A Placebo-Controlled, Pseudo-Randomized, Crossover Trial of Botanical Agents for Gulf War Illness: Curcumin ( Curcuma longa), Boswellia ( Boswellia serrata), and French Maritime Pine Bark ( Pinus pinaster)

Emily K Donovan, Sophia Kekes-Szabo, Joanne C Lin, Rebecca L Massey, James D Cobb, Kathleen S Hodgin, Timothy J Ness, Carl Hangee-Bauer, Jarred W Younger, Emily K Donovan, Sophia Kekes-Szabo, Joanne C Lin, Rebecca L Massey, James D Cobb, Kathleen S Hodgin, Timothy J Ness, Carl Hangee-Bauer, Jarred W Younger

Abstract

This report is part of a larger study designed to rapidly and efficiently screen potential treatments for Gulf War Illness (GWI) by testing nine different botanicals. In this placebo-controlled, pseudo-randomized, crossover clinical trial of 20 men with GWI, we tested three botanical agents with putative peripheral and central anti-inflammatory actions: curcumin (Curcuma longa), boswellia (Boswellia serrata), and French maritime pine bark extract (Pinus pinaster). Participants completed 30 +/- 3 days of baseline symptom reports, followed by 30 +/- 3 days of placebo, 30 +/- 3 days of lower-dose botanical, and 30 +/- 3 days of higher-dose botanical. Participants then repeated the process with a new botanical until completing up to three botanical cycles. Data were analyzed using linear mixed models. Curcumin reduced GWI symptom severity significantly more than placebo at both the lower (p < 0.0001) and higher (p = 0.0003) dosages. Boswellia was not more effective than placebo at reducing GWI symptoms at either the lower (p = 0.726) or higher (p = 0.869) dosages. Maritime pine was not more effective than placebo at the lower dosage (p = 0.954) but was more effective than placebo at the higher dosage (p = 0.006). This study provides preliminary evidence that curcumin and maritime pine may help alleviate symptoms of GWI. As a screening study, a final determination of the efficacy of these compounds for all individuals with GWI cannot be made, and further studies will need to be conducted to determine strength and durability of effects, as well as optimal dosage. These results suggest that GWI may, at least in part, involve systemic inflammatory processes. This trial was registered on ClinicalTrials.gov (NCT02909686) on 13 September 2016.

Keywords: boswellia; curcumin; maritime pine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Study protocol. Each participant completed testing of up to three botanicals. Some participants opted to re-enroll in the study protocol after completion, resulting in a maximum of six botanical assignments. For each botanical, there was a placebo condition, followed by lower-dose botanical and higher-dose botanical conditions. The period of time between visits was 30 +/− 3 days.
Figure 2
Figure 2
CONSORT Flow diagram. Twenty individuals were randomized to at least one of the treatments covered in this report.
Figure 3
Figure 3
Main treatment effects of curcumin, boswellia, and maritime pine on Gulf War Illness (GWI) symptom severity. Average symptom levels (0–100) are presented for the baseline, placebo, lower-dose, and higher-dose conditions. * significantly lower than baseline (p < 0.05). *# significantly lower than baseline and placebo (p < 0.05).

References

    1. Jaundoo R., Bohmann J., Gutierrez G.E., Klimas N., Broderick G., Craddock T.J.A. Using a Consensus Docking Approach to Predict Adverse Drug Reactions in Combination Drug Therapies for Gulf War Illness. Int. J. Mol. Sci. 2018;19:3355. doi: 10.3390/ijms19113355.
    1. Mawson A.R., Croft A.M. Gulf War Illness: Unifying Hypothesis for a Continuing Health Problem. Int. J. Environ. Res. Public Health. 2019;16:111. doi: 10.3390/ijerph16010111.
    1. White R.F., Steele L., O’Callaghan J.P., Sullivan K., Binns J.H., Golomb B.A., Bloom F.E., Bunker J.A., Crawford F., Graves J.C., et al. Recent research on Gulf War illness and other health problems in veterans of the 1991 Gulf War: Effects of toxicant exposures during deployment. Cortex A J. Devoted Study Nerv. Syst. Behav. 2016;74:449–475. doi: 10.1016/j.cortex.2015.08.022.
    1. Georgopoulos A.P., James L.M., Carpenter A.F., Engdahl B.E., Leuthold A.C., Lewis S.M. Gulf War illness (GWI) as a neuroimmune disease. Exp. Brain Res. 2017;235:3217–3225. doi: 10.1007/s00221-017-5050-0.
    1. Khaiboullina S.F., DeMeirleir K.L., Rawat S., Berk G.S., Gaynor-Berk R.S., Mijatovic T., Blatt N., Rizvanov A.A., Young S.G., Lombardi V.C. Cytokine expression provides clues to the pathophysiology of Gulf War illness and myalgic encephalomyelitis. Cytokine. 2015;72:1–8. doi: 10.1016/j.cyto.2014.11.019.
    1. Trivedi M.S., Abreu M.M., Sarria L., Rose N., Ahmed N., Beljanski V., Fletcher M.A., Klimas N.G., Nathanson L. Alterations in DNA Methylation Status Associated with Gulf War Illness. DNA Cell Boil. 2019;38:561–571. doi: 10.1089/dna.2018.4469.
    1. Parkitny L., Middleton S., Baker K., Younger J. Evidence for abnormal cytokine expression in Gulf War Illness: A preliminary analysis of daily immune monitoring data. BMC Immunol. 2015;16:57. doi: 10.1186/s12865-015-0122-z.
    1. Johnson G.J., Slater B.C., Leis L.A., Rector T.S., Bach R.R. Blood Biomarkers of Chronic Inflammation in Gulf War Illness. PLoS ONE. 2016;11:e0157855.
    1. Coughlin S.S. A Neuroimmune Model of Gulf War Illness. J. Environ. Health Sci. 2017:3. doi: 10.15436/2378-6841.17.1665.
    1. Asher G.N., Spelman K. Clinical utility of curcumin extract. Altern. Ther. Health Med. 2013;19:20–22.
    1. Marchiani A., Rozzo C., Fadda A., Delogu G., Ruzza P. Curcumin and curcumin-like molecules: From spice to drugs. Curr. Med. Chem. 2014;21:204–222. doi: 10.2174/092986732102131206115810.
    1. Zhang L.J., Wu C.F., Meng X.L., Yuan D., Cai X.D., Wang Q.L., Yang J.Y. Comparison of inhibitory potency of three different curcuminoid pigments on nitric oxide and tumor necrosis factor production of rat primary microglia induced by lipopolysaccharide. Neurosci. Lett. 2008;447:48–53. doi: 10.1016/j.neulet.2008.09.067.
    1. Shi X., Zheng Z., Li J., Xiao Z., Qi W., Zhang A., Wu Q., Fang Y. Curcumin inhibits Abeta-induced microglial inflammatory responses in vitro: Involvement of ERK1/2 and p38 signaling pathways. Neurosci. Lett. 2015;594:105–110. doi: 10.1016/j.neulet.2015.03.045.
    1. Guo L., Xing Y., Pan R., Jiang M., Gong Z., Lin L., Wang J., Xiong G., Dong J. Curcumin protects microglia and primary rat cortical neurons against HIV-1 gp120-mediated inflammation and apoptosis. PLoS ONE. 2013;8:e70565. doi: 10.1371/journal.pone.0070565.
    1. Chen J.J., Dai L., Zhao L.X., Zhu X., Cao S., Gao Y.J. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis. Sci. Rep. 2015;5:10278. doi: 10.1038/srep10278.
    1. Kodali M., Hattiangady B., Shetty G.A., Bates A., Shuai B., Shetty A.K. Curcumin treatment leads to better cognitive and mood function in a model of Gulf War Illness with enhanced neurogenesis, and alleviation of inflammation and mitochondrial dysfunction in the hippocampus. Brain Behav. Immun. 2018;69:499–514. doi: 10.1016/j.bbi.2018.01.009.
    1. Yang S., Zhang D., Yang Z., Hu X., Qian S., Liu J., Wilson B., Block M., Hong J.S. Curcumin protects dopaminergic neuron against LPS induced neurotoxicity in primary rat neuron/glia culture. Neurochem. Res. 2008;33:2044–2053. doi: 10.1007/s11064-008-9675-z.
    1. Sorrenti V., Contarini G., Sut S., Dall’Acqua S., Confortin F., Pagetta A., Giusti P., Zusso M. Curcumin Prevents Acute Neuroinflammation and Long-Term Memory Impairment Induced by Systemic Lipopolysaccharide in Mice. Front. Pharmacol. 2018;9:183. doi: 10.3389/fphar.2018.00183.
    1. Chin D., Huebbe P., Pallauf K., Rimbach G. Neuroprotective properties of curcumin in Alzheimer’s disease—Merits and limitations. Curr. Med. Chem. 2013;20:3955–3985. doi: 10.2174/09298673113209990210.
    1. Jalleh R., Koh K., Choi B., Liu E., Maddison J., Hutchinson M.R. Role of microglia and toll-like receptor 4 in the pathophysiology of delirium. Med. Hypotheses. 2012;79:735–739. doi: 10.1016/j.mehy.2012.08.013.
    1. Yang F., Lim G.P., Begum A.N., Ubeda O.J., Simmons M.R., Ambegaokar S.S., Chen P.P., Kayed R., Glabe C.G., Frautschy S.A., et al. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. J. Biol. Chem. 2005;280:5892–5901. doi: 10.1074/jbc.M404751200.
    1. Basch E., Boon H., Heerema T.D., Foppo I., Hashmi S., Hasskarl J., Sollars D., Ulbricht C. Boswellia: An evidence-based systematic review by the Natural Standard Research Collaboration. J. Herb. Pharmacother. 2004;4:63–83. doi: 10.1080/J157v04n03_06.
    1. Di Lorenzo C., Dell’agli M., Badea M., Dima L., Colombo E., Sangiovanni E., Restani P., Bosisio E. Plant food supplements with anti-inflammatory properties: A systematic review (II) Crit. Rev. Food Sci. Nutr. 2013;53:507–516. doi: 10.1080/10408398.2012.691916.
    1. Hussain H., Al-Harrasi A., Al-Rawahi A., Hussain J. Chemistry and biology of essential oils of genus boswellia. Evid. Based Complementary Altern. Med. eCAM. 2013;2013:140509. doi: 10.1155/2013/140509.
    1. Ng S.C., Lam Y.T., Tsoi K.K., Chan F.K., Sung J.J., Wu J.C. Systematic review: The efficacy of herbal therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2013;38:854–863. doi: 10.1111/apt.12464.
    1. Catanzaro D., Rancan S., Orso G., Dall’Acqua S., Brun P., Giron M.C., Carrara M., Castagliuolo I., Ragazzi E., Caparrotta L., et al. Boswellia serrata Preserves Intestinal Epithelial Barrier from Oxidative and Inflammatory Damage. PLoS ONE. 2015;10:e0125375. doi: 10.1371/journal.pone.0125375.
    1. Ding Y., Qiao Y., Wang M., Zhang H., Li L., Zhang Y., Ge J., Song Y., Li Y., Wen A. Enhanced Neuroprotection of Acetyl-11-Keto-beta-Boswellic Acid (AKBA)-Loaded O-Carboxymethyl Chitosan Nanoparticles Through Antioxidant and Anti-Inflammatory Pathways. Mol. Neurobiol. 2016;53:3842–3853. doi: 10.1007/s12035-015-9333-9.
    1. Umar S., Umar K., Sarwar A.H., Khan A., Ahmad N., Ahmad S., Katiyar C.K., Husain S.A., Khan H.A. Boswellia serrata extract attenuates inflammatory mediators and oxidative stress in collagen induced arthritis. Phytomedicine Int. J. Phytotherapy Phytopharm. 2014;21:847–856. doi: 10.1016/j.phymed.2014.02.001.
    1. Moreillon J.J., Bowden R.G., Deike E., Griggs J., Wilson R., Shelmadine B., Cooke M., Beaujean A. The use of an anti-inflammatory supplement in patients with chronic kidney disease. J. Complementary Integr. Med. 2013;10:143–152. doi: 10.1515/jcim-2012-0011.
    1. Ansari M.A., Roberts K.N., Scheff S.W. Dose- and time-dependent neuroprotective effects of Pycnogenol following traumatic brain injury. J. Neurotrauma. 2013;30:1542–1549. doi: 10.1089/neu.2013.2910.
    1. Khan M.M., Kempuraj D., Thangavel R., Zaheer A. Protection of MPTP-induced neuroinflammation and neurodegeneration by Pycnogenol. Neurochem Int. 2013;62:379–388. doi: 10.1016/j.neuint.2013.01.029.
    1. Fan B., Dun S.H., Gu J.Q., Guo Y., Ikuyama S. Pycnogenol Attenuates the Release of Proinflammatory Cytokines and Expression of Perilipin 2 in Lipopolysaccharide-Stimulated Microglia in Part via Inhibition of NF-kappaB and AP-1 Activation. PLoS ONE. 2015;10:e0137837. doi: 10.1371/journal.pone.0137837.
    1. Belcaro G., Cesarone M.R., Errichi S., Zulli C., Errichi B.M., Vinciguerra G., Ledda A., Di Renzo A., Stuard S., Dugall M., et al. Variations in C-reactive protein, plasma free radicals and fibrinogen values in patients with osteoarthritis treated with Pycnogenol. Redox Rep. Commun. Free Radic. Res. 2008;13:271–276. doi: 10.1179/135100008X309019.
    1. Jessberger S., Hogger P., Genest F., Salter D.M., Seefried L. Cellular pharmacodynamic effects of Pycnogenol(R) in patients with severe osteoarthritis: A randomized controlled pilot study. BMC Complementary Altern. Med. 2017;17:537. doi: 10.1186/s12906-017-2044-1.
    1. Verlaet A., Van Der Bolt N., Meijer B., Breynaert A., Naessens T., Konstanti P., Smidt H., Hermans N., Savelkoul H.F., Teodorowicz M. Toll-Like Receptor-Dependent Immunomodulatory Activity of Pycnogenol((R)) Nutrients. 2019;11:214. doi: 10.3390/nu11020214.
    1. Steele L. Prevalence and patterns of Gulf War illness in Kansas veterans: Association of symptoms with characteristics of person, place, and time of military service. Am. J. Epidemiol. 2000;152:992–1002. doi: 10.1093/aje/152.10.992.
    1. Zigmond A.S., Snaith R.P. The hospital anxiety and depression scale. Acta Psychiatr. Scand. 1983;67:361–370. doi: 10.1111/j.1600-0447.1983.tb09716.x.
    1. Weathers F.W., Huska J.A., Keane T.M. PCL-M for DSM-IV. National Center for PTSD-Behavioral Science Division; Boston, MA, USA: 1991.
    1. Weathers F.W., Blake D.D., Schnurr P.P., Kaloupek D.G., Marx B.P., Keane T.M. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5) [(accessed on 1 March 2021)];2013 Interview Available from the National Center for PTSD. Available online: .
    1. Liu X., Wei J., Fengsen T., Shengming Z., Wurthwein G., Rohdewald P. Antidiabetic effect of Pycnogenol French maritime pine extract in patients with diabetes type II. Life Sci. 2004;75:2505–2513. doi: 10.1016/j.lfs.2003.10.043.
    1. Diagnostic and Statistical Manual of Mental Disorders. 4th ed. American Psychiatric Association; Washington, DC, USA: 1994.
    1. Keen S.M., Kutter C.J., Niles B.L., Krinsley K.E. Psychometric properties of PTSD Checklist in sample of male veterans. J. Rehabil. Res. Dev. 2008;45:465–474. doi: 10.1682/JRRD.2007.09.0138.
    1. Weathers F.W., Bovin M.J., Lee D.J., Sloan D.M., Schnurr P.P., Kaloupek D.G., Keane T.M., Marx B.P. The Clinician-Administered PTSD Scale for DSM-5 (CAPS-5): Development and initial psychometric evaluation in military veterans. Psychol. Assess. 2018;30:383–395. doi: 10.1037/pas0000486.
    1. Faul F., Erdfelder E., Lang A.-G., Buchner A. G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav. Res. Methods. 2007;39:175–191. doi: 10.3758/BF03193146.
    1. Sayed A.S., Gomaa I.E.O., Bader M., El Sayed N.S.E.D. Role of 3-Acetyl-11-Keto-Beta-Boswellic Acid in Counteracting LPS-Induced Neuroinflammation via Modulation of miRNA-155|SpringerLink. Mol. Neurobiol. 2019;55:5798–5808. doi: 10.1007/s12035-017-0801-2.
    1. Liu X., Machado G.C., Eyles J.P., Ravi V., Hunter D.J. Dietary supplements for treating osteoarthritis: A systematic review and meta-analysis. Br. J. Sports Med. 2018;52:167–175. doi: 10.1136/bjsports-2016-097333.
    1. Liu X., Hunter D.J., Eyles J., McLachlan A.J., Adiwidjaja J., Eagles S.K., Wang X. Pharmacokinetic assessment of constituents of Boswellia serrata, pine bark extracts, curcumin in combination including methylsulfonylmethane in healthy volunteers. J Pharm. Pharmacol. 2020;72:121–131. doi: 10.1111/jphp.13184.
    1. Rajabian A., Sadeghnia H., Fanoudi S., Hosseini A. Genus Boswellia as a new candidate for neurodegenerative disorders. Iran J. Basic Med. Sci. 2020;23:277–286.
    1. Rohdewald P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology. Int. J. Clin. Pharm. 2002;40:158–168. doi: 10.5414/CPP40158.
    1. Menon V.P., Sudheer A.R. Antioxidant and anti-inflammatory properties of curcumin. Adv. Exp. Med. Biol. 2007;595:105–125.
    1. Beghelli D., Isani G., Roncada P., Andreani G., Bistoni O., Bertocchi M., Lupidi G., Alunno A. Antioxidant and ex vivo immune system regulatory properties of boswellia serrata extracts. Oxid. Med. 2017;2017:7468064.
    1. Coughlin S.S., Krengel M., Sullivan K., Pierce P.F., Heboyan V., Wilson L.C.C. A Review of Epidemiologic Studies of the Health of Gulf War Women Veterans. J. Environ. Health Sci. 2017;3 doi: 10.15436/2378-6841.17.1551.

Source: PubMed

3
Subskrybuj