ALS Pathogenesis and Therapeutic Approaches: The Role of Mesenchymal Stem Cells and Extracellular Vesicles

Roberta Bonafede, Raffaella Mariotti, Roberta Bonafede, Raffaella Mariotti

Abstract

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by progressive muscle paralysis determined by the degeneration of motoneurons in the motor cortex brainstem and spinal cord. The ALS pathogenetic mechanisms are still unclear, despite the wealth of studies demonstrating the involvement of several altered signaling pathways, such as mitochondrial dysfunction, glutamate excitotoxicity, oxidative stress and neuroinflammation. To date, the proposed therapeutic strategies are targeted to one or a few of these alterations, resulting in only a minimal effect on disease course and survival of ALS patients. The involvement of different mechanisms in ALS pathogenesis underlines the need for a therapeutic approach targeted to multiple aspects. Mesenchymal stem cells (MSC) can support motoneurons and surrounding cells, reduce inflammation, stimulate tissue regeneration and release growth factors. On this basis, MSC have been proposed as promising candidates to treat ALS. However, due to the drawbacks of cell therapy, the possible therapeutic use of extracellular vesicles (EVs) released by stem cells is raising increasing interest. The present review summarizes the main pathological mechanisms involved in ALS and the related therapeutic approaches proposed to date, focusing on MSC therapy and their preclinical and clinical applications. Moreover, the nature and characteristics of EVs and their role in recapitulating the effect of stem cells are discussed, elucidating how and why these vesicles could provide novel opportunities for ALS treatment.

Keywords: ALS therapeutic applications; amyotrophic lateral sclerosis; exosomes; extracellular vesicles; mesenchymal stem cells.

Figures

Figure 1
Figure 1
Pathogenetic mechanisms involved in amyotrophic lateral sclerosis (ALS). The pathophysiological mechanism of the disease appears to be multifactorial and several mechanisms contribute to neurodegeneration. An increase of the neurotransmitter glutamate in the synaptic cleft (glutamate excitotoxicity), due to the impairment of its uptake by astrocytes, leads to an increased influx of Ca2+ ions in the motoneurons. The increased levels of Ca2+ ions, which in physiological conditions could be removed by mitochondria (calcium homeostasis), remain high in the cytoplasm due to mitochondrial dysfunction and can cause neurodegeneration through activation of Ca2+-dependent enzymatic pathways contributing to oxidative stress. Mutant misfolding proteins (such as superoxide dismutase 1 gene (SOD1), chromosome 9 open reading frame 72 (C9orf72), TAR DNA-binding protein 43 (TDP-43) and fused in sarcoma (FUS) form intercellular aggregates, contribute to an increase of oxidative stress, contribute to mitochondrial dysfunction and could lead to the accumulation of neurofilaments (NFs) and dysfunction of axonal transport. Moreover, activated astrocyte and microglia release inflammatory mediators and toxic factors, contributing to neurotoxicity.
Figure 2
Figure 2
Hypothetical mechanisms of action of exosomes. Exosomes interact with the endothelial cells of the blood-brain barrier (BBB) modifying the integrity of cell junctions and increasing the permeability between cells. This mechanism allows a massive entry of vesicles in the central nervous system (CNS). Once in the CNS, exosomes could interact directly on motoneurons (arrows) modulating different biological processes (such as apoptosis, cell proliferation, gene expression and oxidative stress) or indirectly modifying the local motoneuron environment, acting on glial cells that decrease the release of toxic factor and inflammatory mediators (dotted arrows). These direct and indirect mechanisms of action of exosomes could counteract the pathological mechanisms involved in the disease.

References

    1. Al-Chalabi A., Andersen P. M., Nilsson P., Chioza B., Andersson J. L., Russ C., et al. . (1999). Deletions of the heavy neurofilament subunit tail in amyotrophic lateral sclerosis. Hum. Mol. Genet. 8, 157–164. 10.1093/hmg/8.2.157
    1. Alfahad T., Nath A. (2013). Retroviruses and amyotrophic lateral sclerosis. Antiviral Res. 99, 180–187. 10.1016/j.antiviral.2013.05.006
    1. Almer G., Vukosavic S., Romero N., Przedborski S. (1999). Inducible nitric oxide synthase up-regulation in a transgenic mouse model of familial amyotrophic lateral sclerosis. J. Neurochem. 72, 2415–2425. 10.1046/j.1471-4159.1999.0722415.x
    1. Appel S. H., Zhao W., Beers D. R., Henkel J. S. (2011). The microglial-motoneuron dialogue in ALS. Acta Myol. 30, 4–8.
    1. Armon C. (2003). An evidence-based medicine approach to the evaluation of the role of exogenous risk factors in sporadic amyotrophic lateral sclerosis. Neuroepidemiology 22, 217–228. 10.1159/000070562
    1. Bacman S. R., Bradley W. G., Moraes C. T. (2006). Mitochondrial involvement in amyotrophic lateral sclerosis: trigger or target? Mol. Neurobiol. 33, 113–131. 10.1385/MN:33:2:113
    1. Baek W., Kim Y. S., Koh S. H., Lim S. W., Kim H. Y., Yi H. J., et al. . (2012). Stem cell transplantation into the intraventricular space via an Ommaya reservoir in a patient with amyotrophic lateral sclerosis. J. Neurosurg. Sci. 56, 261–263.
    1. Baglio S. R., Pegtel D. M., Baldini N. (2012). Mesenchymal stem cell secreted vesicles provide novel opportunities in (stem) cell-free therapy. Front. Physiol. 3:359. 10.3389/fphys.2012.00359
    1. Beckman J. S., Estévez A. G., Crow J. P., Barbeito L. (2001). Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci. 24, S15–S20. 10.1016/s0166-2236(00)01981-0
    1. Beers D. R., Henkel J. S., Xiao Q., Zhao W., Wang J., Yen A. A., et al. . (2006). Wild-type microglia extend survival in PU.1 knockout mice with familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U S A 103, 16021–16026. 10.1073/pnas.0607423103
    1. Beghi E., Chiò A., Couratier P., Esteban J., Hardiman O., Logroscino G., et al. . (2011). The epidemiology and treatment of ALS: focus on the heterogeneity of the disease and critical appraisal of therapeutic trials. Amyotroph. Lateral Scler. 12, 1–10. 10.3109/17482968.2010.502940
    1. Bendotti C., Carrì M. T. (2004). Lessons from models of SOD1-linked familial ALS. Trends Mol. Med. 10, 393–400. 10.1016/j.molmed.2004.06.009
    1. Bergemalm D., Jonsson P. A., Graffmo K. S., Andersen P. M., Brännström T., Rehnmark A., et al. . (2006). Overloading of stable and exclusion of unstable human superoxide dismutase-1 variants in mitochondria of murine amyotrophic lateral sclerosis models. J. Neurosci. 26, 4147–4154. 10.1523/JNEUROSCI.5461-05.2006
    1. Berger M. M., Kopp N., Vital C., Redl B., Aymard M., Lina B. (2000). Detection and cellular localization of enterovirus RNA sequences in spinal cord of patient with ALS. Neurology 54, 20–25. 10.1212/WNL.54.1.20
    1. Bernard-Marissal N., Moumen A., Sunsyach C., Pellegrino C., Dudley K., Henderson C. E., et al. . (2012). Reduced calreticulin levels link endoplasmic reticulum stress and Fast-riggered cell death in motoneurons vulnerable to ALS. J. Neurosci. 32, 4901–4912. 10.1523/JNEUROSCI.5431-11.2012
    1. Biancone L., Bruno S., Deregibus C., Tetta C., Camussi G. (2012). Therapeutic potential of mesenchymal stem cell-derived microvesicles. Nephrol. Dial. Transplant. 27, 3037–3042. 10.1093/ndt/gfs168
    1. Blanquer M., Moraleda J. M., Iniesta F., Gómez-Espuch J., Meca-Lallana J., Villaverde R., et al. . (2012). Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: a pilot safety study. Stem Cells 30, 1277–1285. 10.1002/stem.1080
    1. Boido M., Piras A., Valsecchi V., Spigolon G., Mareschi K., Ferrero I., et al. . (2014). Human mesenchymal stromal cell transplantation modulates neuroinflammatory milieu in a mouse model of amyotrophic lateral sclerosis. Cytotherapy 16, 1059–1072. 10.1016/j.jcyt.2014.02.003
    1. Boillée S., Vande Velde C., Cleveland D. W. (2006a). ALS: a disease of motor neurons and their non neuronal neighbors. Neuron 52, 39–59. 10.1016/j.neuron.2006.09.018
    1. Boillée S., Yamanaka K., Lobsiger C. S., Copeland N. G., Jenkins N. A., Kassiotis G., et al. . (2006b). Onset and progression in inherited ALS determined by motor neurons and microglia. Science 312, 1389–1392. 10.1126/science.1123511
    1. Bonafede R., Scambi I., Peroni D., Potrich V., Boschi F., Benati D., et al. . (2016). Exosome derived from murine adipose-derived stromal cells: neuroprotective effect on in vitro model of amyotrophic lateral sclerosis. Exp. Cell Res. 340, 150–158. 10.1016/j.yexcr.2015.12.009
    1. Borchelt D. R., Lee M. K., Slunt H. S., Guarnieri M., Xu Z. S., Wong P. C., et al. . (1994). Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. U S A 91, 8292–8296. 10.1073/pnas.91.17.8292
    1. Boucherie C., Schäfer S., Lavand’homme P., Maloteaux J. M., Hermans E. (2009). Chimerization of astroglial population in the lumbar spinal cord after mesenchymal stem cell transplantation prolongs survival in a rat model of amyotrophic lateral sclerosis. J. Neurosci. Res. 87, 2034–2046. 10.1002/jnr.22038
    1. Busato A., Bonafede R., Bontempi P., Scambi I., Schiaffino L., Benati D., et al. . (2016). Magnetic resonance imaging of USPIO-labeled exosomes from stem cells: a new method to obtain labeled exosomes. Int. J. Nanomedicine 11, 2481–2490. 10.2147/IJN.s104152
    1. Chen H., Richard M., Sandler D. P., Umbach D. M., Kamel F. (2007). Head injury and amyotrophic lateral sclerosis. Am. J. Epidemiol. 166, 810–816. 10.1093/aje/kwm153
    1. Chen S., Sayana P., Zhang X., Le W. (2013). Genetics of amyotrophic lateral sclerosis: an update. Mol. Neurodegener. 8:28. 10.1186/1750-1326-8-28
    1. Clement A. M., Nguyen M. D., Roberts E. A., Garcia M. L., Boillée S., Rule M., et al. . (2003). Wild-type non neuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science 302, 113–117. 10.1126/science.1086071
    1. Cleveland D. W., Rothstein J. D. (2001). From charcot to lou gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2, 806–819. 10.1038/35097565
    1. Coan G., Mitchell C. S. (2015). An assessment of possible neuropathology and clinical relationships in 46 sporadic amyotrophic lateral sclerosis patient autopsies. Neurodegener. Dis. 15, 301–312. 10.1159/000433581
    1. Collino F., Deregibus M. C., Bruno S., Sterpone L., Aghemo G., Viltono L., et al. . (2010). Microvesicles derived from adult human bone marrow and tissue specific mesenchymal stem cells shuttle selected pattern of miRNAs. PLoS One 5:e11803. 10.1371/journal.pone.0011803
    1. Comley L., Allodi I., Nichterwitz S., Nizzardo M., Simone C., Corti S., et al. . (2015). Motor neurons with differential vulnerability to degeneration show distinct protein signatures in health and ALS. Neuroscience 291, 216–229. 10.1016/j.neuroscience.2015.02.013
    1. Costa J., de Carvalho M. (2016). Emerging molecular biomarker targets for amyotrophic lateral sclerosis. Clin. Chim. Acta 455, 7–14. 10.1016/j.cca.2016.01.011
    1. Damiano M., Starkov A. A., Petri S., Kipiani K., Kiaei M., Mattiazzi M., et al. . (2006). Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J. Neurochem. 96, 1349–1361. 10.1111/j.1471-4159.2006.03619.x
    1. Deda H., Inci M. C., Kürekçi A. E., Sav A., Kayihan K., Ozgün E., et al. . (2009). Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: a 1-year follow-up. Cytotherapy 11, 18–25. 10.1080/14653240802549470
    1. del Aguila M. A., Longstreth W. T., Jr., McGuire V., Koepsell T. D., van Belle G. (2003). Prognosis in amyotrophic lateral sclerosis: a population-based study. Neurology 60, 813–819. 10.1212/01.WNL.0000049472.47709.3B
    1. Deng H. X., Hentati A., Tainer J. A., Iqbal Z., Cayabyab A., Hung W. Y., et al. . (1993). Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science 261, 1047–1051. 10.1126/science.8351519
    1. Doble A. (1997). Effects of riluzole on glutamatergic neurotransmission in the mammalian central nervous system, and other pharmacological effects. Rev. Contemp. Pharmacother. 8, 213–225.
    1. Dormann D., Haass C. (2011). TDP-43 and FUS: a nuclear affair. Trends Neurosci. 34, 339–348. 10.1016/j.tins.2011.05.002
    1. Elliott J. L. (2001). Cytokine upregulation in a murine model of familial amyotrophic lateral sclerosis. Mol. Brain Res. 95, 172–178. 10.1016/s0169-328x(01)00242-x
    1. Faravelli I., Riboldi G., Nizzardo M., Simone C., Zanetta C., Bresolin N., et al. . (2014). Stem cell transplantation for amyotrophic lateral sclerosis: therapeutic potential and perspectives on clinical translation. Cell. Mol. Life Sci. 71, 3257–3268. 10.1007/s00018-014-1613-4
    1. Farinazzo A., Turano E., Marconi S., Bistaffa E., Bazzoli E., Bonetti B. (2015). Murine adipose-derived mesenchymal stromal cell vesicles: in vitro clues for neuroprotective and neuroregenerative approaches. Cytotherapy 17, 571–578. 10.1016/j.jcyt.2015.01.005
    1. Forostyak S., Jendelova P., Kapcalova M., Arboleda D., Sykova E. (2011). Mesenchymal stromal cells prolong the lifespan in a rat model of amyotrophic lateral sclerosis. Cytotherapy 13, 1036–1046. 10.3109/14653249.2011.592521
    1. Forsgren L., Almay B. G., Holmgren G., Wall S. (1983). Epidemiology of motor neuron disease in northern Sweden. Acta Neurol. Scand. 68, 20–29. 10.1111/j.1600-0404.1983.tb04810.x
    1. Fukada K., Zhang F., Vien A., Cashman N. R., Zhu H. (2004). Mitochondrial proteomic analysis of a cell line model of familial amyotrophic lateral sclerosis. Mol. Cell. Proteomics 3, 1211–1223. 10.1074/mcp.m400094-mcp200
    1. Fukai T., Ushio-Fukai M. (2011). Superoxide dismutases: role in redox signaling, vascular function, and disease. Antioxid. Redox Signal. 15, 1583–1606. 10.1089/ars.2011.3999
    1. Gould T. W., Oppenheim R. W. (2011). Motor neuron trophic factors: therapeutic use in ALS? Brain Res. Rev. 67, 1–39. 10.1016/j.brainresrev.2010.10.003
    1. Greco V., Hannus M., Eaton S. (2001). Argosomes: a potential vehicle for the spread of morphogens through epithelia. Cell 106, 633–645. 10.1016/S0092-8674(01)00484-6
    1. Guo H., Lai L., Butchbach M. E., Stockinger M. P., Shan X., Bishop G. A., et al. . (2003). Increased expression of the glial glutamate transporter EAAT2 modulates excitotoxicity and delays the onset but not the outcome of ALS in mice. Hum. Mol. Genet. 12, 2519–2532. 10.1093/hmg/ddg267
    1. Gurney M. E., Fleck T. J., Himes C. S., Hall E. D. (1998). Riluzole preserves motor function in a transgenic model of familial amyotrophic lateral sclerosis. Neurology 50, 62–66. 10.1212/wnl.50.1.62
    1. György B., Módos K., Pállinger E., Pálóczi K., Pásztói M., Misják P., et al. . (2011). Detection and isolation of cell-derived microparticles are compromised by protein complexes resulting from shared biophysical parameters. Blood 117, e39–e48. 10.1182/blood-2010-09-307595
    1. Haidet-Phillips A. M., Maragakis N. J. (2015). Neural and glial progenitor transplantation as a neuroprotective strategy for amyotrophic lateral sclerosis (ALS). Brain Research. 1628, 343–350. 10.1016/j.brainres.2015.06.035
    1. Higgins C. M. J., Jung C., Xu Z. (2003). ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci. 4:16. 10.1186/1471-2202-4-16
    1. Hill S. J., Mordes D. A., Cameron L. A., Neuberg D. S., Landini S., Eggan K., et al. . (2016). Two familial ALS proteins function in prevention/repair of transcription-associated DNA damage. Proc. Natl. Acad. Sci. U S A 113, E7701–E7709. 10.1073/pnas.1611673113
    1. Howland D. S., Liu J., She Y., Goad B., Maragakis N. J., Kim B., et al. . (2002). Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc. Natl. Acad. Sci. U S A 99, 1604–1609. 10.1073/pnas.032539299
    1. Ilieva H., Polymenidou M., Cleveland D. W. (2009). Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J. Cell Biol. 187, 761–772. 10.1083/jcb.200908164
    1. Ingre C., Roos P. M., Piehl F., Kamel F., Fang F. (2015). Risk factors for amyotrophic lateral sclerosis. Clin. Epidemiol. 7, 181–193. 10.2147/CLEP.S37505
    1. Janssen C., Schmalbach S., Boeselt S., Sarlette A., Dengler R., Petri S. (2010). Differential histone deacetylase mRNA expression patterns in amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 69, 573–581. 10.1097/NEN.0b013e3181ddd404
    1. Jarmalavičiūtė A., Pivoriūnas A. (2016). Exosomes as a potential novel therapeutic tools against neurodegenerative diseases. Pharmacol. Res. 113, 816–822. 10.1016/j.phrs.2016.02.002
    1. Jarmalavičiūtė A., Tunaitis V., Pivoraitė U., Venalis A., Pivoriūnas A. (2015). Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy 17, 932–939. 10.1016/j.jcyt.2014.07.013
    1. Julien J.-P. (1999). Neurofilament functions in health and disease. Curr. Opin. Neurobiol. 9, 554–560. 10.1016/s0959-4388(99)00004-5
    1. Julien J.-P. (2001). Amyotrophic lateral sclerosis: unfolding the toxicity of the misfolded. Cell 104, 581–591. 10.1016/S0092-8674(01)00244-6
    1. Karussis D., Karageorgiou C., Vaknin-Dembinsky A., Gowda-Kurkalli B., Gomori J. M., Kassis I., et al. . (2010). Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch. Neurol. 67, 1187–1194. 10.1001/archneurol.2010.248
    1. Katsuda T., Tsuchiya R., Kosaka N., Yoshioka Y., Takagaki K., Oki K., et al. . (2013). Human adipose tissue-derived mesenchymal stem cells secrete functional neprilysin-bound exosomes. Sci. Rep. 3:1197. 10.1038/srep01197
    1. Kaur S. J., McKeown S. R., Rashid S. (2016). Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene 577, 109–118. 10.1016/j.gene.2015.11.049
    1. Kawahara Y., Ito K., Sun H., Aizawa H., Kanazawa I., Kwak S. (2004). Glutamate receptors: RNA editing and death of motor neurons. Nature 427:801. 10.1038/427801a
    1. Kim H., Kim H. Y., Choi M. R., Hwang S., Nam K. H., Kim H. C., et al. . (2010). Dose-dependent efficacy of ALS-human mesenchymal stem cells transplantation into cisterna magna in SOD1–G93A ALS mice. Neurosci. Lett. 468, 190–194. 10.1016/j.neulet.2009.10.074
    1. Kirby J., Halligan E., Baptista M. J., Allen S., Heath P. R., Holden H., et al. . (2005). Mutant SOD1 alters the motor neuronal transcriptome: implication for familial ALS. Brain 128, 1686–1706. 10.1093/brain/awh503
    1. Knippenberg S., Thau N., Dengler R., Brinker T., Petri S. (2012). Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS. PLoS One 7:e36857. 10.1371/journal.pone.0036857
    1. Komine O., Yamanaka K. (2015). Neuroinflammation in motor neuron disease. Nagoya J. Med. Sci. 77, 537–549.
    1. Kong J., Xu Z. (2000). Overexpression of neurofilament subunit NF-L and NF-H extends survival of a mouse model for amyotrophic lateral sclerosis. Neurosci. Lett. 281, 72–74. 10.1016/s0304-3940(00)00808-9
    1. Kourembanas S. (2015). Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu. Rev. Physiol. 77, 13–27. 10.1146/annurev-physiol-021014-071641
    1. Lai R. C., Yeo R. W., Lim S. K. (2015). Mesenchymal stem cell exosome. Semin. Cell Dev. Biol. 40, 82–88. 10.1016/j.semcdb.2015.03.001
    1. Lee M., Ban J. J., Kim K. Y., Jeon G. S., Im W., Sung J. J. (2016a). Adipose-derived stem cell exosomes alleviate pathology of amyotrophic lateral sclerosis in vitro. Biochem. Biophys. Res. Commun. 479, 434–439. 10.1016/j.bbrc.2016.09.069
    1. Lee M., Liu T., Im W., Kim M. (2016b). Exosomes from adipose-derived stem cells ameliorate phenotype of Huntington’s disease in vitro model. Eur. J. Neurosci. 44, 2114–2119. 10.1111/ejn.13275
    1. Lee J. C., Seong J., Kim S. H., Lee S. J., Cho Y. J., An J., et al. . (2012). Replacement of microglial cells using Clodronate liposome and bone marrow transplantation in the central nervous system of SOD1(G93A) transgenic mice as an in vivo model of amyotrophic lateral sclerosis. Biochem. Biophys. Res. Commun. 418, 359–365. 10.1016/j.bbrc.2012.01.026
    1. Lepore A. C., Rauck B., Dejea C., Pardo A. C., Rao M. S., Rothstein J. D., et al. . (2008). Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat. Neurosci. 11, 1294–1301. 10.1038/nn.2210
    1. Li C. C., Eaton S. A., Young P. E., Lee M., Shuttleworth R., Humphreys D. T., et al. . (2013). Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol. 10, 1333–1344. 10.4161/rna.25281
    1. Lin C. L., Bristol L. A., Jin L., Dykes-Hoberg M., Crawford T., Clawson L., et al. . (1998). Aberrant RNA processing in a neurodegenerative disease: the cause for absent EAAT2, a glutamate transporter, in amyotrophic lateral sclerosis. Neuron 20, 589–602. 10.1016/s0896-6273(00)80997-6
    1. Liochev S. I., Fridovich I. (2003). Mutant Cu,Zn superoxide dismutases and familial amyotrophic lateral sclerosis: evaluation of oxidative hypotheses. Free Radic. Biol. Med. 34, 1383–1389. 10.1016/s0891-5849(03)00153-9
    1. Liu J., Lillo C., Jonsson P. A., Vande Velde C., Ward C. M., Miller T. M., et al. . (2004). Toxicity of familial ALS-linked SOD1 mutants from selective recruitment to spinal mitochondria. Neuron 43, 5–17. 10.1016/j.neuron.2004.06.016
    1. Lukas T. J., Luo W. W., Mao H., Cole N., Siddique T. (2006). Informatics-assisted protein profiling in a transgenic mouse model of amyotrophic lateral sclerosis. Mol. Cell. Proteomics 5, 1233–1244. 10.1074/mcp.m500431-mcp200
    1. Magrané J., Manfredi G. (2009). Mitochondrial function, morphology, and axonal transport in amyotrophic lateral sclerosis. Antioxid. Redox Signal. 11, 1615–1626. 10.1089/ARS.2009.2604
    1. Marconi S., Bonaconsa M., Scambi I., Squintani G. M., Rui W., Turano E., et al. . (2013). Systemic treatment with adipose-derived mesenchymal stem cells ameliorates clinical and pathological features in the amyotrophic lateral sclerosis murine model. Neuroscience 248, 333–343. 10.1016/j.neuroscience.2013.05.034
    1. Martinez H. R., Gonzalez-Garza M. T., Moreno-Cuevas J. E., Caro E., Gutierrez-Jimenez E., Segura J. J. (2009). Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 11, 26–34. 10.1080/14653240802644651
    1. Martínez H. R., Molina-Lopez J. F., González-Garza M. T., Moreno-Cuevas J. E., Caro-Osorio E., Gil-Valadez A., et al. . (2012). Stem cell transplantation in amyotrophic lateral sclerosis patients: methodological approach, safety, and feasibility. Cell Transplant. 21, 1899–1907. 10.3727/096368911X582769
    1. Mathivanan S., Fahner C. J., Reid G. E., Simpson R. J. (2012). Exocarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40, 1241–1244. 10.1093/nar/gkr828
    1. Mattiazzi M., D’Aurelio M., Gajewski C. D., Martushova K., Kiaei M., Beal M. F., et al. . (2002). Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J. Biol. Chem. 277, 29626–29633. 10.1074/jbc.M203065200
    1. Mattson M. P. (2013). Excitation BolsTORs motor neurons in ALS mice. Neuron 80, 1–3. 10.1016/j.neuron.2013.09.017
    1. Maumus M., Jorgensen C., Noel D. (2013). Mesenchymal stem cells in regenerative medicine applied to rheumatic disease: role of secretome and exosomes. Biochimie 95, 2229–2234. 10.1016/j.biochi.2013.04.017
    1. Mazzini L., Ferrero I., Luparello V., Rustichelli D., Gunetti M., Mareschi K., et al. . (2010). Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: a Phase I clinical trial. Exp. Neurol. 223, 229–237. 10.1016/j.expneurol.2009.08.007
    1. Mazzini L., Mareschi K., Ferrero I., Miglioretti M., Stecco A., Servo S., et al. . (2012). Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: a long-term safety study. Cytotherapy 14, 56–60. 10.3109/14653249.2011.613929
    1. Meamar R., Nasr-Esfahani M. H., Mousavi S. A., Basiri K. (2013). Stem cell therapy in amyotrophic lateral sclerosis. J. Clin. Neurosci. 20, 1659–1663. 10.1016/j.jocn.2013.04.024
    1. Menzies F. M., Cookson M. R., Taylor R. W., Turnbull D. M., Chrzanowska-Lightowlers Z. M., Dong L., et al. . (2002). Mitochondrial dysfunction in a cell culture model of familial amyotrophic lateral sclerosis. Brain 125, 1522–1533. 10.1093/brain/awf167
    1. Miller R. G., Mitchell J. D., Moore D. H. (2012). Riluzole for amyotrophic lateral sclerosis (ALS)/motor neuron disease (MND). Cochrane Database Syst. Rev. 3:CD001447. 10.1002/14651858.CD001447.pub3
    1. Miller T. M., Pestronk A., David W., Rothstein J., Simpson E., Appel S. H., et al. . (2013). An antisense oligonucleotide against SOD1 delivered intrathecally for patients with SOD1 familial amyotrophic lateral sclerosis: a phase 1, randomised, first-in-man study. Lancet Neurol. 12, 435–442. 10.1016/S1474-4422(13)70061-9
    1. Mòrotz G. M., De Vos K. J., Vagnoni A., Ackerley S., Shaw C. E., Miller C. C. (2012). Amyotrophic lateral sclerosis-associated mutant VAPBP56S perturbs calcium homeostasis to disrupt axonal transport of mitochondria. Hum. Mol. Genet. 21, 1979–1988. 10.1093/hmg/dds011
    1. Musarò A. (2013). Understanding ALS: new therapeutic approaches. FEBS J. 280, 4315–4322. 10.1111/febs.12087
    1. Neumann M., Sampathu D. M., Kwong L. K., Truax A. C., Micsenyi M. C., Chou T. T., et al. . (2006). Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314, 130–133. 10.1126/science.1134108
    1. O’Connor D. M., Boulis N. M. (2015). Gene therapy for neurodegenerative diseases. Trends Mol. Med. 21, 504–512. 10.1016/j.molmed.2015.06.001
    1. Oluwole S. O., Yao Y., Contradi S., Kristensson K., Karlsson H. (2007). Elevated levels of transcript encoding a human retroviral envelope protein (syncytin) in muscle from patients with motor neuron disease. Amyotroph. Lateral Scler. 8, 67–72. 10.1080/17482960600864207
    1. Pablo J., Banack S. A., Cox P. A., Johnson T. E., Papapetropoulos S., Bradley W. G., et al. . (2009). Cyanobacterial neurotoxin BMAA in ALS and Alzheimer’s disease. Acta Neurol. Scand. 120, 216–225. 10.1111/j.1600-0404.2008.01150.x
    1. Pasinelli P., Houseweart M. K., Brown R. H., Jr., Cleveland D. W. (2000). Caspase-1 and -3 are sequentially activated in motor neuron death in Cu,Zn superoxide dismutase-mediated familial amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. U S A 97, 13901–13906. 10.1073/pnas.240305897
    1. Perrot R., Eyer J. (2009). Neuronal intermediate filaments and neurodegenerative disorders. Brain Res. Bull. 80, 282–295. 10.1016/j.brainresbull.2009.06.004
    1. Petrou P., Gothelf Y., Argov Z., Gotkine M., Levy Y. S., Kassis I., et al. . (2016). Safety and clinical effects of mesenchymal stem cells secreting neurotrophic factor transplantation in patients with amyotrophic lateral sclerosis: results of phase 1/2 and 2a clinical trials. JAMA Neurol. 73, 337–344. 10.1001/jamaneurol.2015.4321
    1. Pratt A. J., Getzoff E. D., Perry J. P. (2012). Amyotrophic lateral sclerosis: update and new developments. Degener. Neurol. Neuromuscul. Dis. 2, 1–14. 10.2147/dnnd.s19803
    1. Pusic A. D., Pusic K. M., Clayton B. L., Kraig R. P. (2014). Ifngamma-stimulated dendritic cell exosomes as a potential therapeutic for remyelination. J. Neuroimmunol. 266, 12–23. 10.1016/j.jneuroim.2013.10.014
    1. Rabizadeh S., Gralla E. B., Borchelt D. R., Gwinn R., Valentine J. S., Sisodia S. (1995). Mutations associated with amyotrophic lateral sclerosis convert superoxide dismutase from an antiapoptotic gene to a proapoptotic gene: studies in yeast and neural cells. Proc. Natl. Acad. Sci. U S A 92, 3024–3028. 10.1073/pnas.92.7.3024
    1. Ralph G. S., Radcliffe P. A., Day D. M., Carthy J. M., Leroux M. A., Lee D. C. (2005). Silencing mutant SOD1 using RNAi protects against neurodegeneration and extends survival in an ALS model. Nat Med. 11, 429–433. 10.1038/nm1205
    1. Raoul C., Abbas-Terki T., Bensadoun J. C., Guillot S., Haase G., Szulc J. (2005). Lentiviral-mediated silencing of SOD1 through RNA interference retards disease onset progression in a muose model of ALS. Nat. Med. 11, 423–428. 10.1038/nm1207
    1. Raposo G., Stoorvogel W. (2013). Extracellular vesicles: exosome, microvesicles, and friends. J. Cell Biol. 200, 373–383. 10.1083/jcb.201211138
    1. Reaume A. G., Elliott J. L., Hoffman E. K., Kowall N. W., Ferrante R. J., Siwek D. F. (1996). Motor neuron in Cu/Zn superoxide dismutase-deficient mice develop normally but exhibit enhanced cell death after axonal injury. Nat. Genet. 13, 43–47. 10.1038/ng0596-43
    1. Rosen D. R., Siddique T., Patterson D., Figlewicz D. A., Sapp P., Hentati A., et al. . (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362, 59–62. 10.1038/362059a0
    1. Rushkevich Y. N., Kosmacheva S. M., Zabrodets G. V., Ignatenko S. I., Goncharova N. V., Severin I. N., et al. . (2015). The use of autologous mesenchymal stem cells for cell therapy of patients with amyotrophic lateral sclerosis in belarus. Bull. Exp. Biol. Med. 159, 576–581. 10.1007/s10517-015-3017-3
    1. Sasaki S., Iwata M. (2007). Mitochondrial alterations in the spinal cord of patients with sporadic amyotrophic lateral sclerosis. J. Neuropathol. Exp. Neurol. 66, 10–16. 10.1097/nen.0b013e31802c396b
    1. Shaw P. J., Eggett C. J. (2000). Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. J. Neurol. 247, I17–I27. 10.1007/s004150050553
    1. Smith R. A., Miller T. M., Yamanaka K., Monia B. P., Condon T. P., Hung G., et al. . (2006). Antisense oligonucleotide therapy for neurodegenerative disease. J. Clin. Invest. 116, 2290–2296. 10.1172/jci25424
    1. Sundaram R. S., Gowtham L., Nayak B. S. (2012). The role of excitatory neurotransmitter glutamate in brain physiology and pathology. Asian J. Pharm. Clin. Res. 5, 1–7.
    1. Tohgi H., Abe T., Yamazaki K., Murata T., Ishizaki E., Isobe C. (1999). Remarkable increase in cerebrospinal fluid 3- nitrotyrosine in patient with sporadic amyotrophic lateral sclerosis. Ann. Neurol. 46, 129–131. 10.1002/1531-8249(199907)46:1<129::aid-ana21>;2-y
    1. Tominaga N., Kosaka N., Ono M., Katsuda T., Yoshioka Y., Tamura K., et al. . (2015). Brain metastatic cancer cells release microrna-181c-containing extracellular vesicles capable of destructing blood-brain barrier. Nat. Commun. 6:6716. 10.1038/ncomms7716
    1. Tomkins J., Usher P., Slade J. Y., Ince P. G., Curtis A., Bushby K., et al. . (1998). Novel insertion in the KSP region of the neurofilament heavy gene in amyotrophic lateral sclerosis (ALS). Neuroreport 9, 3967–3970. 10.1097/00001756-199812010-00036
    1. Turner M. R. (2013). Increased premorbid physical activity and amyotrophic lateral sclerosis: burn to run rather than run to death, or a seductive myth? J. Neurol. Neurosurg. Psychiatry 84:947. 10.1136/jnnp-2013-304935
    1. Turner M. R., Goldracre R., Ramagopalan S., Talbot K., Goldacre M. J. (2013). Autoimmune disease preceding amyotrophic lateral sclerosis: an epidemiologic study. Neurology 81, 1222–1225. 10.1212/WNL.0b013e3182a6cc13
    1. Turturici G., Tinnirello R., Sconzo G., Geraci F. (2014). Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am. J. Physiol. Cell Physiol. 306, C621–C633. 10.1152/ajpcell.00228.2013
    1. Uccelli A., Milanese M., Principato M. C., Morando S., Bonifacino T., Vergani L., et al. . (2012). Intravenous mesenchymal stem cells improve survival and motor function in experimental amyotrophic lateral sclerosis. Mol. Med. 18, 794–804. 10.2119/molmed.2011.00498
    1. Vercelli A., Mereuta O. M., Garbossa D., Muraca G., Mareschi K., Rustichelli D., et al. . (2008). Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis. 31, 395–405. 10.1016/j.nbd.2008.05.016
    1. Vucic S., Rothstein J. D., Kierman M. C. (2014). Advances in treating amyotrophic lateral sclerosis: insights from pathophysiological studies. Trends Neurosci. 37, 433–442. 10.1016/j.tins.2014.05.006
    1. Waibel S., Reuter A., Malessa S., Blaugrund E., Ludolph A. C. (2004). Rasagiline alone and in combination with riluzole prolongs survival in an ALS mouse model. J. Neurol. 251, 1080–1084. 10.1007/s00415-004-0481-5
    1. Wiedemann F. R., Winkler K., Kuznetsov A. V., Bartels C., Vielhaber S., Feistner H., et al. . (1998). Impairment of mitochondrial function in skeletal muscle of patients with amyotrophic lateral sclerosis. J. Neurol. Sci. 156, 65–72. 10.1016/S0022-510X(98)00008-2
    1. Wong N. K., He B. P., Strong M. J. (2000). Characterization of neuronal intermediate filament protein expression in cervical spinal motor neurons in sporadic amyotrophic lateral sclerosis (ALS). J. Neuropathol. Exp. Neurol. 59, 972–982. 10.1093/jnen/59.11.972
    1. Xiao S., McLean J., Robertson J. (2006). Neuronal intermediate filaments and ALS: a new look at an old question. Biochim. Biophys. Acta 1762, 1001–1012. 10.1016/j.bbadis.2006.09.003
    1. Xin H., Li Y., Buller B., Katakowski M., Zhang Y., Wang X., et al. . (2012). Exosome-mediated transfer of miR-133b from multipotent mesenchymal stromal cells to neural cells contributes to neurite outgrowth. Stem Cells 30, 1556–1564. 10.1002/stem.1129
    1. Xin H., Li Y., Liu Z., Wang X., Shang X., Cui Y., et al. . (2013). MiR-133b promotes neural plasticity and functional recovery after treatment of stroke with multipotent mesenchymal stromal cells in rats via transfer of exosome-enriched extracellular particles. Stem Cells 31, 2737–2746. 10.1002/stem.1409
    1. Xu Z., Cork L. C., Griffin J. W., Cleveland D. W. (1993). Increased expression of neurofilament subunit NF-L produces morphological alterations that resemble the pathology of human motor neuron disease. Cell 73, 23–33. 10.1016/0092-8674(93)90157-l
    1. Yamanaka K., Chun S. J., Boillee S., Fujimori-Tonou N., Yamashita H., Gutmann D. H., et al. . (2008). Astrocytes as determinants of disease progression in inherited amyotrophic lateral sclerosis. Nat. Neurosci. 11, 251–253. 10.1038/nn2047
    1. Yuan A., Rao M. V., Sasaki T., Chen Y., Kumar A., Veeranna, et al. . (2006). Alpha-internexin is structurally and functionally associated with the neurofilament triplet proteins in the mature CNS. J. Neurosci. 26, 10006–10019. 10.1523/JNEUROSCI.2580-06.2006
    1. Yuyama K., Sun H., Usuki S., Sakai S., Hanamatsu H., Mioka T., et al. . (2015). A potential function for neuronal exosomes: sequestering intracerebral amyloid-β peptide. FEBS Lett. 589, 84–88. 10.1016/j.febslet.2014.11.027
    1. Zarei S., Carr K., Reiley L., Diaz K., Guerra O., Altamirano P. F., et al. . (2015). A comprehensive review of amyotrophic lateral sclerosis. Surg. Neurol. Int. 6:171. 10.4103/2152-7806.169561
    1. Zhang Y., Chopp M., Meng Y., Katakowski M., Xin H., Mahmood A., et al. . (2015). Effect of exosomes derived from multipotent menchymal stromal cells on functional recovery and neurovascular plasticity in rats after traumatic brain injury. J. Neurosurg. 122, 856–867. 10.3171/2014.11.JNS14770
    1. Zhang Y., Yu M., Tian W. (2016). Physiological and pathological impact of exosomes of adipose tissue. Cell Prolif. 49, 3–13. 10.1111/cpr.12233
    1. Zhao W., Beers D. R., Appel S. H. (2013). Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol. 8, 888–899. 10.1007/s11481-013-9489-x
    1. Zhou W., Fong M. Y., Min Y., Somlo G., Liu L., Palomares M. R., et al. . (2014). Cancer.secreted mir-105 destroys vascular endothelial barriers to promote metastasis. Cancer Cell 25, 501–515. 10.1016/j.ccr.2014.03.007
    1. Zhuang X., Xiang X., Grizzle W., Sun D., Zhuang S., Axtell R. C., et al. . (2011). Treatment of brain inflammatory diseases by delivering exosomes encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol. Ther. 19, 1769–1779. 10.1038/mt.2011.164
    1. Zufiría M., Gil-Bea F. J., Fernández-Torrón R., Poza J. J., Muñoz-Blanco J. L., Rojas-García R., et al. . (2016). ALS: a bucket of genes, environment, metabolism and unknown ingredients. Prog. Neurobiol. 142, 104–129. 10.1016/j.pneurobio.2016.05.004

Source: PubMed

3
Subskrybuj