Effect of Increased Potassium Intake on Adrenal Cortical and Cardiovascular Responses to Angiotensin II: A Randomized Crossover Study

Rasmus Dreier, Ulrik B Andersen, Julie L Forman, Majid Sheykhzade, Martin Egfjord, Jørgen L Jeppesen, Rasmus Dreier, Ulrik B Andersen, Julie L Forman, Majid Sheykhzade, Martin Egfjord, Jørgen L Jeppesen

Abstract

Background Increased potassium intake lowers blood pressure in patients with hypertension, but increased potassium intake also elevates plasma concentrations of the blood pressure-raising hormone aldosterone. Besides its well-described renal effects, aldosterone is also believed to have vascular effects, acting through mineralocorticoid receptors present in endothelial and vascular smooth muscle cells, although mineralocorticoid receptors-independent actions are also thought to be involved. Methods and Results To gain further insight into the effect of increased potassium intake and potassium-stimulated hyperaldosteronism on the human cardiovascular system, we conducted a randomized placebo-controlled double-blind crossover study in 25 healthy normotensive men, where 4 weeks treatment with a potassium supplement (90 mmol/day) was compared with 4 weeks on placebo. At the end of each treatment period, we measured potassium and aldosterone in plasma and performed an angiotensin II (AngII) infusion experiment, during which we assessed the aldosterone response in plasma. Hemodynamics were also monitored during the AngII infusion using ECG, impedance cardiography, finger plethysmography (blood pressure-monitoring), and Doppler ultrasound. The study showed that higher potassium intake increased plasma potassium (mean±SD, 4.3±0.2 versus 4.0±0.2 mmol/L; P=0.0002) and aldosterone (median [interquartile range], 440 [336-521] versus 237 [173-386] pmol/L; P<0.0001), and based on a linear mixed model for repeated measurements, increased potassium intake potentiated AngII-stimulated aldosterone secretion (P=0.0020). In contrast, the hemodynamic responses (blood pressure, total peripheral resistance, cardiac output, and renal artery blood flow) to AngII were similar after potassium and placebo. Conclusions Increased potassium intake potentiates AngII-stimulated aldosterone secretion without affecting systemic cardiovascular hemodynamics in healthy normotensive men. Registration EudraCT Number: 2013-004460-66; URL: https://www.ClinicalTrials.gov; Unique identifier: NCT02380157.

Keywords: aldosterone; angiotensin; angiotensin II; blood pressure; hemodynamics; potassium.

Conflict of interest statement

None.

Figures

Figure 1. Flowchart of our randomized clinical…
Figure 1. Flowchart of our randomized clinical placebo‐controlled double‐blind crossover study in healthy normotensive men.
BMI indicates body mass index; BP, blood pressure; and HbA1c, hemoglobin A1c.
Figure 2. Vasoactive hormones in plasma during…
Figure 2. Vasoactive hormones in plasma during angiotensin II infusion after potassium supplementation and after placebo.
Symbols and bars are equal to mean and SEM. P values on the figures are P values for interaction between time and treatment. A, Aldosterone. B, Angiotensin II. C, Plasma renin concentration. D, Norepinephrine. E, P‐NT‐proANP (N‐terminal pro‐atrial natriuretic peptide). Ang II indicates angiotensin II; and P plasma.
Figure 3. Hemodynamics during angiotensin II infusion…
Figure 3. Hemodynamics during angiotensin II infusion after potassium supplementation and after placebo.
Symbols and bars are equal to mean and SEM. P values on the figures are P values for interaction between time and treatment. A, Heart rate (bpm). B, Systolic blood pressure. C, Diastolic blood pressure. D, Stroke volume. E, Cardiac output. F, Total peripheral resistance. G, Right renal artery time average max velocity. BP indicates blood pressure; and TAMVmax, time average max velocity.

References

    1. Aburto NJ, Hanson S, Gutierrez H, Hooper L, Elliott P, Cappuccio FP. Effect of increased potassium intake on cardiovascular risk factors and disease: systematic review and meta‐analyses. BMJ. 2013;346:f1378. DOI: 10.1136/bmj.f1378.
    1. Williams GH. Aldosterone biosynthesis, regulation, and classical mechanism of action. Heart Fail Rev. 2005;10:7–13. DOI: 10.1007/s10741-005-2343-3.
    1. van Buren M, Rabelink TJ, van Rijn HJ, Koomans HA. Effects of acute NaCl, KCl and KHCO3 loads on renal electrolyte excretion in humans. Clin Sci (Lond). 1992;83:567–574. DOI: 10.1042/cs0830567.
    1. Keith NM, Binger MW. Diuretic action of potassium salts. JAMA. 1935;105:1584–1591. DOI: 10.1001/jama.1935.02760460020005.
    1. Gritter M, Rotmans JI, Hoorn EJ. Role of dietary K(+) in natriuresis, blood pressure reduction, cardiovascular protection, and renoprotection. Hypertension. 2019;73:15–23. DOI: 10.1161/HYPERTENSIONAHA.118.11209.
    1. Zoccali C, Cumming AM, Hutcheson MJ, Barnett P, Semple PF. Effects of potassium on sodium balance, renin, noradrenaline and arterial pressure. J Hypertens. 1985;3:67–72. DOI: 10.1097/00004872-198502000-00011.
    1. Riphagen IJ, Gijsbers L, van Gastel MD, Kema IP, Gansevoort RT, Navis G, Bakker SJ, Geleijnse JM. Effects of potassium supplementation on markers of osmoregulation and volume regulation: results of a fully controlled dietary intervention study. J Hypertens. 2016;34:215–220. DOI: 10.1097/HJH.0000000000000786.
    1. Graham UM, McCance DR, Young IS, Mullan KR. A randomised controlled trial evaluating the effect of potassium supplementation on vascular function and the renin‐angiotensin‐aldosterone system. J Hum Hypertens. 2014;28:333–339. DOI: 10.1038/jhh.2013.89.
    1. Chen Q, Turban S, Miller ER, Appel LJ. The effects of dietary patterns on plasma renin activity: results from the dietary approaches to stop hypertension trial. J Hum Hypertens. 2012;26:664–669. DOI: 10.1038/jhh.2011.87.
    1. Lijnen P, Fagard R, Staessen J, Amery A. Effect of chronic diuretic treatment on the plasma renin‐angiotensin‐aldosterone system in essential hypertension. Br J Clin Pharmacol. 1981;12:387–392. DOI: 10.1111/j.1365-2125.1981.tb01231.x.
    1. Lyngsø KS, Assersen K, Dalgaard EG, Skott O, Jensen BL, Hansen PB. Does aldosterone play a significant role for regulation of vascular tone? J Cardiovasc Pharmacol. 2016;68:1–10. DOI: 10.1097/FJC.0000000000000345.
    1. Nishiyama A. Pathophysiological mechanisms of mineralocorticoid receptor‐dependent cardiovascular and chronic kidney disease. Hypertens Res. 2019;42:293–300. DOI: 10.1038/s41440-018-0158-6.
    1. Hollenberg NK, Williams G, Burger B, Hooshmand I. The influence of potassium on the renal vasculature and the adrenal gland, and their responsiveness to angiotensin II in normal man. Clin Sci Mol Med. 1975;49:527–534. DOI: 10.1042/cs0490527.
    1. Linde R, Winn S, Latta D, Hollifield J. Graded dose effects of angiotensin II on aldosterone production in man during various levels of potassium intake. Metabolism. 1981;30:549–553. DOI: 10.1016/0026-0495(81)90129-3.
    1. Bianchetti MG, Weidmann P, Beretta‐Piccoli C, Ferrier C. Potassium and norepinephrine‐ or angiotensin‐mediated pressor control in pre‐hypertension. Kidney Int. 1987;31:956–963. DOI: 10.1038/ki.1987.92.
    1. Williams GH, Dluhy RG, Underwood RH. The relationship of dietary potassium intake to the aldosterone stimulating properties of ACTH. Clin Sci. 1970;39:489–496. DOI: 10.1042/cs0390489.
    1. Dreier R, Abdolalizadeh B, Asferg CL, Hölmich LR, Buus NH, Forman JL, Andersen UB, Egfjord M, Sheykhzade M, Jeppesen JL. Effect of increased potassium intake on the renin‐angiotensin‐aldosterone system and subcutaneous resistance arteries: a randomized crossover study. Nephrol Dial Transplant. 2020;gfaa114. [epub ahead of print]. DOI: 10.1093/ndt/gfaa114.
    1. Cargill RI, Coutie WJ, Lipworth BJ. The effects of angiotensin II on circulating levels of natriuretic peptides. Br J Clin Pharmacol. 1994;38:139–142. DOI: 10.1111/j.1365-2125.1994.tb04337.x.
    1. Garg R, Hurwitz S, Williams GH, Hopkins PN, Adler GK. Aldosterone production and insulin resistance in healthy adults. J Clin Endocrinol Metab. 2010;95:1986–1990. DOI: 10.1210/jc.2009-2521.
    1. Bremholm L, Hornum M, Andersen UB, Holst JJ. The effect of glucagon‐like peptide‐2 on arterial blood flow and cardiac parameters. Regul Pept. 2010;159:67–71. DOI: 10.1016/j.regpep.2009.11.001.
    1. Moller J, Jorgensen JO, Frandsen E, Laursen T, Christiansen JS. Body fluids, circadian blood pressure and plasma renin during growth hormone administration: a placebo‐controlled study with two growth hormone doses in healthy adults. Scand J Clin Lab Invest. 1995;55:663–669. DOI: 10.3109/00365519509075396.
    1. Kappelgaard AM, Nielsen MD, Giese J. Measurement of angiotensin II in human plasma: technical modifications and practical experience. Clin Chim Acta. 1976;67:299–306. DOI: 10.1016/0009-8981(76)90338-7.
    1. Jones B, Kenward MG. Design and Analysis of Cross‐Over Trials. 3rd ed. London: CRC Press, Taylor & Francis Group; 2014.
    1. Sonkodi S, Agabiti‐Rosei E, Fraser R, Leckie BJ, Morton JJ, Cumming AM, Sood VP, Robertson JI. Response of the renin‐angiotensin‐aldosterone system to upright tilting and to intravenous frusemide: effect of prior metoprolol and propranolol. Br J Clin Pharmacol. 1982;13:341–350. DOI: 10.1111/j.1365-2125.1982.tb01384.x.
    1. Tuck ML, Dluhy RG, Williams GH. Sequential responses of the renin‐angiotensin‐aldosterone axis to acute postural change: effect of dietary sodium. J Lab Clin Med. 1975;86:754–763.
    1. Iimura O, Kijima T, Kikuchi K, Miyama A, Ando T, Nakao T, Takigami Y. Studies on the hypotensive effect of high potassium intake in patients with essential hypertension. Clin Sci (Lond). 1981;61(suppl 7):77s–80s. DOI: 10.1042/cs061077s.
    1. Tang X, Wu B, Luo Y, Peng L, Chen Y, Zhu J, Peng C, Li S, Liu J. Effect of potassium supplementation on vascular function: A meta‐analysis of randomized controlled trials. Int J Cardiol. 2017;228:225–232. DOI: 10.1016/j.ijcard.2016.10.119.
    1. Filippini T, Violi F, D'Amico R, Vinceti M. The effect of potassium supplementation on blood pressure in hypertensive subjects: a systematic review and meta‐analysis. Int J Cardiol. 2017;230:127–135. DOI: 10.1016/j.ijcard.2016.12.048.
    1. Kieneker LM, Gansevoort RT, Mukamal KJ, de Boer RA, Navis G, Bakker SJ, Joosten MM. Urinary potassium excretion and risk of developing hypertension: the prevention of renal and vascular end‐stage disease study. Hypertension. 2014;64:769–776. DOI: 10.1161/HYPERTENSIONAHA.114.03750.
    1. Burnier M, Brunner HR. Neurohormonal consequences of diuretics in different cardiovascular syndromes. Eur Heart J. 1992;13(suppl G):28–33. DOI: 10.1093/eurheartj/13.suppl_G.28.
    1. Hollenberg NK, Chenitz WR, Adams DF, Williams GH. Reciprocal influence of salt intake on adrenal glomerulosa and renal vascular responses to angiotensin II in normal man. J Clin Invest. 1974;54:34–42. DOI: 10.1172/JCI107748.
    1. Oelkers W, Brown JJ, Fraser R, Lever AF, Morton JJ, Robertson JI. Sensitization of the adrenal cortex to angiotensin II in sodium‐deplete man. Circ Res. 1974;34:69–77. DOI: 10.1161/01.RES.34.1.69.
    1. Luther JM, Gainer JV, Murphey LJ, Yu C, Vaughan DE, Morrow JD, Brown NJ. Angiotensin II induces interleukin‐6 in humans through a mineralocorticoid receptor‐dependent mechanism. Hypertension. 2006;48:1050–1057. DOI: 10.1161/01.HYP.0000248135.97380.76.
    1. Paula TP, Viana LV, Neto AT, Leitão CB, Gross JL, Azevedo MJ. Effects of the DASH diet and walking on blood pressure in patients with type 2 diabetes and uncontrolled hypertension: a randomized controlled trial. J Clin Hypertens (Greenwich). 2015;17:895–901. DOI: 10.1111/jch.12597.
    1. Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR, Wells JM, Weder AB. Low‐sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertension. 2012;60:1200–1206. DOI: 10.1161/HYPERTENSIONAHA.112.202705.

Source: PubMed

3
Subskrybuj