The DIVA model: A neural theory of speech acquisition and production

Jason A Tourville, Frank H Guenther, Jason A Tourville, Frank H Guenther

Abstract

The DIVA model of speech production provides a computationally and neuroanatomically explicit account of the network of brain regions involved in speech acquisition and production. An overview of the model is provided along with descriptions of the computations performed in the different brain regions represented in the model. The latest version of the model, which contains a new right-lateralized feedback control map in ventral premotor cortex, will be described, and experimental results that motivated this new model component will be discussed. Application of the model to the study and treatment of communication disorders will also be briefly described.

Figures

Figure 1
Figure 1
The DIVA model of speech acquisition and production. Recently added modules and connections are highlighted by black outlines. Model components associated with hypothesized neuroanatomical substrates. Abbreviations: GP = globus pallidus; HG = Heschl's gyrus; pIFg = posterior inferior frontal gyrus; pSTg = posterior superior temporal gyrus; Put = putamen; slCB = superior lateral cerebellum; smCB = superior medial cerebellum; SMA = supplementary motor area; SMG = supramarginal gyrus; VA = ventral anterior nucleus of the cerebellum; VL = ventral lateral nucleus of the thalamus; vMC = ventral motor cortex; vPMC = ventral premotor cortex; vSC = ventral somatosensory cortex.
Figure 2
Figure 2
Neuroanatomical mapping of the DIVA model. The location of DIVA model component sites (red dots) are plotted on renderings of the left (top) and right (bottom) lateral surfaces of the SPM2 canonical brain. Sites immediately anterior to the central sulcus (dotted line) represent cells of the model’s articulator velocity () and position (M) maps. Sites located immediately posterior to the central sulcus represent cells of the somatosensory state map (S). Subcortical sites (basal ganglia, thalamus, paravermal cerebellum, deep cerebellar nuclei), are not shown. Additional abbreviations: Au = auditory state map; ΔAu = auditory error map; FB = feedback control map; IM = initiation map; Lax.int, Lax.ext = intrinsic and extrinsic larynx, Lat Cbm = lateral cerebellum; Resp: respiratory motor cells; ΔS = somatosensory error map; SSM = speech sound map; TAu = auditory target map; TS = somatosensory target map.
Figure 3
Figure 3
Effective connectivity within the auditory feedback control network. Structural equation modeling demonstrated significant modulation of interregional interactions within the schematized network when auditory feedback was perturbed during speech production. Pair-wise comparisons of path coefficients in the normal and perturbed feedback conditions revealed significant increases in the positive weights from left posterior superior temporal gyrus (pSTg) to right pSTg (the path labeled a in the diagram above), from left pSTg to right ventral premotor cortex (PMC; path b), and from right pSTg to right inferior frontal gyrus, pars triangularis (path c) when auditory feedback was perturbed during speech production. Additional abbreviation: MC = motor cortex.
Figure 4
Figure 4
Learning in the DIVA model. Simplified DIVA model block diagrams indicate the mappings that are tuned during the two learning phases (heavy black outlines). Left: Early babbling learning phase. Pseudo-random motor commands to the articulators are associated with auditory and somatosensory feedback. The paired motor and sensory signals are used to tune synaptic projections from sensory error maps to the feedback control map. The tuned projections are then able to transform sensory error inputs into feedback-based motor commands. Right: Imitation learning phase. Auditory speech sound targets (encoded in projections from the speech sound map to the auditory target map) are initially tuned based on sample speech sounds from other speakers. These targets, somatosensory targets, and projections in the feedforward control system are tuned during attempts to imitate a learned speech sound target.

References

    1. Ackermann H, Vogel M, Petersen D, Poremba M. Speech deficits in ischaemic cerebellar lesions. Journal of Neurology. 1992;239(4):223–227.
    1. Adams RD. Principles of Neurology. New York: McGraw-Hill; 1989.
    1. Adolphs R, Damasio H, Tranel D. Neural systems for recognition of emotional prosody: a 3-D lesion study. Emotion. 2002;2(1):23–51.
    1. Alario FX, Chainay H, Lehericy S, Cohen L. The role of the supplementary motor area (SMA) in word production. Brain Research. 2006;1076(1):129–143.
    1. Albin RL, Young AB, Penney JB. The functional anatomy of disorders of the basal ganglia. Trends in Neurosciences. 1995;18(2):63–64.
    1. Andersen RA. Multimodal integration for the representation of space in the posterior parietal cortex. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences. 1997;352(1360):1421–1428.
    1. Ballard KJ, Granier JP, Robin DA. Understanding the nature of apraxia of speech: Theory, analysis, and treatment. Aphasiology. 2000;14(10):969–995.
    1. Bays PM, Flanagan JR, Wolpert DM. Attenuation of self-generated tactile sensations is predictive, not postdictive. Public Library of Science Biology. 2006;4(2):e28.
    1. Belliveau JW, Kwong KK, Kennedy DN, Baker JR, Stern CE, Benson R, et al. Magnetic resonance imaging mapping of brain function. Human visual cortex. Investigative Radiology. 1992;27(Suppl 2):S59–S65.
    1. Binkofski F, Buccino G. Motor functions of the Broca's region. Brain and Language. 2004;89(2):362–369.
    1. Blakemore SJ, Frith CD, Wolpert DM. The cerebellum is involved in predicting the sensory consequences of action. Neuroreport. 2001;12(9):1879–1884.
    1. Blakemore SJ, Wolpert DM, Frith CD. The cerebellum contributes to somatosensory cortical activity during self-produced tactile stimulation. Neuroimage. 1999;10(4):448–459.
    1. Bohland JW, Bullock D, Guenther FH. Neural representations and mechanisms for the performance of simple speech sequences. Journal of Cognitive Neuroscience. (in press).
    1. Bohland JW, Guenther FH. An fMRI investigation of syllable sequence production. Neuroimage. 2006;32:821–841.
    1. Browman CP, Goldstein L. Articulatory gestures as phonologiecal units. Phonology. 1989;6:201–251.
    1. Brown S, Ingham RJ, Ingham JC, Laird AR, Fox PT. Stuttered and fluent speech production: an ALE meta-analysis of functional neuroimaging studies. Human Brain Mapping. 2005;25(1):105–117.
    1. Brown S, Ngan E, Liotti M. A larynx area in the human motor cortex. Cerebral Cortex. 2008;18(4):837–845.
    1. Buchanan TW, Lutz K, Mirzazade S, Specht K, Shah NJ, Zilles K, et al. Recognition of emotional prosody and verbal components of spoken language: an fMRI study. Brain Res Cogn Brain Res. 2000;9(3):227–238.
    1. Buchsbaum BR, Hickok G, Humphries C. Role of left posterior superior temporal gyrus in phonological processing for speech perception and production. Cognitive Science. 2001;25(5):663–678.
    1. Callan DE, Kent RD, Guenther FH, Vorperian HK. An auditory-feedback-based neural network model of speech production that is robust to developmental changes in the size and shape of the articulatory system. Journal of Speech, Language, and Hearing Research. 2000;43(3):721–736.
    1. Cattaneo L, Voss M, Brochier T, Prabhu G, Wolpert DM, Lemon RN. A cortico-cortical mechanism mediating object-driven grasp in humans. Proceedings of the National Academy of Sciences of the United States of America. 2005;102(3):898–903.
    1. Clower WT, Alexander GE. Movement sequence-related activity reflecting numerical order of components in supplementary and presupplementary motor areas. Journal of Neurophysiology. 1998;80(3):1562–1566.
    1. Cullen KE. Sensory signals during active versus passive movement. Current Opinions in Neurobiology. 2004;14(6):698–706.
    1. Curio G, Neuloh G, Numminen J, Jousmaki V, Hari R. Speaking modifies voice-evoked activity in the human auditory cortex. Human Brain Mapping. 2000;9(4):183–191.
    1. Dancause N, Barbay S, Frost SB, Mahnken JD, Nudo RJ. Interhemispheric connections of the ventral premotor cortex in a new world primate. Journal of Comparative Neurology. 2007;505(6):701–715.
    1. Dancause N, Barbay S, Frost SB, Plautz EJ, Popescu M, Dixon PM, et al. Topographically divergent and convergent connectivity between premotor and primary motor cortex. Cerebral Cortex. 2006;16(8):1057–1068.
    1. Davare M, Lemon R, Olivier E. Selective modulation of interactions between ventral premotor cortex and primary motor cortex during precision grasping in humans. Journal of Physiology-London. 2008;586(11):2735–2742.
    1. Davidson PR, Wolpert DM. Widespread access to predictive models in the motor system: a short review. Journal of Neural Engineering. 2005;2(3):S313–S319.
    1. De Nil LF, Kroll RM, Lafaille SJ, Houle S. A positron emission tomography study of short- and long-term treatment effects on functional brain activation in adults who stutter. Journal of Fluency Disorders. 2003;28(4):357–379. quiz 379-80.
    1. Dell GS. A Spreading-Activation Theory of Retrieval in Sentence Production. Psychological Review. 1986;93(3):283–321.
    1. Desmurget M, Grafton S. Forward modeling allows feedback control for fast reaching movements. Trends in Cognitive Science. 2000;4(11):423–431.
    1. di Pellegrino G, Fadiga L, Fogassi L, Gallese V, Rizzolatti G. Understanding motor events: a neurophysiological study. Experimental Brain Research. 1992;91(1):176–180.
    1. Diedrichsen J, Hashambhoy Y, Rane T, Shadmehr R. Neural correlates of reach errors. Journal of Neuroscience. 2005;25(43):9919–9931.
    1. Doherty CP, West WC, Dilley LC, Shattuck-Hufnagel S, Caplan D. Question/statement judgments: an fMRI study of intonation processing. Human Brain Mapping. 2004;23(2):85–98.
    1. Dronkers NF. A new brain region for coordinating speech articulation. Nature. 1996;384(6605):159–161.
    1. Duffau H. The anatomo-functional connectivity of language revisited new insights provided by electrostimulation and tractography. Neuropsychologia. 2008;46(4):927–934.
    1. Duffy JR. Motor speech disorders: Substrates, differential diagnosis, and management. St. Louis, MO: Elsevier Mosby; 2005.
    1. Eliades SJ, Wang X. Sensory-motor interaction in the primate auditory cortex during self-initiated vocalizations. Journal of Neurophysiology. 2003;89(4):2194–2207.
    1. Eliades SJ, Wang X. Dynamics of auditory-vocal interaction in monkey auditory cortex. Cerebral Cortex. 2005;15(10):1510–1523.
    1. Emmorey KD. The neurological substrates for prosodic aspects of speech. Brain and Language. 1987;30(2):305–320.
    1. Fang PC, Stepniewska I, Kaas JH. Ipsilateral cortical connections of motor, premotor, frontal eye, posterior parietal fields in a prosimian primate, Otolemur garnetti. Journal of Comparative Neurology. 2005;490(3):305–333.
    1. Ferrari PF, Gallese V, Rizzolatti G, Fogassi L. Mirror neurons responding to the observation of ingestive and communicative mouth actions in the monkey ventral premotor cortex. European Journal of Neuroscience. 2003;17(8):1703–1714.
    1. Fiez JA, Petersen SE. Neuroimaging studies of word reading. Proceedings of the National Academy of Sciences of the United States of America. 1998;95(3):914–921.
    1. Flament D, Ellermann JM, Kim SG, Ugurbil K, Ebner TJ. Functional magnetic resonance imaging of cerebellar activation during the learning of visuomotor dissociation task. Human Brain Mapping. 1996;4(3):210–226.
    1. Friston KJ, Holmes AP, Poline JB, Grasby PJ, Williams SC, Frackowiak RS, et al. Analysis of fMRI time-series revisited. Neuroimage. 1995;2(1):45–53.
    1. Fu CH, Vythelingum GN, Brammer MJ, Williams SC, Amaro E, Jr, Andrew CM, et al. An fMRI study of verbal self-monitoring: neural correlates of auditory verbal feedback. Cerebral Cortex. 2006;16(7):969–977.
    1. Gandour J, Dzemidzic M, Wong D, Lowe M, Tong Y, Hsieh L, et al. Temporal integration of speech prosody is shaped by language experience: an fMRI study. Brain and Language. 2003;84(3):318–336.
    1. George MS, Parekh PI, Rosinsky N, Ketter TA, Kimbrell TA, Heilman KM, et al. Understanding emotional prosody activates right hemisphere regions. Archives of Neurology. 1996;53(7):665–670.
    1. Geschwind N. The organization of language and the brain. Science. 1970;170(961):940–944.
    1. Ghacibeh GA, Heilman KM. Progressive affective aprosodia and prosoplegia. Neurology. 2003;60(7):1192–1194.
    1. Ghosh SS, Bohland JW, Guenther FH. Comparisons of brain regions involved in overt production of elementary phonetic units. Neuroimage (9th Meeting of the Organization for Human Brain Mapping, New York) 2003;19(2):S57.
    1. Ghosh SS, Tourville JA, Guenther FH. An fMRI study of the overt production of simple speech sounds. Journal of Speech, Language, and Hearing Research. 2008;51:1183–1202.
    1. Goense JB, Logothetis NK. Neurophysiology of the BOLD fMRI signal in awake monkeys. Current Biology. 2008;18(9):631–640.
    1. Golfinopoulos E, Tourville JA, Bohland JW, Ghosh SS, Guenther FH. Neural circuitry underlying somatosensory feedback control of speech production. 2009 In preparation.
    1. Grafton ST, Schmitt P, Van Horn J, Diedrichsen J. Neural substrates of visuomotor learning based on improved feedback and prediction. Neuroimage. 2008;39:1383–1395.
    1. Guenther FH. A neural network model of speech acquisition and motor equivalent speech production. Biological Cybernetics. 1994;72(1):43–53.
    1. Guenther FH. Speech sound acquisition, coarticulation, and rate effects in a neural network model of speech production. Psychological Review. 1995;102(3):594–621.
    1. Guenther FH, Espy-Wilson CY, Boyce SE, Matthies ML, Zandipour M, Perkell JS. Articulatory tradeoffs reduce acoustic variability during American English /r/ production. Journal of the Acoustical Society of America. 1999;105(5):2854–2865.
    1. Guenther FH, Ghosh SS, Tourville JA. Neural modeling and imaging of the cortical interactions underlying syllable production. Brain and Language. 2006;96(3):280–301.
    1. Guenther FH, Hampson M, Johnson D. A theoretical investigation of reference frames for the planning of speech movements. Psychological Review. 1998;105(4):611–633.
    1. Hartley T, Houghton G. A linguistically constrained model of short-term memory for nonwords. Journal of Memory and Language. 1996;35(1):1–31.
    1. Heinks-Maldonado TH, Houde JF. Compensatory responses to brief perturbations of speech amplitude. Acoustics Research Letters Online. 2005;6(3):131–137.
    1. Heinks-Maldonado TH, Mathalon DH, Gray M, Ford JM. Fine-tuning of auditory cortex during speech production. Psychophysiology. 2005;42(2):180–190.
    1. Heinks-Maldonado TH, Nagarajan SS, Houde JF. Magnetoencephalographic evidence for a precise forward model in speech production. Neuroreport. 2006;17(13):1375–1379.
    1. Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92(1–2):67–99.
    1. Hillis AE, Work M, Barker PB, Jacobs MA, Breese EL, Maurer K. Re-examining the brain regions crucial for orchestrating speech articulation. Brain. 2004;127(Pt 7):1479–1487.
    1. Iacoboni M, Woods RP, Brass M, Bekkering H, Mazziotta JC, Rizzolatti G. Cortical mechanisms of human imitation. Science. 1999;286(5449):2526–2528.
    1. Imamizu H, Higuchi S, Toda A, Kawato M. Reorganization of brain activity for multiple internal models after short but intensive training. Cortex. 2007;43(3):338–349.
    1. Imamizu H, Miyauchi S, Tamada T, Sasaki Y, Takino R, Putz B, et al. Human cerebellar activity reflecting an acquired internal model of a new tool. Nature. 2000;403(6766):192–195.
    1. Indefrey P, Levelt WJ. The spatial and temporal signatures of word production components. Cognition. 2004;92(1–2):101–144.
    1. Ito M. Mechanisms of motor learning in the cerebellum. Brain Research. 2000;886(1–2):237–245.
    1. Jonas S. The supplementary motor region and speech emission. Journal of Communication Disorders. 1981;14:349–373.
    1. Jonas S. The supplementary motor region and speech. In: Perecman E, editor. The frontal lobes revisited. New York: IRBN Press; 1987. pp. 241–250.
    1. Jurgens U. The efferent and efferent connections of the supplementary motor area. Brain Research. 1984;300:63–81.
    1. Kalaska JF, Cohen DA, Hyde ML, Prud'homme M. A comparison of movement direction-related versus load direction-related activity in primate motor cortex, using a two-dimensional reaching task. Journal of Neuroscience. 1989;9(6):2080–2102.
    1. Kawato M. Internal models for motor control and trajectory planning. Current Opinions in Neurobiology. 1999;9(6):718–727.
    1. Kawato M, Kuroda T, Imamizu H, Nakano E, Miyauchi S, Yoshioka T. Internal forward models in the cerebellum: fMRI study on grip force and load force coupling. Progress in Brain Research. 2003;142:171–188.
    1. Kent RD, Tjaden K. Brain functions underlying speech. In: Hardcastle WJ, Laver J, editors. Handbook of phonetic sciences. Oxford: Blackwell; 1997. pp. 220–255.
    1. Kohler E, Keysers C, Umilta MA, Fogassi L, Gallese V, Rizzolatti G. Hearing sounds, understanding actions: action representation in mirror neurons. Science. 2002;297(5582):846–848.
    1. Kotz SA, Meyer M, Alter K, Besson M, von Cramon DY, Friederici AD. On the lateralization of emotional prosody: an event-related functional MR investigation. Brain and Language. 2003;86(3):366–376.
    1. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, et al. Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences of the United States of America. 1992;89(12):5675–5679.
    1. Lane H, Denny M, Guenther FH, Hanson HM, Marrone N, Matthies ML, et al. On the structure of phoneme categories in listeners with cochlear implants. Journal of Speech, Language, and Hearing Research. 2007;50(1):2–14.
    1. Lane H, Denny M, Guenther FH, Matthies ML, Menard L, Perkell JS, et al. Effects of bite blocks and hearing status on vowel production. J Acoust Soc Am. 2005;118(3 Pt 1):1636–1646.
    1. Lane H, Matthies ML, Guenther FH, Denny M, Perkell JS, Stockmann E, et al. Effects of short- and long-term changes in auditory feedback on vowel and sibilant contrasts. Journal of Speech, Language, and Hearing Research. 2007;50(4):913–927.
    1. Lehericy S, Ducros M, Krainik A, Francois C, Van de Moortele PF, Ugurbil K, et al. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum. Cerebral Cortex. 2004;14(12):1302–1309.
    1. Levelt WJ, Roelofs A, Meyer AS. A theory of lexical access in speech production. Behavioral and Brain Sciences. 1999;22(1):1–38. discussion 38–75.
    1. Levelt WJ, Wheeldon L. Do speakers have access to a mental syllabary? Cognition. 1994;50(1–3):239–269.
    1. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–157.
    1. Ludlow CL. Central nervous system control of the laryngeal muscles in humans. Respiratory Physiology and Neurobiology. 2005;147(2–3):205–222.
    1. Luppino G, Matelli M, Camarda R, Rizzolatti G. Corticocortical connections of area F3 (SMA-proper) and area F6 (pre-SMA) in the macaque monkey. Journal of Comparative Neurology. 1993;338(1):114–140.
    1. Maeda S. Compensatory articulation during speech: Evidence from the analysis and synthesis of vocal tract shapes using an articulatory model. In: Hardcastle WJ, Marchal A, editors. Speech Production and Speech Modeling. Boston: Kluwer Academic Publishers; 1990.
    1. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: A quantitative, in vivo, DT-MRI study. Cerebral Cortex. 2005;15(6):854–869.
    1. Mathiesen C, Caesar K, Akgoren N, Lauritzen M. Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. Journal of Physiology. 1998;512(Pt 2):555–566.
    1. Matsumoto R, Nair DR, LaPresto E, Bingaman W, Shibasaki H, Luders HO. Functional connectivity in human cortical motor system: a cortico-cortical evoked potential study. Brain. 2007;130(Pt 1):181–197.
    1. Matsumoto R, Nair DR, LaPresto E, Najm I, Bingaman W, Shibasaki H, et al. Functional connectivity in the human language system: a cortico-cortical evoked potential study. Brain. 2004;127(Pt 10):2316–2330.
    1. Max L, Guenther FH, Gracco VL, Ghosh SS, Wallace ME. Unstable or insufficiently activated internal models and feedback-biased motor control as sources of dysfluency: A theoretical model of stuttering. Contemporary Issues in Communication Science and Disorders. 2004;31:105–122.
    1. Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, et al. A four-dimensional probabilistic atlas of the human brain. Journal of the American Medical Informatics Association. 2001;8(5):401–430.
    1. McNeil MR, Robin DA, Schmidt RA. Apraxia of speech: Definition and differential diagnosis. New York: Thieme; 2007.
    1. Meyer M, Alter K, Friederici AD, Lohmann G, von Cramon DY. FMRI reveals brain regions mediating slow prosodic modulations in spoken sentences. Human Brain Mapping. 2002;17(2):73–88.
    1. Miall RC, Jenkinson EW. Functional imaging of changes in cerebellar activity related to learning during a novel eye-hand tracking task. Experimental Brain Research. 2005;166(2):170–183.
    1. Miall RC, Wolpert DM. Forward models for physiological motor control. Neural Networks. 1996;9(8):1265–1279.
    1. Middleton FA, Strick PL. Cerebellar output channels. International Review of Neurobiology. 1997;41:61–82.
    1. Mitchell RL, Elliott R, Barry M, Cruttenden A, Woodruff PW. The neural response to emotional prosody, as revealed by functional magnetic resonance imaging. Neuropsychologia. 2003;41(10):1410–1421.
    1. Mochizuki H, Saito H. Mesial frontal lobe syndromes: correlations between neurological deficits and radiological localizations. Tohoku Journal of Experimental Medicine. 1990;161(Suppl):231–239.
    1. Morel A, Kaas JH. Subdivisions and Connections of Auditory-Cortex in Owl Monkeys. Journal of Comparative Neurology. 1992;318(1):27–63.
    1. Mukamel R, Gelbard H, Arieli A, Hasson U, Fried I, Malach R. Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science. 2005;309(5736):951–954.
    1. Nemeth G, Hegedus K, Molnar L. Akinetic mutism associated with bicingular lesions: clinicopathological and functional anatomical correlates. European Archives of Psychiatry and Neurological Sciences. 1988;237(4):218–222.
    1. Neumann K, Preibisch C, Euler HA, von Gudenberg AW, Lanfermann H, Gall V, et al. Cortical plasticity associated with stuttering therapy. Journal of Fluency Disorders. 2005;30(1):23–39.
    1. Nieto-Castanon A, Guenther FH, Perkell JS, Curtin HD. A modeling investigation of articulatory variability and acoustic stability during American English /r/ production. Journal of the Acoustical Society of America. 2005;117(5):3196–3212.
    1. Numminen J, Salmelin R, Hari R. Subject's own speech reduces reactivity of the human auditory cortex. Neuroscience Letters. 1999;265(2):119–122.
    1. O'Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. Journal of Neuroscience. 2008;28(9):2252–2260.
    1. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, et al. Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal. 1993;64(3):803–812.
    1. Ohyama T, Nores WL, Murphy M, Mauk MD. What the cerebellum computes. Trends in Neurosciences. 2003;26(4):222–227.
    1. Ojemann GA. Cortical organization of language. Journal of Neuroscience. 1991;11(8):2281–2287.
    1. Oller DK, Eilers RE. The role of audition in infant babbling. Child Development. 1988;59(2):441–449.
    1. Olthoff A, Baudewig J, Kruse E, Dechent P. Cortical sensorimotor control in vocalization: a functional magnetic resonance imaging study. Laryngoscope. 2008;118(11):2091–2096.
    1. Padoa-Schioppa C, Li CS, Bizzi E. Neuronal activity in the supplementary motor area of monkeys adapting to a new dynamic environment. Journal of Neurophysiology. 2004;91(1):449–473.
    1. Penfield W, Rasmussen T. The cerbral cortex of man. A clinical study of localization of function. New York: Macmillan; 1950.
    1. Penfield W, Roberts L. Speech and brain mechanisms. Princeton, N.J: Princeton University Press; 1959.
    1. Penfield W, Welch K. The supplementary motor area of the cerebral cortex; a clinical and experimental study. American Medical Association Archives of Neurology and Psychiatry. 1951;66(3):289–317.
    1. Penhune VB, Doyon J. Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage. 2005;26(3):801–812.
    1. Perkell JS, Denny M, Lane H, Guenther F, Matthies ML, Tiede M, et al. Effects of masking noise on vowel and sibilant contrasts in normal-hearing speakers and postlingually deafened cochlear implant users. Journal of the Acoustical Society of America. 2007;121(1):505–518.
    1. Perkell JS, Guenther FH, Lane H, Matthies ML, Perrier P, Vick J, et al. A theory of speech motor control and supporting data from speakers with normal hearing and profound hearing loss. Journal of Phonetics. 2000;28:232–272.
    1. Perkell JS, Guenther FH, Lane H, Matthies ML, Stockmann E, Tiede M, et al. The distinctness of speakers' productions of vowel contrasts is related to their discrimination of the contrasts. Journal of the Acoustical Society of America. 2004;116(4 Pt 1):2338–2344.
    1. Perkell JS, Matthies ML, Tiede M, Lane H, Zandipour M, Marrone N, et al. The distinctness of speakers' /s/−/S/ contrast is related to their auditory discrimination and use of an articulatory saturation effect. Journal of Speech, Language, and Hearing Research. 2004;47(6):1259–1269.
    1. Pickett E, Kuniholm E, Protopapas A, Friedman J, Lieberman P. Selective speech motor, syntax and cognitive deficits associated with bilateral damage to the putamen and the head of the caudate nuclues: a case study. Neuropsychologia. 1998;36:173–188.
    1. Pihan H, Altenmuller E, Ackermann H. The cortical processing of perceived emotion: a DC-potential study on affective speech prosody. Neuroreport. 1997;8(3):623–627.
    1. Raichle ME, Mintun MA. Brain work and brain imaging. Annual Review of Neuroscience. 2006;29:449–476.
    1. Reppas JB, Usrey WM, Reid RC. Saccadic eye movements modulate visual reponses in the lateral geniculate nucleus. Neuron. 2002;35:961–1074.
    1. Riecker A, Ackermann H, Wildgruber D, Dogil G, Grodd W. Opposite hemispheric lateralization effects during speaking and singing at motor cortex, insula and cerebellum. Neuroreport. 2000;11(9):1997–2000.
    1. Riecker A, Ackermann H, Wildgruber D, Meyer J, Dogil G, Haider H, et al. Articulatory/phonetic sequencing at the level of the anterior perisylvian cortex: a functional magnetic resonance imaging (fmri) study. Brain and Language. 2000;75(2):259–276.
    1. Riecker A, Wildgruber D, Dogil G, Grodd W, Ackermann H. Hemispheric lateralization effects of rhythm implementation during syllable repetitions: An fMRI Study. Neuroimage. 2002;16(1):169–176.
    1. Rizzolatti G, Arbib MA. Language within our grasp. Trends in Neurosciences. 1998;21(5):188–194.
    1. Rizzolatti G, Camarda R, Fogassi L, Gentilucci M, Luppino G, Matelli M. Functional organization of inferior area 6 in the macaque monkey. II. Area F5 and the control of distal movements. Experimental Brain Research. 1988;71(3):491–507.
    1. Rizzolatti G, Fadiga L, Gallese V, Fogassi L. Premotor cortex and the recognition of motor actions. Brain Research Cognitive Brain Research. 1996;3(2):131–141.
    1. Rizzolatti G, Fogassi L, Gallese V. Parietal cortex: from sight to action. Current Opinions in Neurobiology. 1997;7(4):562–567.
    1. Robin DA, Guenther FH, Narayana S, Jacks A, Tourville JA, Ramage AE, et al. A transcranial magnetic stimulation virtual lesion study of speech; Proceedings of the Conference on Motor Speech; Monterey, California. 2008.
    1. Romanski LM, Tian B, Fritz J, Mishkin M, Goldman-Rakic PS, Rauschecker JP. Dual streams of auditory afferents target multiple domains in the primate prefrontal cortex. Nature Neuroscience. 1999;2(12):1131–1136.
    1. Ross ED, Mesulam MM. Dominant language functions of the right hemisphere? Prosody and emotional gesturing. Arch Neurol. 1979;36(3):144–148.
    1. Roy JE, Cullen KE. Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. Journal of Neuroscience. 2004;24(9):2102–2111.
    1. Schmahmann J, Pandya D. Fiber pathways of the brain. New York: Oxford University Press; 2006.
    1. Schmahmann JD, Pandya DN. The cerebrocerebellar system. International Review of Neurobiology. 1997;41:31–60.
    1. Schreurs BG, McIntosh AR, Bahro M, Herscovitch P, Sunderland T, Molchan SE. Lateralization and behavioral correlation of changes in regional cerebral blood flow with classical conditioning of the human eyeblink response. Journal of Neurophysiology. 1997;77(4):2153–2163.
    1. Shima K, Tanji J. Neuronal activity in the supplementary and presupplementary motor areas for temporal organization of multiple movements. Journal of Neurophysiology. 2000;84(4):2148–2160.
    1. Sidtis JJ, Van Lancker Sidtis D. A neurobehavioral approach to dysprosody. Seminars in Speech and Language. 2003;24(2):93–105.
    1. Simonyan K, Jurgens U. Efferent subcortical projections of the laryngeal motorcortex in the rhesus monkey. Brain Research. 2003;974(1–2):43–59.
    1. Sohn JW, Lee D. Order-dependent modulation of directional signals in the supplementary and presupplementary motor areas. Journal of Neuroscience. 2007;27(50):13655–13666.
    1. Soros P, Sokoloff LG, Bose A, McIntosh AR, Graham SJ, Stuss DT. Clustered functional MRI of overt speech production. Neuroimage. 2006;32(1):376–387.
    1. Sperry RW. Neural basis of the spontaneous optokinetic response produced by visual inversion. Journal of Comparative and Physiological Psychology. 1950;43(6):482–489.
    1. Stepniewska I, Preuss TM, Kaas JH. Ipsilateral cortical connections of dorsal and ventral premotor areas in New World owl monkeys. Journal of Comparative Neurology. 2006;495(6):691–708.
    1. Stiller D, Gaschler-Markefski B, Baumgart F, Schindler F, Tempelmann C, Heinze HJ, et al. Lateralized processing of speech prosodies in the temporal cortex: a 3-T functional magnetic resonance imaging study. Magnetic Resonance Materials in Physics, Biology and Medicine. 1997;5(4):275–284.
    1. Tai YF, Scherfler C, Brooks DJ, Sawamoto N, Castiello U. The human premotor cortex is 'mirror' only for biological actions. Current Biology. 2004;14(2):117–120.
    1. Terband H, Maassen B, Brumberg J, Guenther FH. A transcranial magnetic stimulation virtual lesion study of speech; Proceedings of the Conference on Motor Speech; Monterey, California. 2008.
    1. Tesche CD, Karhu JJ. Anticipatory cerebellar responses during somatosensory omission in man. Human Brain Mapping. 2000;9(3):119–142.
    1. Tourville JA, Reilly KJ, Guenther FH. Neural mechanisms underlying auditory feedback control of speech. Neuroimage. 2008;39(3):1429–1443.
    1. Toyomura A, Koyama S, Miyamaoto T, Terao A, Omori T, Murohashi H, et al. Neural correlates of auditory feedback control in human. Neuroscience. 2007;146(2):499–503.
    1. Tseng YW, Diedrichsen J, Krakauer JW, Shadmehr R, Bastian AJ. Sensory prediction errors drive cerebellum-dependent adaptation of reaching. Journal of Neurophysiology. 2007;(1):54–62.
    1. Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA. Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage. 2002;16(3 Pt 1):765–780.
    1. Urban PP, Marx J, Hunsche S, Gawehn J, Vucurevic G, Wicht S, et al. Cerebellar speech representation: lesion topography in dysarthria as derived from cerebellar ischemia and functional magnetic resonance imaging. Archives of Neurology. 2003;60(7):965–972.
    1. Van Buren JM. Confusion and disturbance of speech from stimulation in the vicinity of the head of the caudate nucleus. Journal of Neurosurgery. 1963;20:148–157.
    1. Villacorta VM, Perkell JS, Guenther FH. Sensorimotor adaptation to feedback perturbations on vowel acoustics and its relation to perception. Journal of the Acoustical Society of America. 2007;122(4):2306–2319.
    1. Viswanathan A, Freeman RD. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neuroscience. 2007;10(10):1308–1312.
    1. von Holst E, Mittelstaedt H. Das reafferenzprinzip. Naturewissenschaften. 1950;37:464–476.
    1. Voss M, Ingram JN, Haggard P, Wolpert DM. Sensorimotor attenuation by central motor command signals in the absence of movement. Nature Neuroscience. 2006;9(1):26–27.
    1. Walker JP, Pelletier R, Reif L. The production of linguistic prosodic structures in subjects with right hemisphere damage. Clinical Linguistics and Phonetics. 2004;18(2):85–106.
    1. Wambaugh JL, Duffy JR, McNeil MR, Robin DA, Rogers MA. Treatment guidelines for acquired apraxia of speech: Treatment descriptions and recommendations. Journal of Medical Speech-Language Pathology. 2006;14(2):Xxxv–Lxvii.
    1. Wildgruber D, Ackermann H, Grodd W. Differential contributions of motor cortex, basal ganglia, and cerebellum to speech motor control: effects of syllable repetition rate evaluated by fMRI. Neuroimage. 2001;13(1):101–109.
    1. Williamson JB, Harrison DW, Shenal BV, Rhodes R, Demaree HA. Quantitative EEG diagnostic confirmation of expressive aprosodia. Appl Neuropsychol. 2003;10(3):176–181.
    1. Wise RJ, Greene J, Buchel C, Scott SK. Brain regions involved in articulation. Lancet. 1999;353(9158):1057–1061.
    1. Wolpert D, Miall C, Kawato M. Internal models in the cerebellum. Trends in Cognitive Science. 1998;2(9):338–347.
    1. Wolpert DM, Kawato M. Multiple paired forward and inverse models for motor control. Neural Networks. 1998;11(7–8):1317–1329.
    1. Ziegler W, Kilian B, Deger K. The role of the left mesial frontal cortex in fluent speech: evidence from a case of left supplementary motor area hemorrhage. Neuropsychologia. 1997;35(9):1197–1208.

Source: PubMed

3
Subskrybuj