Designing A Pathogen-Focused Study To Address The High Unmet Medical Need Represented By Carbapenem-Resistant Gram-Negative Pathogens - The International, Multicenter, Randomized, Open-Label, Phase 3 CREDIBLE-CR Study

Matteo Bassetti, Mari Ariyasu, Bruce Binkowitz, Tsutae Den Nagata, Roger M Echols, Yuko Matsunaga, Kiichiro Toyoizumi, Yohei Doi, Matteo Bassetti, Mari Ariyasu, Bruce Binkowitz, Tsutae Den Nagata, Roger M Echols, Yuko Matsunaga, Kiichiro Toyoizumi, Yohei Doi

Abstract

Carbapenem-resistant (CR) Gram-negative infections, including those caused by Enterobacteriaceae and the non-fermenters, represent the greatest unmet need for new effective treatments. The clinical development of new antibiotics for the treatment of CR infections is challenging and should focus on the individual pathogens irrespective of the infection site. However, the drug approval pathway is generally infection-site specific and rarely includes such drug-resistant pathogens. To overcome this limitation, a streamlined clinical development program may include a pathogen-focused clinical study, such as the CREDIBLE-CR study, to meet the expectations of some health authorities (ie, the European Medicines Agency [EMA]) and the medical community. Cefiderocol is a novel siderophore cephalosporin designed to target CR pathogens, including CR strains of Enterobacteriaceae (CRE), Pseudomonas aeruginosa, Acinetobacter baumannii, and also Stenotrophomonas maltophilia, which is intrinsically CR. The CREDIBLE-CR study was planned to evaluate cefiderocol in patients with CR Gram-negative infections regardless of species or infection-site source. Rapid diagnostic testing and/or selective media were provided to facilitate detection of CR pathogens to rapidly enroll patients with nosocomial pneumonia, bloodstream infection/sepsis, or complicated urinary tract infection. Patients were randomized 2:1 to receive cefiderocol or best available therapy. There were no pre-specified statistical hypotheses for this study, as the sample size was driven by enrollment feasibility and not based on statistical power calculations. The objective of the CREDIBLE-CR study was to provide descriptive evidence of the efficacy and safety of cefiderocol for the target population of patients with CR infections, including the non-fermenters. The CREDIBLE-CR study is currently the largest pathogen-focused, randomized, open-label, prospective, Phase 3 clinical study to investigate a new antibiotic in patients with CR Gram-negative infections. Here we describe the design of this pathogen-focused study and steps taken to aid patient enrollment into the study within an evolving regulatory environment.

Clinicaltrialsgov registration: NCT02714595.

Eudra-ct registration: 2015-004703-23.

Keywords: best available therapy; carbapenem resistance; cefiderocol; pathogen-focused study design; rapid diagnostics; streamlined/limited clinical development.

Conflict of interest statement

Outside the submitted work, MB has participated in advisory boards and/or received speaker honoraria from Achaogen, Angelini, Astellas, Bayer, Basilea, Biomerieux, Cidara, Gilead, Menarini, MSD, Nabriva, Paratek, Pfizer, Roche, Melinta, Shionogi, Tetraphase, VenatoRx and Vifor, and has received study grants from Angelini, Basilea, Astellas, Shionogi, Cidara, Melinta, Gilead, Pfizer and MSD. YD has received grant support from The Medicines Company, Accelerate Diagnostics, Pfizer, MSD, Shionogi, Astellas, Kanto Chemical, the National Institutes of Health, the Japan Society for the Promotion of Science and AMED, has served on advisory boards for Allergan, The Medicines Company, Meiji, Roche, Pfizer, Tetraphase, Recida, Fedora, VenatoRx, and has received speaking honorarium from Pfizer, MSD, and Shionogi. BB, YM, KT are employees of Shionogi Inc., Florham Park, NJ, USA. TDN, MA are employees of Shionogi & Co., Ltd., Osaka, Japan. RME is a consultant for Shionogi Inc., Florham Park, NJ, USA. The authors report no other conflicts of interest in this work.

© 2019 Bassetti et al.

Figures

Figure 1
Figure 1
Patient flow in the CREDIBLE-CR study.

References

    1. Bartsch SM, McKinnell JA, Mueller LE, et al. Potential economic burden of carbapenem-resistant Enterobacteriaceae (CRE) in the United States. Clin Microbiol Infect. 2017;23:48.e9–48.e16. doi:10.1016/j.cmi.2016.09.003
    1. Cassini A, Högberg LD, Plachouras D, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. Lancet Infect Dis. 2019;19:56–66. doi:10.1016/S1473-3099(18)30605-4
    1. World Health Organization (WHO). Global priority of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. 2017. Available from: Accessed February8, 2019.
    1. Gales AC, Seifert H, Gur D, Castanheira M, Jones RN, Sader HS. Antimicrobial susceptibility of Acinetobacter calcoaceticus–acinetobacter baumannii complex and Stenotrophomonas maltophilia clinical isolates: results from the SENTRY Antimicrobial Surveillance Program (1997–2016). Open Forum Infect Dis. 2019;6(Suppl 1):S34–S46. doi:10.1093/ofid/ofy293
    1. El Chakhtoura NG, Saade E, Iovleva A, et al. Therapies for multidrug resistant and extensively drug-resistant non-fermenting gram-negative bacteria causing nosocomial infections: a perilous journey toward ‘molecularly targeted’ therapy. Expert Rev Anti Infect Ther. 2018;16:89–110. doi:10.1080/14787210.2018.1425139
    1. Cai B, Echols R, Magee G, et al. Prevalence of carbapenem-resistant Gram-negative infections in the United States predominated by Acinetobacter baumannii and Pseudomonas aeruginosa. Open Forum Infect Dis. 2017;4:ofx176. doi:10.1093/ofid/ofx176
    1. McCann E, Srinivasan A, DeRyke CA, et al. Carbapenem-nonsusceptible Gram-negative pathogens in ICU and non-ICU Settings in US Hospitals in 2017: a multicenter study. Open Forum Infect Dis. 2018;5:ofy241. doi:10.1093/ofid/ofy241
    1. Kim T, Lee EJ, Park SY, et al. Natural prognosis of carbapenem-resistant Acinetobacter baumannii bacteremia in patients who did not receive appropriate antibiotic treatment: a retrospective multicenter study in Korea. Medicine (Baltimore). 2018;97:e12984. doi:10.1097/MD.0000000000012984
    1. Kim YJ, Kim SI, Hong KW, Kim YR, Park YJ, Kang MW. Risk factors for mortality in patients with carbapenem-resistant Acinetobacter baumannii bacteremia: impact of appropriate antimicrobial therapy. J Korean Med Sci. 2012;27:471–475. doi:10.3346/jkms.2012.27.5.471
    1. Durante-Mangoni E, Signoriello G, Andini R, et al. Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis. 2013;57:349–358. doi:10.1093/cid/cit253
    1. Yang S, Sun J, Wu X, Zhang L. Determinants of mortality in patients with nosocomial Acinetobacter baumannii bacteremia in Southwest China: a five-year case–control study. Can J Infect Dis Med Microbiol. 2018;2018:1–9. doi:10.1155/2018/3150965
    1. Katchanov J, Asar L, Klupp EM, et al. Carbapenem-resistant Gram-negative pathogens in a German university medical center: prevalence, clinical implications and the role of novel β-lactam/β-lactamase inhibitor combinations. PLoS One. 2018;13(4):e0195757. doi:10.1371/journal.pone.0195757
    1. Falagas ME, Tansarli GS, Karageorgopoulos DE, Vardakas KZ. Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerg Infect Dis. 2014;20:1170–1175. doi:10.3201/eid2007.121004
    1. Aoki T, Yoshizawa H, Yamawaki K, et al. Cefiderocol (S-649266), a new siderophore cephalosporin exhibiting potent activities against Pseudomonas aeruginosa and other Gram-negative pathogens including multi-drug resistant bacteria: structure activity relationship. Eur J Med Chem. 2018;155:847–868. doi:10.1016/j.ejmech.2018.06.014
    1. Ito A, Sato T, Ota M, et al. In vitro antibacterial properties of cefiderocol, a novel siderophore cephalosporin, against Gram-negative bacteria. Antimicrob Agents Chemother. 2017;62:e01454–17. doi:10.1128/AAC.01454-17
    1. Ito-Horiyama T, Ishii Y, Ito A, et al. Stability of novel siderophore cephalosporin S-649266 against clinically relevant carbapenemases. Antimicrob Agents Chemother. 2016;60:4384–4386. doi:10.1128/AAC.03098-15
    1. Ito A, Nishikawa T, Ota M, et al. Stability and low induction propensity of cefiderocol against chromosomal AmpC β-lactamases of Pseudomonas aeruginosa and Enterobacter cloacae. J Antimicrob Chemother. 2018;73:3049–3052. doi:10.1093/jac/dky317
    1. Poirel L, Kieffer N, Nordmann P. Stability of cefiderocol against clinically significant broad-spectrum oxacillinases. Int J Antimicrob Agents. 2018;52:866–867. doi:10.1016/j.ijantimicag.2018.11.005
    1. Ito A, Nishikawa T, Matsumoto S, et al. Siderophore cephalosporin cefiderocol utilizes ferric iron transporter systems for antibacterial activity against Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2016;60:7396–7401. doi:10.1128/AAC.01405-16
    1. Ito A, Kohira N, Bouchillon SK, et al. In vitro antimicrobial activity of S-649266, a catechol-substituted siderophore cephalosporin, when tested against non-fermenting Gram-negative bacteria. J Antimicrob Chemother. 2016;71:670–677. doi:10.1093/jac/dkv402
    1. Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against a recent collection of clinically relevant Gram-negative bacilli from North America and Europe, including carbapenem-nonsusceptible isolates (SIDERO-WT-2014 Study). Antimicrob Agents Chemother. 2017;61:pii:e00093-17. doi:10.1128/AAC.00093-17
    1. Hackel MA, Tsuji M, Yamano Y, Echols R, Karlowsky JA, Sahm DF. In vitro activity of the siderophore cephalosporin, cefiderocol, against carbapenem-nonsusceptible and multidrug-resistant isolates of Gram-negative bacilli collected worldwide in 2014 to 2016. Antimicrob Agents Chemother. 2018;62:pii:e01968-17.
    1. Karlowsky JA, Hackel MA, Tsuji M, Yamano Y, Echols R, Sahm DF. In vitro activity of cefiderocol, a siderophore cephalosporin, against Gram-negative bacilli isolated by clinical laboratories in North America and Europe in 2015–2016:SIDERO-WT-2015. Int J Antimicrob Agents. 2019;53:456–466. doi:10.1016/j.ijantimicag.2018.11.007
    1. Kazmierczak KM, Tsuji M, Wise MG, et al. In vitro activity of cefiderocol, a siderophore cephalosporin, against a recent collection of clinically relevant carbapenem-non-susceptible Gram-negative bacilli, including serine carbapenemase- and metallo-β-lactamase-producing isolates (SIDERO-WT-2014 Study). Int J Antimicrob Agents. 2019;53:177–184. doi:10.1016/j.ijantimicag.2018.10.007
    1. Matsumoto S, Singley CM, Hoover J, et al. Efficacy of cefiderocol against carbapenem-resistant Gram-negative bacilli in immunocompetent-rat respiratory tract infection models recreating human plasma pharmacokinetics. Antimicrob Agents Chemother. 2017;61(9):pii:e00700-17. doi:10.1128/AAC.00700-17
    1. Nakamura R, Ito-Horiyama T, Takemura M, et al. In vivo pharmacodynamic study of cefiderocol, a novel parenteral siderophore cephalosporin, in murine thigh and lung infection models. Antimicrob Agents Chemother. 2019;63(9):pii: e02031-18. doi:10.1128/AAC.02031-18
    1. Katsube T, Echols R, Arjona Ferreira JC, Krenz HK, Berg JK, Galloway C. Cefiderocol, a siderophore cephalosporin for Gram-negative bacterial infections: pharmacokinetics and safety in subjects with renal impairment. J Clin Pharmacol. 2017;57:584–591. doi:10.1002/jcph.841
    1. Katsube T, Miyazaki S, Narukawa Y, Hernandez-Illas M, Wajima T. Drug–drug interaction of cefiderocol, a siderophore cephalosporin, via human drug transporters. Eur J Clin Pharmacol. 2018;74:931–938. doi:10.1007/s00228-018-2458-9
    1. Katsube T, Wajima T, Ishibashi T, Arjona Ferreira JC, Echols R. Pharmacokinetic/pharmacodynamic modeling and simulation of cefiderocol, a parenteral siderophore cephalosporin, for dose adjustment based on renal function. Antimicrob Agents Chemother. 2017;61:e01381–16. doi:10.1128/AAC.01381-16
    1. Saisho Y, Katsube T, White S, Fukase H, Shimada J. Pharmacokinetics, safety, and tolerability of cefiderocol, a novel siderophore cephalosporin for Gram-negative bacteria, in healthy subjects. Antimicrob Agents Chemother. 2018;62:e02163–17. doi:10.1128/AAC.02163-17
    1. Miyazaki S, Katsube T, Shen H, Tomek C, Narukawa Y. Metabolism, excretion, and pharmacokinetics of [14C]-Cefiderocol (S-649266), a siderophore cephalosporin, in healthy subjects following intravenous administration. J Clin Pharmacol. 2019;59:958–967. doi:10.1002/jcph.1386
    1. Portsmouth S, van Veenhuyzen D, Echols R, et al. Cefiderocol versus imipenem-cilastatin for the treatment of complicated urinary tract infections caused by Gram-negative uropathogens: a phase 2, randomised, double-blind, non-inferiority trial. Lancet Infect Dis. 2018;18:1319–1328. doi:10.1016/S1473-3099(18)30554-1
    1. Cai B, Echols R, Rudin D, Morgan G, Nagata T. Risk factors for carbapenem‐resistant Gram‐negative bloodstream infections (BSI) in US Hospitals (2010–2015). Open Forum Infect Dis. 2018;5(Suppl 1):S638. doi:10.1093/ofid/ofy210.1819
    1. Echols R, Cai B, Corvino F, Lodise T. Epidemiology and outcomes of patients with carbapenem‐resistant bloodstream infection in United States (US) hospitals, 2010–2015. Poster presented at: IDWeek 2018; October 2–6, 2018; San Francisco, CA; Poster 681.
    1. van Duin D, Bonomo RA. Ceftazidime/avibactam and ceftolozane/tazobactam: second-generation β-lactam/β-lactamase inhibitor combinations. Clin Infect Dis. 2016;63:234–241. doi:10.1093/cid/ciw243
    1. Tillotson GS. Trojan horse antibiotics – a novel way to circumvent Gram-negative bacterial resistance? Infect Dis (Auckl). 2016;9:45–52. doi:10.4137/IDRT.S31567
    1. Kaye KS, Bhowmick T, Metallidis S, et al. Effect of meropenem-vaborbactam vs piperacillin-tazobactam on clinical cure or improvement and microbial eradication in complicated urinary tract infection: the TANGO I randomized clinical trial. JAMA. 2018;319:788–799. doi:10.1001/jama.2018.0438
    1. Kollef M, Novacek M, Kivistik U, et al. ASPECT-NP: a randomized, double-blind, Phase 3 trial comparing efficacy and safety of ceftolozane/tazobactam vs meropenem in patients with ventilated nosocomial pneumonia. Poster presented at: 29th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); April 13–16, 2019; Amsterdam, Netherlands; Poster 1917.
    1. Mazuski JE, Gasink LB, Armstrong J, et al. Efficacy and safety of ceftazidime-avibactam plus metronidazole versus meropenem in the treatment of complicated intra-abdominal infection: results from a randomized, controlled, double-blind, phase 3 program. Clin Infect Dis. 2016;62:1380–1389. doi:10.1093/cid/ciw133
    1. Solomkin J, Hershberger E, Miller B, et al. Ceftolozane/tazobactam plus metronidazole for complicated intra-abdominal infections in an era of multidrug resistance: results from a randomized, double-blind, phase 3 trial (ASPECT-cIAI). Clin Infect Dis. 2015;60:1462–1471. doi:10.1093/cid/civ097
    1. Wagenlehner FM, Umeh O, Steenbergen J, Yuan G, Darouiche RO. Ceftolozane-tazobactam compared with levofloxacin in the treatment of complicated urinary-tract infections, including pyelonephritis: a randomised, double-blind, phase 3 trial (ASPECT-cUTI). Lancet. 2015;385:1949–1956. doi:10.1016/S0140-6736(14)62220-0
    1. Wagenlehner FM, Sobel JD, Newell P, et al. Ceftazidime-avibactam versus doripenem for the treatment of complicated urinary tract infections, including acute pyelonephritis: RECAPTURE, a phase 3 randomized trial program. Clin Infect Dis. 2016;63:754–762. doi:10.1093/cid/ciw378
    1. Dickstein Y, Lellouche J, Dalak Amar MB, et al. Treatment outcomes of colistin and carbapenem-resistant Acinetobacter baumannii infections: an exploratory subgroup analysis of a randomized clinical trial. Clin Infect Dis. 2019;69(5):769–776. doi:10.1093/cid/ciy988
    1. Paul M, Daikos GL, Durante-Mangoni E, et al. Colistin alone versus colistin plus meropenem for treatment of severe infections caused by carbapenem-resistant Gram-negative bacteria: an open-label, randomised controlled trial. Lancet Infect Dis. 2018;18(4):391–400. doi:10.1016/S1473-3099(18)30099-9
    1. Shorr AF, Zilberberg MD, Micek ST, Kollef MH. Predictors of hospital mortality among septic ICU patients with Acinetobacter spp. bacteremia: a cohort study. BMC Infect Dis. 2014;14:572. doi:10.1186/s12879-014-0572-6
    1. Lodise TP, Zhao Q, Fahrbach K, Gillard PJ, Martin A. A systematic review of the association between delayed appropriate therapy and mortality among patients hospitalized with infections due to Klebsiella pneumoniae or Escherichia coli: how long is too long? BMC Infect Dis. 2018;18:625. doi:10.1186/s12879-018-3109-6
    1. Burillo A, Marín M, Cercenado E, et al. Evaluation of the Xpert Carba-R (Cepheid) assay using contrived bronchial specimens from patients with suspicion of ventilator-associated pneumonia for the detection of prevalent carbapenemases. PLoS One. 2016;11(12):e0168473. doi:10.1371/journal.pone.0168473
    1. Tato M, Ruiz-Garbajosa P, Traczewski M, et al. Multisite evaluation of Cepheid Xpert Carba-R Assay for detection of carbapenemase-producing organisms in rectal swabs. J Clin Microbiol. 2016;54(7):1814–1819. doi:10.1128/JCM.00341-16
    1. Banerjee R, Humphries R. Clinical and laboratory considerations for the rapid detection of carbapenem-resistant Enterobacteriaceae. Virulence. 2017;8:427–439. doi:10.1080/21505594.2016.1185577
    1. Buss BA, Baures TJ, Yoo M, et al. Impact of a multiplex PCR assay for bloodstream infections with and without antimicrobial stewardship intervention at a cancer hospital. Open Forum Infect Dis. 2018;5(10):ofy258. doi:10.1093/ofid/ofy258
    1. Pulido MR, Moreno-Martínez P, González-Galán V, et al. Application of BioFire FilmArray blood culture identification panel for rapid identification of the causative agents of ventilator-associated pneumonia. Clin Microbiol Infect. 2018;24(11):1213.e1–1213.e4. doi:10.1016/j.cmi.2018.06.001
    1. DiDiodato G, Bradbury N. Cerebrospinal fluid analysis with the BioFire FilmArray meningitis/encephalitis molecular panel reduces length of hospital stay in patients with suspected central nervous system infections. Open Forum Infect Dis. 2019;6(4):ofz119. doi:10.1093/ofid/ofz125
    1. Bassetti M, Peghin M, Vena A, Giacobbe DR. Treatment of infections due to MDR Gram-negative bacteria. Front Med (Lausanne). 2019;6:74. doi:10.3389/fmed.2019.00046
    1. Tsuji BT, Pogue JM, Zavascki AP, et al. International consensus guidelines for the optimal use of the polymyxins: endorsed by the American College of Clinical Pharmacy (ACCP), European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Society of America (IDSA), International Society for Anti-infective Pharmacology (ISAP), Society of Critical Care Medicine (SCCM), and Society of Infectious Diseases Pharmacists (SIDP). Pharmacotherapy. 2019;39:10–39. doi:10.1002/phar.2209
    1. Vardakas KZ, Legakis NJ, Triarides N, Falagas ME. Susceptibility of contemporary isolates to fosfomycin: a systematic review of the literature. Int J Antimicrob Agents. 2016;47:269–285. doi:10.1016/j.ijantimicag.2016.02.001
    1. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Draft guidance for industry on antibacterial therapies for patients with unmet medical need for the treatment of serious bacterial diseases. Draft July 2013. Available from: Accessed March3, 2019.
    1. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER). Limited population pathway for antibacterial and antifungal drugs. Guidance for industry. June 2018. Available from: Accessed April11, 2019.
    1. European Medicines Agency Committee for Human Medicinal Products (CHMP)/Addendum to the guideline on the evaluation of medicinal products indicated for treatment of bacterial infections. EMA/CHMP/351889/2013. October 24, 2013:16, paragraph ii.
    1. Cox E, Nambiar S, Baden L. Needed: antimicrobial development. N Engl J Med. 2019;380:783–785. doi:10.1056/NEJMe1901525
    1. Shionogi Inc. Study of S-649266 or best available therapy for the treatment of severe infections caused by carbapenem-resistant Gram-negative pathogens (CREDIBLE – CR). Available from: Accessed October11, 2019.
    1. EU Clinical Trials Register. A multicenter, randomized, open-label clinical study of S-649266 or best available therapy for the treatment of severe infections caused by carbapenem-resistant Gram-negative pathogens. Available from: Accessed October11, 2019.
    1. Adeolu M, Alnajar S, Naushad S, Gupta R. Genome-based phylogeny and taxonomy of the ‘Enterobacteriales’: proposal for Enterobacterales ord. nov. divided into the families Enterobacteriaceae, Erwiniaceae fam. nov., Pectobacteriaceae fam. nov., Yersiniaceae fam. nov., Hafniaceae fam. nov., Morganellaceae fam. nov., and Budviciaceae fam. nov. Int J Syst Evol Microbiol. 2016;66(12):5575–5599. doi:10.1099/ijsem.0.001485
    1. Munson E, Carroll KC. An update on the novel genera and species and revised taxonomic status of bacterial organisms described in 2016 and 2017. J Clin Microbiol. 2019;57(2):pii:e01181–18. doi:10.1128/JCM.01181-18
    1. European Medicines Agency. European Medicines Agency completes review of polymyxin-based medicines. EMA/643444/2014. 2014. Available from: Accessed May8, 2019.
    1. Rice LB, Bonomo RA. beta-Lactamases: which ones are clinically important? Drug Resist Updat. 2000;3(3):178–189. doi:10.1054/drup.2000.0144
    1. Paterson DL, Bonomo RA. Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev. 2005;18(4):657–686. doi:10.1128/CMR.18.4.657-686.2005
    1. Thaden JT, Pogue JM, Kaye KS. Role of newer and re-emerging older agents in the treatment of infections caused by carbapenem-resistant Enterobacteriaceae. Virulence. 2017;8(4):403–416. doi:10.1080/21505594.2016.1207834
    1. Infectious Diseases Society of America. White paper: recommendations on the conduct of superiority and organism-specific clinical trials of antibacterial agents for the treatment of infections caused by drug-resistant bacterial pathogens. Clin Infect Dis. 2012;55:1031–1046. doi:10.1093/cid/cis688
    1. Boucher HW, Talbot GH, Benjamin DK Jr, et al. 10 x ‘20 Progress – development of new drugs active against Gram-negative bacilli: an update from the Infectious Diseases Society of America. Clin Infect Dis. 2013;56:1685–1694. doi:10.1093/cid/cit152
    1. Echols RM. Understanding the regulatory hurdles for antibacterial drug development in the post-Ketek world. Ann N Y Acad Sci. 2011;1241:153–161. doi:10.1111/j.1749-6632.2011.06300.x
    1. Echols RM. A long and winding road; evolution of antimicrobial drug development – crisis management. Expert Rev Anti Infect Ther. 2012;10:1311–1319. doi:10.1586/eri.12.131
    1. Muscedere JG, Day A, Heyland DK. Mortality, attributable mortality, and clinical events as end points for clinical trials of ventilator-associated pneumonia and hospital-acquired pneumonia. Clin Infect Dis. 2010;51(Suppl 1):S120–S125. doi:10.1086/653060
    1. Gharbi M, Drysdale JH, Lishman H, et al. Antibiotic management of urinary tract infection in elderly patients in primary care and its association with bloodstream infections and all cause mortality: population based cohort study. BMJ. 2019;364:l525. doi:10.1136/bmj.l42
    1. Gomila A, Carratalà J, Eliakim-Raz N, et al. Risk factors and prognosis of complicated urinary tract infections caused by Pseudomonas aeruginosa in hospitalized patients: a retrospective multicenter cohort study. Infect Drug Resist. 2018;11:2571–2581. doi:10.2147/IDR.S185753
    1. Wunderink R, Giamarellos-Bourboulis E, Rahav G, et al. Effect and safety of meropenem-vaborbactam versus best-available therapy in patients with carbapenem-resistant Enterobacteriaceae infections: the TANGO II randomized clinical trial. Infect Dis Ther. 2018;7:439–455. doi:10.1007/s40121-018-0214-1
    1. McKinnell JA, Dwyer JP, Talbot GH, et al. Plazomicin for infections caused by carbapenem-resistant Enterobacteriaceae. N Engl J Med. 2019;380:791–793. doi:10.1056/NEJMc1807634
    1. Alizadeh N, Rezaee MA, Kafil HS, et al. Detection of carbapenem-resistant Enterobacteriaceae by chromogenic screening media. J Microbiol Methods. 2018;153:40–44. doi:10.1016/j.mimet.2018.09.001
    1. Motsch J, de Oliveira C, Stus V, et al. RESTORE-IMI 1: a multicenter, randomized, double-blind, comparator-controlled trial comparing the efficacy and safety of imipenem/relebactam versus colistin plus imipenem in patients with imipenem-non-susceptible bacterial infections, abstr O0427. Abstract presented at: 28th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID); April 21–24, 2018; Madrid, Spain.

Source: PubMed

3
Subskrybuj