B12 compounds in the wild edible mushrooms black trumpet (Craterellus cornucopioides) and golden chanterelle (Cantharellus cibarius) J. Nutr. Sci. Vitaminol. 2012;58:438–441.
    1. Bito T., Teng F., Ohishi N., Takenaka S., Miyamoto E., Sakuno E., Terashima K., Yabuta Y., Watanabe F. Characterization of vitamin B12 compounds in the fruiting bodies of shiitake mushroom (Lentinula edodes) and bed logs after fruiting of the mushroom. Mycoscience . 2014 in press.
    1. Teng F., Bito T., Takenaka S., Yabuta Y., Watanabe F. Vitamin B12[c-lactone], a biologically inactive corrinoid compound, occurs in cultured and dried lion’s mane mushroom (Hericium erinaceus) fruiting bodies. J. Agric. Food Chem. 2014;62:1726–1732.
    1. Stabler S.P., Brass E.P., Marcell P.D., Allen R.H. Inhibition of cobalamin-dependent enzymes by cobalamin analogues in rats. J. Clin. Investig. 1991;87:1422–1430.
    1. Watanabe F., Takenaka S., Katsura H., Masumder S.A., Abe K., Tamura Y., Nakano Y. Dried green and purple lavers (nori) contain substantial amounts of biologically active vitamin B12 but less of dietary iodine relative to other edible seaweeds. J. Agric. Food Chem. 1999;47:2341–2343.
    1. Watanabe F., Takenak S., Kittaka-Katsura H., Ebara S., Miyamoto E. Characterization and bioavailability of vitamin B12-compounds from edible algae. J. Nutr. Sci. Vitaminol. 2002;48:325–331.
    1. Watanabe F., Takenaka S., Katsura H., Miyamoto E., Abe K., Tamura Y., Nakatsuka T., Nakano Y. Characterization of a vitamin B12 compound in the edible purple laver, Porphyra yezoensis. Biosci. Biotechnol. Biochem. 2000;64:2712–2715. doi: 10.1271/bbb.64.2712.
    1. Watanabe F., Katsura H., Miyamoto E., Takenaka S., Abe K., Yamasaki Y., Nakano Y. Characterization of vitamin B12 in an edible green laver (Entromopha prolifera) Appl. Biol. Sci. 1999;5:99–107.
    1. Miyamoto E., Yabuta Y., Kwak C.S., Enomoto T., Watanabe F. Characterization of vitamin B12 compounds from Korean purple laver (Porphyra sp.) products. J. Agric. Food Chem. 2009;57:2793–2796.
    1. Takenaka S., Sugiyama S., Ebara S., Miyamoto E., Abe K., Tamura Y., Watanabe F., Tsuyama S., Nakano Y. Feeding dried purple laver (nori) to vitamin B12-deficient rats significantly improves vitamin B12 status. Br. J. Nutr. 2001;85:699–703. doi: 10.1079/BJN2001352.
    1. Yamada S., Shibata Y., Takayama M., Narita Y., Sugiwara K., Fukuda M. Content and characteristics of vitamin B12 in some seaweeds. J. Nutr. Sci. Vitaminol. 1997;42:497–505.
    1. Suziki H. Serum vitamin B12 levels in young vegans who eat brown rice. J. Nutr. Sci. Vitaminol. 1995;41:587–594. doi: 10.3177/jnsv.41.587.
    1. Croft M.T., Lawrence A.D., Raux-Deery E., Warren M.J., Smith A.G. Algae acquire vitamin B12 through a symbiotic relationship with bacteria. Nature. 2005;438:90–93.
    1. Helliwell K.E., Wheeler G.L., Leptos K.C., Goldstein R.E., Smith A.G. Insights into the evolution of vitamin B12 auxotrophy from sequenced algal genomes. Mol. Biol. Evol. 2011;28:2921–2933.
    1. The Council for Science and Technology Ministry of Education, Culture, Sports, Science and Technology, JAPAN, editor. Standard Tables of Food Composition in Japan-2010. Official Gazette Co-operation of Japan; Tokyo, Japan: 2010.
    1. Yabuta Y., Fujimura H., Kwak C.S., Enomoto T., Watanabe F. Antioxidant activity of the phycoerythrobilin compound formed from a dried Korean purple laver (Porphyra sp.) during in vitro digestion. Food Sci. Technol. Res. 2010;16:347–351.
    1. Kittaka-Katsura H., Fujita T., Watanabe F., Nakano Y. Purification and characterization of a corrinoid-compound from chlorella tablets as an algal health food. J. Agric. Food Chem. 2002;50:4994–4997. doi: 10.1021/jf020345w.
    1. Watanabe F., Katsura H., Takenaka S., Fujita T., Abe K., Tamura Y., Nakatsuka T., Nakano Y. Pseudovitamin B12 is the predominate cobamide of an algal health food, spirulina tablets. J. Agric. Food Chem. 1999;47:4736–4741. doi: 10.1021/jf990541b.
    1. Miyamoto E., Tanioka Y., Nakao T., Barla F., Inui H., Fujita T., Watanabe F., Nakano Y. Purification and characterization of a corrinoidcompound in an edible cyanobacterium Aphanizomenon flos-aquae as a nutritional supplementary food. J. Agric. Food Chem. 2006;54:9604–9607. doi: 10.1021/jf062300r.
    1. Watanabe F., Miyamoto E., Fujita T., Tanioka Y., Nakano Y. Characterization of a corrinod compound in the edible (blue-green) algae, suizenji-nori. Biosci. Biotechnol. Biochem. 2006;70:3066–3068. doi: 10.1271/bbb.60395.
    1. Watanabe F., Tanioka Y., Miyamoto E., Fujita T., Takenaka H., Nakano Y. Purification and characterization of corrinoid-compounds from the dried powder of an edible cyanobacterium, Nostoc commune (Ishikurage) J. Nutr. Sci. Vitaminol. 2007;53:183–186. doi: 10.3177/jnsv.53.183.
    1. Hashimoto E., Yabuta Y., Takenaka S., Yamaguchi Y., Takenaka H., Watanabe F. Characterization of corrinoid compounds from edible cyanobacterium Nostochopsis sp. J. Nutr. Sci. Vitaminol. 2012;58:50–53.
    1. Teng F., Bito T., Takenaka S., Takenaka H., Yamaguchi Y., Yabuta Y., Watanabe F. Characterization of corrinoid compounds in the edible cyanobacterium Nostoc flagelliforme the hair vegetable. Food Nutr. Sci. 2014;5:334–340.

Source: PubMed

3
Subskrybuj