Current Endovascular Treatment Options in Acute Pulmonary Embolism

Kelli Moore, Jeff Kunin, Mohammed Alnijoumi, Prashant Nagpal, Ambarish P Bhat, Kelli Moore, Jeff Kunin, Mohammed Alnijoumi, Prashant Nagpal, Ambarish P Bhat

Abstract

Acute pulmonary embolism (PE) is a significant cause of mortality and morbidity across the globe. Over the last few decades, there have been major therapeutic advances in acute PE management, including catheter-based therapy. However, the effectiveness of catheter-based therapy in acute PE is not supported by Level I evidence, making the use of this promising treatment rather controversial and ambiguous. In this paper, we discuss the risk stratification of acute PE and review the medical and endovascular treatment options. We also summarize and review the data supporting the use of endovascular treatment options in acute PE and describe the potential role of the PE response team.

Keywords: Chronic thromboembolic pulmonary hypertension; FlowTriever; Massive pulmonary embolism; Pulmonary embolism response team; Thrombectomy.

Conflict of interest statement

Dr. Nagpal (PN) receives grant support from National Institutes of Health (NIH) and Carver College of Medicine, Iowa City unrelated to this project. The other authors have no conflict.

© 2020 Published by Scientific Scholar on behalf of Journal of Clinical Imaging Science.

Figures

Figure 1:
Figure 1:
ABCD of PE management. ST-Systemic thrombolysis, sPESI: Simplified pulmonary embolism severity index, ST: Systemic thrombolysis.
Figure 2:
Figure 2:
Chest radiograph of a 60-year-old male with high-risk PE after placement of EKOS catheters in both the pulmonary arteries (black arrows) for the purpose of targeted TPA delivery over 12–24 h.
Figure 3:
Figure 3:
Coronal (a) and axial CT angiogram (b) of the chest in a 45-year-old male showing bilateral extensive pulmonary embolism (white arrows). Digital subtraction angiogram (DSA) of the right pulmonary artery in the same patient (c) showing multiple filling defects in the upper and lower lobar pulmonary arteries (white arrows). Follow-up DSA (d) of the same patient after mechanical thrombectomy with the FlowTriever device (black arrows) through a 22 F sheath showing near complete clearance of the clot. The aspirated clot is on shown in picture (e) (white arrows).
Figure 4:
Figure 4:
EKOS catheter (black arrow heads) with the ultrasound core wire (black arrow). Image provided courtesy of Boston Scientific. ©2020 Boston Scientific Corporation or its affiliates. All rights reserved.
Figure 5:
Figure 5:
The Angiojet thrombectomy catheter (dotted black arrow) with its dive unit/pump (solid black arrow). Image provided courtesy of Boston Scientific. ©2020 Boston Scientific Corporation or its affiliates. All rights reserved.
Figure 6:
Figure 6:
Picture illustration of the INARI FlowTriever and its components. The 20 F aspiration guide catheter (a), the proprietary syringe (b) (black arrows) and nitinol discs, (c) (black arrows) engaging the clot (white arrow heads). Used with permission from Inari Medical, Irvine, CA.
Figure 7:
Figure 7:
Illustration (a) of the Indigo CAT8 system with its engine and wire separator (SEP8). (b) CAT8 with deployment of the wire separator (SEP8) in the clot before aspiration. sed with permission from Penumbra, Alameda, CA.

References

    1. Goldhaber SZ, Visani L, de Rosa M. Acute pulmonary embolism: Clinical outcomes in the international cooperative pulmonary embolism registry (ICOPER) Lancet. 1999;353:1386–9. doi: 10.1016/S0140-6736(98)07534-5.
    1. Limbrey R, Howard L. Developments in the management and treatment of pulmonary embolism. Eur Respir Rev. 2015;24:484–97. doi: 10.1183/16000617.00006614.
    1. Pugliese SC, Kawut SM. The Post-Pulmonary Embolism Syndrome: Real or Ruse? 2019 doi: 10.1513/AnnalsATS.201901-061PS. Available from: [Last accessed on 2021 Jan 13]
    1. Ende-Verhaar YM, Cannegieter SC, Noordegraaf AV, Delcroix M, Pruszczyk P, Mairuhu AT, et al. Incidence of chronic thromboembolic pulmonary hypertension after acute pulmonary embolism: A contemporary view of the published literature. Eur Respir J. 2017;49:1601792. doi: 10.1183/13993003.01792-2016.
    1. Lang IM, Pesavento R, Bonderman D, Yuan JX. Risk factors and basic mechanisms of chronic thromboembolic pulmonary hypertension: A current understanding. Eur Respiratory Soc. 2013;41:462–8. doi: 10.1183/09031936.00049312.
    1. Mahmud E, Madani MM, Kim NH, Poch D, Ang L, Behnamfar O, et al. Chronic thromboembolic pulmonary hypertension: Evolving therapeutic approaches for operable and inoperable disease. J Am Coll Cardiol. 2018;71:2468–86. doi: 10.1016/j.jacc.2018.04.009.
    1. Park JS, Ahn J, Choi JH, Lee HC, Oh JH, Lee HC, et al. The predictive value of echocardiography for chronic thromboembolic pulmonary hypertension after acute pulmonary embolism in Korea. Korean J Intern Med. 2017;32:85–94. doi: 10.3904/kjim.2014.175.
    1. McCabe C, Dimopoulos K, Pitcher A, Orchard E, Price LC, Kempny A, et al. Chronic thromboembolic disease following pulmonary embolism: Time for a fresh look at old clot. Eur Respir J. 2020;55:1901934. doi: 10.1183/13993003.01934-2019.
    1. Thimmappa N, Bhat AP, Bishop K, Nagpal P, Prince MR, Saboo SS. Preoperative cross-sectional mapping for deep inferior epigastric and profunda artery perforator flaps. Cardiovasc Diagn Ther. 2019;9:S131–42. doi: 10.21037/cdt.2018.10.03.
    1. Jaff MR, McMurtry MS, Archer SL, Cushman M, Goldenberg N, Goldhaber SZ, et al. Management of massive and submassive pulmonary embolism, iliofemoral deep vein thrombosis, and chronic thromboembolic pulmonary hypertension: A scientific statement from the American heart association. Circulation. 2011;123:1788–830. doi: 10.1161/CIR.0b013e318214914f.
    1. Task Force Members, Konstantinides SV, Torbicki A, Agnelli G, Danchin N, Fitzmaurice D, et al. ESC guidelines on the diagnosis and management of acute pulmonary embolism: The task force for the diagnosis and management of acute pulmonary embolism of the European society of cardiology (ESC) endorsed by the European respiratory society (ERS) Eur Heart J. 2014;35:3033–80. doi: 10.1093/eurheartj/ehu283.
    1. Teleb M, Porres-Aguilar M, Rivera-Lebron B, Ngamdu KS, Botrus G, Anaya-Ayala JE, et al. Ultrasound-assisted catheter-directed thrombolysis: A novel and promising endovascular therapeutic modality for intermediate-risk pulmonary embolism. Angiology. 2017;68:494–501. doi: 10.1177/0003319716665718.
    1. Jiménez D, Aujesky D, Moores L, Gómez V, Lobo JL, Uresandi F, et al. Simplification of the pulmonary embolism severity index for prognostication in patients with acute symptomatic pulmonary embolism. Arch Intern Med. 2010;170:1383–9. doi: 10.1001/archinternmed.2010.199.
    1. Becattini C, Agnelli G, Lankeit M, Masotti L, Pruszczyk P, Casazza F, et al. Acute pulmonary embolism: Mortality prediction by the 2014 European society of cardiology risk stratification model. Eur Respir J. 2016;48:780–6. doi: 10.1183/13993003.00024-2016.
    1. Kasper W, Konstantinides S, Geibel A, Olschewski M, Heinrich F, Grosser KD, et al. Management strategies and determinants of outcome in acute major pulmonary embolism: Results of a multicenter registry. J Am Coll Cardiol. 1997;30:1165–71. doi: 10.1016/S0735-1097(97)00319-7.
    1. Tu T, Toma C, Tapson VF, Adams C, Jaber WA, Silver M, et al. A prospective, single-arm, multicenter trial of catheter-directed mechanical thrombectomy for intermediate-risk acute pulmonary embolism: The FLARE study. JACC Cardiovasc Interv. 2019;12:859–69. doi: 10.1016/j.jcin.2018.12.022.
    1. Chatterjee S, Chakraborty A, Weinberg I, Kadakia M, Wilensky RL, Sardar P, et al. Thrombolysis for pulmonary embolism and risk of all-cause mortality, major bleeding, and intracranial hemorrhage: A meta-analysis. JAMA. 2014;311:2414–21. doi: 10.1001/jama.2014.5990.
    1. Wang PJ, Shang MY, Qian Z, Shao CW, Wang JH, Zhao XH. CT-guided percutaneous neurolytic celiac plexus block technique. Abdom Imaging. 2006;31:710–8. doi: 10.1007/s00261-006-9153-5.
    1. Becattini C, Agnelli G. Predictors of mortality from pulmonary embolism and their influence on clinical management. Thromb Haemost. 2008;100:747–51. doi: 10.1160/TH08-06-0356.
    1. Grifoni S, Olivotto I, Cecchini P, Pieralli F, Camaiti A, Santoro G, et al. Short-term clinical outcome of patients with acute pulmonary embolism, normal blood pressure, and echocardiographic right ventricular dysfunction. Circulation. 2000;101:2817–22. doi: 10.1161/01.CIR.101.24.2817.
    1. Kreit JW. The impact of right ventricular dysfunction on the prognosis and therapy of normotensive patients with pulmonary embolism. Chest. 2004;125:1539–45. doi: 10.1378/chest.125.4.1539.
    1. Secemsky E, Chang Y, Jain CC, Beckman JA, Giri J, Jaff MR, et al. Contemporary management and outcomes of patients with massive and submassive pulmonary embolism. Am J Med. 2018;131:1506–14.e0. doi: 10.1016/j.amjmed.2018.07.035.
    1. Lin BW, Schreiber DH, Liu G, Briese B, Hiestand B, Slattery D, et al. Therapy and outcomes in massive pulmonary embolism from the emergency medicine pulmonary embolism in the real world registry. Am J Emerg Med. 2012;30:1774–81. doi: 10.1016/j.ajem.2012.02.012.
    1. Yasin JT, Schuchardt PA, Atkins N, Koch D, Davis RM, Saboo SS, et al. CT-guided gastrostomy tube placement-a single center case series. Diagn Interv Radiol. 2020;26:464–9. doi: 10.5152/dir.2020.19471.
    1. Verma M, Yarlagadda B, Hendrani A, Bhat AP, Kumar S. Simplified rapid protocol for assessing the thoracic aortic dimensions and pathology with noncontrast mr angiography. Int J Angiol. 2019;28:130–6. doi: 10.1055/s-0039-1688473.
    1. Kearon C, Akl EA, Ornelas J, Blaivas A, Jimenez D, Bounameaux H, et al. Antithrombotic therapy for VTE disease: CHEST guideline and expert panel report. Chest. 2016;149:315–52. doi: 10.1016/j.chest.2015.11.026.
    1. Go AS, Mozaffarian D, Roger VL, Benjamin EJ, Berry JD, Blaha MJ, et al. Executive summary: Heart disease and stroke statistics-2014 update: A report from the American heart association. Circulation. 2014;129:399–410. doi: 10.1161/01.cir.0000442015.53336.12.
    1. Atkins NK, Marjara J, Kaifi JT, Kunin JR, Saboo SS, Davis RM, et al. Role of computed tomography-guided biopsies in the era of electromagnetic navigational bronchoscopy: A retrospective study of factors predicting diagnostic yield in electromagnetic navigational bronchoscopy and computed tomography biopsies. J Clin Imaging Sci. 2020;10:33. doi: 10.25259/JCIS_53_2020.
    1. Barnes GD, Kabrhel C, Courtney DM, Naydenov S, Wood T, Rosovsky R, et al. Diversity in the pulmonary embolism response team model: An organizational survey of the national PERT consortium members. Chest. 2016;150:1414–7. doi: 10.1016/j.chest.2016.09.034.
    1. Provias T, Dudzinski DM, Jaff MR, Rosenfield K, Channick R, Baker J, et al. The massachusetts general hospital pulmonary embolism response team (MGH PERT): Creation of a multidisciplinary program to improve care of patients with massive and submassive pulmonary embolism. Hosp Pract 1995. 2014;42:31–7. doi: 10.3810/hp.2014.02.1089.
    1. Omar HR, Miller J, Mangar D, Camporesi EM. Experience with extracorporeal membrane oxygenation in massive and submassive pulmonary embolism in a tertiary care center. Am J Emerg Med. 2013;31:1616–7. doi: 10.1016/j.ajem.2013.08.013.
    1. Nagpal P, Priya S, Eskandari A, Mullan A, Aggarwal T, Narayanasamy S, et al. Factors affecting radiation dose in computed tomography angiograms for pulmonary embolism: A retrospective cohort study. J Clin Imaging Sci. 2020;10:74. doi: 10.25259/JCIS_168_2020.
    1. Giri J, Sista AK, Weinberg I, Kearon C, Kumbhani DJ, Desai ND, et al. Interventional therapies for acute pulmonary embolism: Current status and principles for the development of novel evidence: A scientific statement from the American heart association. Circulation. 2019;140:e774–801. doi: 10.1161/CIR.0000000000000707.
    1. Wan S, Quinlan DJ, Agnelli G, Eikelboom JW. Thrombolysis compared with heparin for the initial treatment of pulmonary embolism: A meta-analysis of the randomized controlled trials. Circulation. 2004;110:744–9. doi: 10.1161/01.CIR.0000137826.09715.9C.
    1. Schuchardt PA, Yasin JT, Davis RM, Tewari SO, Bhat AP. The role of an IVC filter retrieval clinic-a single center retrospective analysis. Indian J Radiol Imaging. 2019;29:391–6. doi: 10.4103/ijri.IJRI_258_19.
    1. Tapson VF, Friedman O. Systemic thrombolysis for pulmonary embolism: Who and how. Tech Vasc Interv Radiol. 2017;20:162–74. doi: 10.1053/j.tvir.2017.07.005.
    1. Konstantinides S, Geibel A, Heusel G, Heinrich F, Kasper W. Heparin plus alteplase compared with heparin alone in patients with submassive pulmonary embolism. N Engl J Med. 2002;347:1143–50. doi: 10.1056/NEJMoa021274.
    1. Meyer G, Vicaut E, Danays T, Agnelli G, Becattini C, BeyerWestendorf J, et al. Fibrinolysis for patients with intermediate-risk pulmonary embolism. N Engl J Med. 2014;370:1402–11. doi: 10.1056/NEJMoa1302097.
    1. Marti C, John G, Konstantinides S, Combescure C, Sanchez O, Lankeit M, et al. Systemic thrombolytic therapy for acute pulmonary embolism: A systematic review and meta-analysis. Eur Heart J. 2015;36:605–14. doi: 10.1093/eurheartj/ehu218.
    1. Nakamura S, Takano H, Kubota Y, Asai K, Shimizu W. Impact of the efficacy of thrombolytic therapy on the mortality of patients with acute submassive pulmonary embolism: A meta-analysis. J Thromb Haemost. 2014;12:1086–95. doi: 10.1111/jth.12608.
    1. Kline JA, Steuerwald MT, Marchick MR, Hernandez-Nino J, Rose GA. Prospective evaluation of right ventricular function and functional status 6 months after acute submassive pulmonary embolism: Frequency of persistent or subsequent elevation in estimated pulmonary artery pressure. Chest. 2009;136:1202–10. doi: 10.1378/chest.08-2988.
    1. Ain DL, Albaghdadi M, Giri J, Abtahian F, Jaff MR, Rosenfield K, et al. Extra-corporeal membrane oxygenation and outcomes in massive pulmonary embolism: Two eras at an urban tertiary care hospital. Vasc Med. 2018;23:60–4. doi: 10.1177/1358863X17739697.
    1. Elder M, Blank N, Shemesh A, Pahuja M, Kaki A, Mohamad T, et al. Mechanical circulatory support for high-risk pulmonary embolism. Interv Cardiol Clin. 2018;7:119–28. doi: 10.1016/j.iccl.2017.09.002.
    1. Avgerinos ED, Saadeddin Z, Ali AN, Fish L, Toma C, Chaer M, et al. A meta-analysis of outcomes of catheter-directed thrombolysis for high-and intermediate-risk pulmonary embolism. J Vasc Surg Venous Lymphat Disord. 2018;6:530–40. doi: 10.1016/j.jvsv.2018.03.010.
    1. Kuo WT, Banerjee A, Kim PS, DeMarco FJ, Jr, Levy JR, Facchini FR, et al. Pulmonary embolism response to fragmentation, embolectomy, and catheter thrombolysis (PERFECT): Initial results from a prospective multicenter registry. Chest. 2015;148:667–73. doi: 10.1378/chest.15-0119.
    1. Tafur AJ, Shamoun FE, Patel SI, Tafur D, Donna F, Murad MH. Catheter-directed treatment of pulmonary embolism: A systematic review and meta-analysis of modern literature. Clin Appl Thromb Hemost. 2017;23:821–9. doi: 10.1177/1076029616661414.
    1. Kuo WT, Gould MK, Louie JD, Rosenberg JK, Sze DY, Hofmann LV. Catheter-directed therapy for the treatment of massive pulmonary embolism: Systematic review and meta-analysis of modern techniques. J Vasc Interv Radiol. 2009;20:1431–40. doi: 10.1016/j.jvir.2009.08.002.
    1. Pengo V, Lensing AW, Prins MH, Marchiori A, Davidson BL, Tiozzo F, et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med. 2004;350:2257–64. doi: 10.1056/NEJMoa032274.
    1. Sista AK, Klok FA. Late outcomes of pulmonary embolism: The post-PE syndrome. Thromb Res. 2018;164:157–62. doi: 10.1016/j.thromres.2017.06.017.
    1. Kucher N, Boekstegers P, Müller OJ, Kupatt C, BeyerWestendorf J, Heitzer T, et al. Randomized, controlled trial of ultrasound-assisted catheter-directed thrombolysis for acute intermediate-risk pulmonary embolism. Circulation. 2014;129:479–86. doi: 10.1161/CIRCULATIONAHA.113.005544.
    1. Piazza G, Hohlfelder B, Jaff MR, Ouriel K, Engelhardt TC, Sterling KM, et al. A prospective, single-arm, multicenter trial of ultrasound-facilitated, catheter-directed, low-dose fibrinolysis for acute massive and submassive pulmonary embolism: The SEATTLE II study. JACC Cardiovasc Interv. 2015;8:1382–92. doi: 10.1016/j.jcin.2015.04.020.
    1. Tapson VF, Sterling K, Jones N, Elder M, Tripathy U, Brower J, et al. A randomized trial of the optimum duration of acoustic pulse thrombolysis procedure in acute intermediate-risk pulmonary embolism: The OPTALYSE PE trial. JACC Cardiovasc Interv. 2018;11:1401–10. doi: 10.1016/j.jcin.2018.04.008.
    1. Braaten JV, Goss RA, Francis CW. Ultrasound reversibly disaggregates fibrin fibers. Thromb Haemost. 1997;78:1063–8. doi: 10.1055/s-0038-1657688.
    1. Rao G, Xu H, Wang JJ, Galmer A, Giri J, Jaff MR, et al. Ultrasound-assisted versus conventional catheter-directed thrombolysis for acute pulmonary embolism: A multicenter comparison of patient-centered outcomes. Vasc Med. 2019;24:241–7. doi: 10.1177/1358863X19838334.
    1. Liang NL, Avgerinos ED, Marone LK, Singh MJ, Makaroun MS, Chaer RA. Comparative outcomes of ultrasound-assisted thrombolysis and standard catheter-directed thrombolysis in the treatment of acute pulmonary embolism. Vasc Endovascular Surg. 2016;50:405–10. doi: 10.1177/1538574416666228.
    1. Rothschild DP, Goldstein JA, Ciacci J, Bowers TR. Ultrasound-accelerated thrombolysis (USAT) versus standard catheter-directed thrombolysis (CDT) for treatment of pulmonary embolism: A retrospective analysis. Vasc Med. 2019;24:234–40. doi: 10.1177/1358863X19838350.
    1. Bonvini RF, Roffi M, Bounameaux H, Noble S, Müller H, Keller PF, et al. AngioJet rheolytic thrombectomy in patients presenting with high-risk pulmonary embolism and cardiogenic shock: A feasibility pilot study. Eurointervention. 2013;8:1419–27. doi: 10.4244/EIJV8I12A215.
    1. Wible BC, Buckley JR, Cho KH, Bunte MC, Saucier NA, Borsa JJ. Safety and efficacy of acute pulmonary embolism treated via large-bore aspiration mechanical thrombectomy using the inari flowtriever device. J Vasc Interv Radiol. 2019;30:1370–5. doi: 10.1016/j.jvir.2019.05.024.
    1. Lumsden AB, Suarez E. Interventional therapy for pulmonary embolism. Methodist Debakey Cardiovasc J. 2016;12:219–24. doi: 10.14797/mdcj-12-4-219.
    1. Pei DT, Liu J, Yaqoob M, Ahmad W, Bandeali SS, Hamzeh IR, et al. Meta-analysis of catheter directed ultrasound-assisted thrombolysis in pulmonary embolism. Am J Cardiol. 2019;124:1470–7. doi: 10.1016/j.amjcard.2019.07.040.
    1. Yasin J, Davis R, Saemi A, Regunath H, Krvavac A, Saboo S, et al. Technical efficiency, short-term clinical results and safety of a large-bore aspiration catheter in acute pulmonary embolism-a retrospective case study. Lung India. 2020;37:485–90. doi: 10.4103/lungindia.lungindia_115_20.
    1. Al-Hakim R, Bhatt A, Benenati JF. Continuous aspiration mechanical thrombectomy for the management of submassive pulmonary embolism: A single-center experience. J Vasc Interv Radiol. 2017;28:1348–52. doi: 10.1016/j.jvir.2017.06.025.
    1. Evaluating the Safety and Efficacy of the Indigo® Aspiration System in Acute Pulmonary Embolism-Full Text View. Available from: [Last accessed on 2021 Jan 13]
    1. Pasha AK, Elder MD, Khurram D, Snyder BA, Movahed MR. Successful management of acute massive pulmonary embolism using Angiovac suction catheter technique in a hemodynamically unstable patient. Cardiovasc Revasc Med. 2014;15:240–3. doi: 10.1016/j.carrev.2013.12.003.
    1. Donaldson CW, Baker JN, Narayan RL, Provias TS, Rassi AN, Giri JS, et al. Thrombectomy using suction filtration and veno-venous bypass: Single center experience with a novel device. Catheter Cardiovasc Interv. 2015;86:E81–7. doi: 10.1002/ccd.25583.
    1. Al-Hakim R, Park J, Bansal A, Genshaft S, Moriarty JM. Early experience with angiovac aspiration in the pulmonary arteries. J Vasc Interv Radiol. 2016;27:730–4. doi: 10.1016/j.jvir.2016.01.012.

Source: PubMed

3
Subskrybuj