Comparison of remifentanil concentrations with and without dexmedetomidine for the prevention of emergence cough after nasal surgery: a randomized double-blinded trial

Ha Yeon Kim, Hyun Jeong Kwak, Dongchul Lee, Ji Hyea Lee, Sang Kee Min, Jong Yeop Kim, Ha Yeon Kim, Hyun Jeong Kwak, Dongchul Lee, Ji Hyea Lee, Sang Kee Min, Jong Yeop Kim

Abstract

Background: Preventing emergence cough after nasal surgery is critical. Emergence cough can provoke immediate postoperative bleeding, which leads to upper airway obstruction. In the present study, we compared the effect-site concentration (Ce) of remifentanil to prevent emergence cough after propofol anesthesia for nasal surgery when remifentanil was or was not combined with dexmedetomidine.

Methods: Forty-seven patients with propofol-remifentanil anesthesia for nasal surgery were randomly assigned to a dexmedetomidine group (Group D, n = 23) or a saline group (Group S, n = 24). Group D and Group S were infused with dexmedetomidine (0.5 μg/kg) and saline, respectively, for 10 min before the completion of surgery. A predetermined Ce of remifentanil was infused until extubation. Remifentanil Ce to prevent cough in 50 and 95% of patients (EC50 and EC95) was estimated using modified Dixon's up-and-down method and isotonic regression. Hemodynamic and recovery parameters were recorded.

Results: The EC50 of remifentanil Ce was significantly lower in Group D than in Group S (2.15 ± 0.40 ng/mL vs. 2.66 ± 0.36 ng/mL, p = 0.023). The EC95 (95% CI) of remifentanil Ce was also significantly lower in Group D [2.75 (2.67-2.78) ng/mL] than in Group S [3.16 (3.06-3.18) ng/mL]. Emergence and recovery variables did not differ between the two groups.

Conclusion: The remifentanil EC50 to prevent cough after propofol-remifentanil anesthesia was significantly lower (approximately 19%) when a combination of remifentanil and 0.5 μg/kg dexmedetomidine was used than when remifentanil infusion alone was used in patients undergoing nasal surgery. Therefore, the Ce of remifentanil may be adjusted to prevent emergence cough when used in combination with dexmedetomidine.

Trial registration: ClinicalTrials.gov ( NCT03622502 , August 9, 2018).

Keywords: Cough; Dexmedetomidine; Emergence; Remifentanil.

Conflict of interest statement

The authors declare that they have no conflict of interest.

Figures

Fig. 1
Fig. 1
The CONSORT flow diagram
Fig. 2
Fig. 2
Effect-site concentration of remifentanil by Dixon’s method in Group D (a) and in Group S (b)

References

    1. Irwin RS. Complications of cough: ACCP evidence-based clinical practice guidelines. Chest. 2006;129(1 Suppl):54s–58s.
    1. Halderman AA, Sindwani R, Woodard TD. Hemorrhagic complications of endoscopic sinus surgery. Otolaryngol Clin N Am. 2015;48(5):783–793.
    1. Chang CH, Lee JW, Choi JR, Shim YH. Effect-site concentration of remifentanil to prevent cough after laryngomicrosurgery. Laryngoscope. 2013;123(12):3105–3109.
    1. Choi EM, Park WK, Choi SH, Soh S, Lee JR. Smooth emergence in men undergoing nasal surgery: the effect site concentration of remifentanil for preventing cough after sevoflurane-balanced anaesthesia. Acta Anaesthesiol Scand. 2012;56(4):498–503.
    1. Jun NH, Lee JW, Song JW, Koh JC, Park WS, Shim YH. Optimal effect-site concentration of remifentanil for preventing cough during emergence from sevoflurane-remifentanil anaesthesia. Anaesthesia. 2010;65(9):930–935.
    1. Kim HY, Kim JY, Ahn SH, Lee SY, Park HY, Kwak HJ. Predicting effective remifentanil concentration in 95% of patients to prevent emergence cough after laryngomicroscopic surgery. Medicine (Baltimore) 2018;97(26):e11258.
    1. Servin FS, Billard V. Remifentanil and other opioids. Handb Exp Pharmacol. 2008;182:283–311.
    1. Hsu YW, Cortinez LI, Robertson KM, Keifer JC, Sum-Ping ST, Moretti EW, Young CC, Wright DR, Macleod DB, Somma J. Dexmedetomidine pharmacodynamics: part I: crossover comparison of the respiratory effects of dexmedetomidine and remifentanil in healthy volunteers. Anesthesiology. 2004;101(5):1066–1076.
    1. Lee JS, Choi SH, Kang YR, Kim Y, Shim YH. Efficacy of a single dose of dexmedetomidine for cough suppression during anesthetic emergence: a randomized controlled trial. Can J Anaesth. 2015;62(4):392–398.
    1. Kim JH, Ham SY, Kim DH, Chang CH, Lee JS. Efficacy of single-dose Dexmedetomidine combined with low-dose remifentanil infusion for cough suppression compared to high-dose remifentanil infusion: a randomized, controlled, Non-Inferiority Trial. Int J Med Sci. 2019;16(3):376–383.
    1. Nemethy M, Paroli L, Williams-Russo PG, Blanck TJ. Assessing sedation with regional anesthesia: inter-rater agreement on a modified Wilson sedation scale. Anesth Analg. 2002;94(3):723–728.
    1. Aldrete JA. The post-anesthesia recovery score revisited. J Clin Anesth. 1995;7(1):89–91.
    1. Dixon WJ. Staircase bioassay: the up-and-down method. Neurosci Biobehav Rev. 1991;15(1):47–50.
    1. Pace NL, Stylianou MP. Advances in and limitations of up-and-down methodology: a precis of clinical use, study design, and dose estimation in anesthesia research. Anesthesiology. 2007;107(1):144–152.
    1. Dilleen M, Heimann G, Hirsch I. Non-parametric estimators of a monotonic dose-response curve and bootstrap confidence intervals. Stat Med. 2003;22(6):869–882.
    1. Payton ME, Greenstone MH, Schenker N. Overlapping confidence intervals or standard error intervals: what do they mean in terms of statistical significance? J Insect Sci (Online) 2003;3:34.
    1. Canning BJ, Chang AB, Bolser DC, Smith JA, Mazzone SB, McGarvey L. Anatomy and neurophysiology of cough: CHEST guideline and expert panel report. Chest. 2014;146(6):1633–1648.
    1. Spina D, McFadzean I, Bertram FK, Page CP. Peripheral mechanisms II: the pharmacology of peripherally active antitussive drugs. Handb Exp Pharmacol. 2009;187:155–186.
    1. Weerink MAS, Struys M, Hannivoort LN, Barends CRM, Absalom AR, Colin P. Clinical pharmacokinetics and pharmacodynamics of Dexmedetomidine. Clin Pharmacokinet. 2017;56(8):893–913.
    1. Ryu JH, Lee SW, Lee JH, Lee EH, Do SH, Kim CS. Randomized double-blind study of remifentanil and dexmedetomidine for flexible bronchoscopy. Br J Anaesth. 2012;108(3):503–511.
    1. Gao Y, Kang K, Liu H, Jia L, Tang R, Zhang X, Wang H, Yu K. Effect of dexmedetomidine and midazolam for flexible fiberoptic bronchoscopy in intensive care unit patients: a retrospective study. Medicine. 2017;96(25):e7090.
    1. Kim SY, Kim JM, Lee JH, Song BM, Koo BN. Efficacy of intraoperative dexmedetomidine infusion on emergence agitation and quality of recovery after nasal surgery. Br J Anaesth. 2013;111(2):222–228.
    1. Aouad MT, Zeeni C, Al Nawwar R, Siddik-Sayyid SM, Barakat HB, Elias S, Yazbeck Karam VG. Dexmedetomidine for improved quality of emergence from general anesthesia: a dose-finding study. Anesth Analg. 2019;129(6):1504–1511.
    1. Guler G, Akin A, Tosun Z, Eskitascoglu E, Mizrak A, Boyaci A. Single-dose dexmedetomidine attenuates airway and circulatory reflexes during extubation. Acta Anaesthesiol Scand. 2005;49(8):1088–1091.
    1. Zhou W, Zhang D, Tian S, Yang Y, Xing Z, Ma R, Zhou T, Bao T, Sun J, Zhang Z. Optimal dose of pretreated-dexmedetomidine in fentanyl-induced cough suppression: a prospective randomized controlled trial. BMC Anesthesiol. 2019;19(1):89.
    1. Kim SH, Oh YJ, Park BW, Sim J, Choi YS. Effects of single-dose dexmedetomidine on the quality of recovery after modified radical mastectomy: a randomised controlled trial. Minerva Anestesiol. 2013;79(11):1248–1258.
    1. Choi SH, Min KT, Lee JR, Choi KW, Han KH, Kim EH, Oh HJ, Lee JH. Determination of EC95 of remifentanil for smooth emergence from propofol anesthesia in patients undergoing transsphenoidal surgery. J Neurosurg Anesthesiol. 2015;27(2):160–166.
    1. Lee B, Lee JR, Na S. Targeting smooth emergence: the effect site concentration of remifentanil for preventing cough during emergence during propofol-remifentanil anaesthesia for thyroid surgery. Br J Anaesth. 2009;102(6):775–778.
    1. Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, Shafer SL. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004;100(6):1353–1372.
    1. Sundman E, Witt H, Sandin R, Kuylenstierna R, Bodén K, Ekberg O, Eriksson Lars I. Pharyngeal function and airway protection during subhypnotic concentrations of Propofol, isoflurane, and Sevoflurane: volunteers examined by pharyngeal Videoradiography and simultaneous Manometry. Anesthesiology. 2001;95(5):1125–1132.

Source: PubMed

3
Subskrybuj