Altered cortical and subcortical connectivity due to infrasound administered near the hearing threshold - Evidence from fMRI

Markus Weichenberger, Martin Bauer, Robert Kühler, Johannes Hensel, Caroline Garcia Forlim, Albrecht Ihlenfeld, Bernd Ittermann, Jürgen Gallinat, Christian Koch, Simone Kühn, Markus Weichenberger, Martin Bauer, Robert Kühler, Johannes Hensel, Caroline Garcia Forlim, Albrecht Ihlenfeld, Bernd Ittermann, Jürgen Gallinat, Christian Koch, Simone Kühn

Abstract

In the present study, the brain's response towards near- and supra-threshold infrasound (IS) stimulation (sound frequency < 20 Hz) was investigated under resting-state fMRI conditions. The study involved two consecutive sessions. In the first session, 14 healthy participants underwent a hearing threshold-as well as a categorical loudness scaling measurement in which the individual loudness perception for IS was assessed across different sound pressure levels (SPL). In the second session, these participants underwent three resting-state acquisitions, one without auditory stimulation (no-tone), one with a monaurally presented 12-Hz IS tone (near-threshold) and one with a similar tone above the individual hearing threshold corresponding to a 'medium loud' hearing sensation (supra-threshold). Data analysis mainly focused on local connectivity measures by means of regional homogeneity (ReHo), but also involved independent component analysis (ICA) to investigate inter-regional connectivity. ReHo analysis revealed significantly higher local connectivity in right superior temporal gyrus (STG) adjacent to primary auditory cortex, in anterior cingulate cortex (ACC) and, when allowing smaller cluster sizes, also in the right amygdala (rAmyg) during the near-threshold, compared to both the supra-threshold and the no-tone condition. Additional independent component analysis (ICA) revealed large-scale changes of functional connectivity, reflected in a stronger activation of the right amygdala (rAmyg) in the opposite contrast (no-tone > near-threshold) as well as the right superior frontal gyrus (rSFG) during the near-threshold condition. In summary, this study is the first to demonstrate that infrasound near the hearing threshold may induce changes of neural activity across several brain regions, some of which are known to be involved in auditory processing, while others are regarded as keyplayers in emotional and autonomic control. These findings thus allow us to speculate on how continuous exposure to (sub-)liminal IS could exert a pathogenic influence on the organism, yet further (especially longitudinal) studies are required in order to substantialize these findings.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Fig 1. Schematic drawing of the experimental…
Fig 1. Schematic drawing of the experimental setup.
Fig 2. Results of whole-brain contrast regional…
Fig 2. Results of whole-brain contrast regional homogeneity (ReHo) maps acquired during near-threshold vs. no-tone condition.
Higher local connectivity in: (A) Right superior temporal gyrus (rSTG) in a sagittal (left), coronal (middle) and transversal (right) slice, as well as in (B) Anterior cingulate cortex (ACC) (p 22). (C) Higher local connectivity in right amygdala (rAmyg) when using a more lenient cluster threshold of k > 10.
Fig 3. Box plot showing regional homogeneity…
Fig 3. Box plot showing regional homogeneity (ReHo) differences across conditions.

References

    1. Leventhall HG. What is infrasound? Prog Biophys Mol Biol. 2007;93: 130–137. 10.1016/j.pbiomolbio.2006.07.006
    1. Dallos P. Low-frequency auditory characteristics: Species dependence, J Acoust Soc Am. 1970;48: 489–499.
    1. Dallos P. The Auditory Periphery (Academic, New York: ); 1973. pp. 228–246.
    1. Franke R, Dancer A. Cochlear mechanisms at low frequencies in the guinea pig. Arch Otorhinolaryngol. 1982;234: 213–218.
    1. Cheatham MA, Dallos P. Inner hair cell response patterns: Implications for low-frequency hearing. J Acoust Soc Am. 2001;110: 034–2044.
    1. Salt AN, Hullar TE. Response of the ear to low frequency sounds, infrasound and wind turbines. Hear Res. 2010;268(1–2): 12–21. 10.1016/j.heares.2010.06.007
    1. Salt AN, Lichtenhan JT, Gill RM, Hartsock JJ. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig. J Acoust Soc Am. 2013;133: 1561–1571. 10.1121/1.4789005
    1. Marquardt T, Hensel J, Mrowinski D, Scholz G. Low-frequency characteristics of human and guinea pig cochleae. J Acoust Soc Am. 2007;121(6): 3628–3638. 10.1121/1.2722506
    1. Hensel J, Scholz G, Hurttig U, Janssen T. Impact of infrasound on the human cochlea. Hear Res. 2007;23(1–2): 67–76.
    1. Robinson DW, Dadson RS. A re-determination of the equal-loudness relations for pure tones. British J Appl Physics. 1956;7: 166–181.
    1. Corso JF. Absolute thresholds for tones of low frequency. Am J Psychol 1958;71: 367–374.
    1. Whittle LS, Collins SJ, Robinson DW. The audibility of low frequency sounds. J Sound Vib. 1972;21: 43–448.
    1. Yeowart NS, Evans MJ. Thresholds of audibility for very low-frequency pure tones. J Acoust Soc Am. 1974;55(4): 814–8.
    1. Landstroem U, Haggqvist SL, Lofstedt P. Low frequency noise in lorries and correlated effects on drivers. J Low Freq Noise Vibr. 1988;7(3): 104–109.
    1. Verzini AM, Ortiz Skarp AH, Nitardi AH. A laboratory experiment on very low frequency sound effects. Appl Acoust. 1999;57: 69–77.
    1. Schust M. Effects of low frequency noise up to 100 Hz. Noise Health. 2004;6(23): 73–85.
    1. Møller H, Pedersen CS. Hearing at low and infrasonic frequencies. Noise Health. 2004;6(23): 37–57.
    1. Dommes E, Bauknecht HC, Scholz G, Rothemund Y, Hensel J, Klingebiel R. (2009). Auditory cortex stimulation by low-frequency tones—An fMRI study. Brain Res. 2009;1304: 129–137. 10.1016/j.brainres.2009.09.089
    1. Weichenberger M, Kühler R, Bauer M, Hensel J, Brühl R, Ihlenfeld A, et al. Brief bursts of infrasound may improve cognitive function—An fMRI study. Hear Res. 2015;328: 87–93. 10.1016/j.heares.2015.08.001
    1. Leventhall HG. Low frequency noise and annoyance Noise Health. 2004;6(23): 59–72.
    1. Shepherd D, McBride D, Welch D, Dirks KN, Hill EM. Evaluating the impact of wind turbine noise on health-related quality of life. Noise Health. 2011;13(54): 333–9. 10.4103/1463-1741.85502
    1. Farboud A, Crunkhorn R, Trinidade A. ‘Wind Turbine Syndrome': fact or fiction? J Laryngol Otol. 2013;127(3): 222–6. 10.1017/S0022215112002964
    1. Enbom H, Enbom IM. Infrasound from wind turbines—an overlooked health hazard. Lakartidningen. 2013;110(32–33): 1388–9.
    1. Jakobsen J. Infrasound emission from wind turbines. J Low Freq Noise Vib Active Contr. 2005;24(3): 145–155.
    1. Van den Berg GP. The sound of high winds: The effect of atmospheric stability on wind turbine sound and microphone noise (Doctoral dissertation). University of Groningen, Netherlands, 2006. .
    1. Jung SS, Cheung W. Experimental identification of acoustic emission characteristics of large wind turbines with emphasis on infrasound and low-frequency noise. J Korean Physic Soc. 2008;53: 1897–1905.
    1. Sugimoto T, Koyama K, Watanabe K. Measurement of infra-sound generated by wind turbine generator SICE Annual Conf. (Tokyo), 2008.
    1. Berglund B, Lindvall T. Document prepared for WHO Archives of the Centre for Sensory Research. Stockholm University and Karolinska Institute; 1995:2: 1–195.
    1. Salt AN, Lichtenhan JT, Gill RM, Hartsock JJ. Large endolymphatic potentials from low-frequency and infrasonic tones in the guinea pig. J Acoust Soc Am. 2013;133(3): 1561–71. 10.1121/1.4789005
    1. Salt AN, Hullar TE. Response of the ear to low frequency sounds, infrasound and wind turbines. Hear Res. 2010;268(1–2): 12–21. 10.1016/j.heares.2010.06.007
    1. Salt AN, Kaltenbach JA. Infrasound From Wind Turbines Could Affect Humans. ull Sci Technol Soc. 2011;31: 296.
    1. Dixon NF, Henley SHA. Unconscious Perception: Possible Implications of Data from Academic Research for Clinical Practice. J Nerv Ment Dis. 1991;178(5): 243–252.
    1. Swingle PG. Subliminal Treatment Procedures: A Clinician's Guide. Hillsdale, N. J. Erlbaum; 1991.
    1. Taylor E. Thinking Without Thinking. R K Book, Big Bear City, CA; 1994.
    1. Gusnard DA, Akbudak E, Shulman GL, Raichle ME. Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci USA. 2001;98: 4259–4264. 10.1073/pnas.071043098
    1. Buckner RL, Andrews-Hanna JR, Schacter DL. The brain's default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008;1124: 1–38. 10.1196/annals.1440.011
    1. Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci USA. 2003;100: 253–258. 10.1073/pnas.0135058100
    1. Hurlburt RT, Alderson-Day B, Fernyhough C, Kühn S. What goes on in the resting-state? A qualitative glimpse into resting-state experience in the scanner. Front Psychol. 2015;6: 1535 10.3389/fpsyg.2015.01535
    1. Geerligs L. Rubinov M, Cam-Can, Henson RN. State and Trait Components of Functional Connectivity: Individual Differences Vary with Mental State. J Neurosci. 2015;35(41): 13949–61. 10.1523/JNEUROSCI.1324-15.2015
    1. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. NeuroImage. 2004;22: 394–400. 10.1016/j.neuroimage.2003.12.030
    1. Zou Q, Wu CW, Stein EA, Zang Y, Yang Y. Static and dynamic characteristics of cerebral blood flow during the resting-state. NeuroImage. 2009;48(3): 515–524. 10.1016/j.neuroimage.2009.07.006
    1. Kühn S, Vanderhasselt MA, De Raedt R, Gallinat J. The neural basis of unwanted thoughts during resting state. Soc Cogn Affect Neurosci. 2014;9: 1320–4. 10.1093/scan/nst117
    1. Long XY, Zuo XN, Kiviniemi V, Yang Y, Zou QH, Zhu CZ, et al. Default mode network as revealed with multiple methods for resting-state functional MRI analysis. J Neurosci Methods. 2008;171: 349–355. 10.1016/j.jneumeth.2008.03.021
    1. McKeown MJ, Hansen LK, Sejnowsk TJ. Independent component analysis of functional MRI: what is signal and what is noise? Curr Opin Neurobiol. 2003;13(5): 620–629.
    1. ISO (2009). 389–9:2009, Acoustics—Reference Zero for the Calibration of Audiometric Equipment—Part 9: Preferred Test Conditions for the Determination of Reference Hearing Threshold Levels (International Organization for Standardization, Geneva, Switzerland: ).
    1. Oldfield R. The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychol. 1971;9: 97–113.
    1. Kuehler R, Fedtke T, Hensel J. Infrasonic and low-frequency insert earphone hearing threshold. J Acoust Soc Am. 2015;137(4): 347–353.
    1. Kühler R, Hensel J, Koch C, Bauer M, Sander-Thömmes T. Auditory cortex activation by infrasonic and low-frequency sound of equalized individual loudness. Proceedings of Euronoise 2015, C. Glorieux, Ed., Maastricht, June 1–3, ISSN: 2226-5147.
    1. Kaernbach C. Adaptive threshold estimation with unforced-choice tasks. Percept Psychophys. 2001;63: 1377–1388.
    1. ISO (2003). 226:2003, Acoustics—Normal Equal-Loudness-Level Contours (International Organization for Standardization, Geneva, Switzerland: ).
    1. Møller H, Pedersen CS. Hearing at low and infrasonic frequencies. Noise Health. 2004;6(23): 37–57.
    1. Brand T, Hohmann V. An adaptive procedure for categorical loudness scaling. J Acoust Soc Am. 2002;112: 1597–1604.
    1. Scholz G, Dommes E, Rothemund Y, Hensel J. Observation of low-frequency and infrasound in the auditory cortex using functional magnetic resonance imaging. The Sixteenth International Congress on Sound and Vibration, Krakow, 5–9 July 2009.
    1. Yan CG, Zang YF. DPARSF: A MATLAB toolbox for “pipeline” data analysis of resting-state fMRI. Front System Neurosci. 2010;4: 1–7.
    1. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34: 537–541.
    1. Liu H, Liu Z, Liang M, Hao Y, Tan L, Kuang F, et al. Decreased regional homogeneity in schizophrenia: A resting-state functional magnetic resonance imaging study. NeuroReport. 2006;17: 19–22.
    1. Wu T, Long X, Zang Y, Wang L, Hallett M, Li K et al. Regional homogeneity changes in patients with parkinson’s disease. Hum Brain Mapp. 2009;30: 1502–1510. 10.1002/hbm.20622
    1. Wu QZ, Li DM, Kuang WH, Zhang TJ, Lui S, Huang NQ, et al. Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum Brain Mapp. 2011;32: 1290–1299. 10.1002/hbm.21108
    1. Zang Y, Jiang T, Lu Y, He Y, Tian L. Regional homogeneity approach to fMRI data analysis. NeuroImage. 2004;22: 394–400. 10.1016/j.neuroimage.2003.12.030
    1. Katanoda K, Matsuda Y, Sugishita M. A spatial–temporal regression model for the analysis of functional MRI data. NeuroImage. 2002;17: 1415–1428.
    1. Tononi G, McIntosh AR, Russell DP, Edelman GM. Functional clustering: identifying strongly interactive brain regions in neuroimaging data. NeuroImage. 1998;7: 133–49. 10.1006/nimg.1997.0313
    1. Kendall M, Gibbons JD. Rank Correlation Methods. Oxford Univ. Press, Oxford; 1990.
    1. Rorden C. ).
    1. Ward BD. AFNI AlphaSim Documentation Medical College of Wisconsin; 2000. Simultaneous inference for fMRI data.
    1. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. "Automated Anatomical Labeling of activations in SPM using a Macroscopic Anatomical Parcellation of the MNI MRI single-subject brain". NeuroImage. 2002;15(1): 273–289. 10.1006/nimg.2001.0978
    1. Calhoun VD, Adali T, Pekar JJ. A method for comparing group fMRI data using independent component analysis: application to visual, motor and visuomotor tasks. Magn. Reson. Imaging. 2004;22, 1181–1191. 10.1016/j.mri.2004.09.004
    1. Power JD., Barnes KA, Snyder AZ, Schlaggar BL, Petersen SE. Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 2012;59: 2142–2154. 10.1016/j.neuroimage.2011.10.018
    1. Grill-Spector K, Kushnir T, Edelman S, Avidan G, Itzchak Y, Malach R. Differential processing of objects under various viewing conditions in the human lateral occipital complex. Neuron. 1999;24: 187–203.
    1. Grill-Spector K, Malach R. fMRI-adaptation: a tool for studying the functional properties of human cortical neurons. Acta Psychol. 2001;107: 293–321.
    1. Ulanovsky N, Las L, Farkas D, Nelken I. Multiple time scales of adaptation in auditory cortex neurons. J Neurosci. 2004;24: 10440–10453. 10.1523/JNEUROSCI.1905-04.2004
    1. Salt AN, Lichtenhan JT. Fourth International Meeting on Wind Turbine Noise Rome Italy 12–14 April 2011.
    1. Brown MC, Berglund AM, Kiang NY, Ryugo DK. Central trajectories of type II spiral ganglion neurons. J Comp Neurol. 1988;278: 581–590. 10.1002/cne.902780409
    1. Shore SE. Multisensory integration in the dorsal cochlear nucleus: unit responses to acoustic and trigeminal ganglion stimulation. Eur J Neurosci. 2005;21: 3334–3348. 10.1111/j.1460-9568.2005.04142.x
    1. Godfrey DA, Godfrey TG, Mikesell NI, Waller HJ, Yao W, Chen K, et al. Chemistry of granular and closely related regions of the cochlear nucleus In Syka J. (Ed.), Acoustical signal processing in the central auditory system. New York, NY: Plenum Press; 1997. pp. 139–153.
    1. Salt, 2014.
    1. Jäncke L, Wüstenberg T, Schulze K, Heinze HJ. Asymmetric hemodynamic responses of the human auditory cortex to monaural and binaural stimulation. Hear. Res. 2002;170(1–2): 166–178.
    1. Schönwiesner M, Krumbholz K, Rübsamen R, Fink GR, von Cramon DY. Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex. Cereb. Cortex. 2007;17(2): 492–499. 10.1093/cercor/bhj165
    1. Devlin JT, Raley J, Tunbridge E, Lanary K, Floyer-Lea A, Narain C, et al. Functional asymmetry for auditory processing in human primary auditory cortex. J Neurosci. 2003;23(37): 11516–22.
    1. Khalfa S, Collet L. Functional asymmetry of medial olivocochlear system in humans. Towards a peripheral auditory lateralization. Neuroreport 1996;7(5): 993–6.
    1. Khalfa S, Veuillet E, Collet L. Influence of handedness on peripheral auditory asymmetry. Eur J Neurosci. 1998;10(8): 2731–7
    1. Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD. Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature. 1999;402: 179–181. 10.1038/46035
    1. Kerns JG, Cohen JD, MacDonald AW III, Cho RY, Stenger VA, Carter CS. Anterior cingulate conflict monitoring and adjustments in control. Science. 2004b;303: 1023–1026.
    1. Egner T, Hirsch J. The neural correlates and functional integration of cognitive control in a Stroop task. NeuroImage. 2005a;24: 539–547.
    1. Bush G, Luu P, Posner MI. Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci. 2000;4(6): 215–222.
    1. Bishop SR, Lau M, Shapiro S, Carlson L, Anderson ND, Carmody J, et al. Mindfulness: a proposed operational definition. Clin Psychol Sci Pract. 2004;11: 230–241.
    1. Compton RJ, Banich MT, Mohanty A, Milham MP, Herrington J, Miller GA, et al. Paying attention to emotion: An fMRI investigation of cognitive and emotional Stroop tasks. Cogn Affect Behav Neurosci. 2003;3: 81–96.
    1. Etkin A, Egner T, Peraza DM, Kandel ER, Hirsch J. Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron. 2006;51: 1–12.
    1. Meneguzzo P, Tsakiris M, Schioth HB, Stein DJ, Brooks SJ. Subliminal versus supraliminal stimuli activate neural responses in anterior cingulate cortex, fusiform gyrus and insula: a meta-analysis of fMRI. BMC psychol. 2014;2: 52 10.1186/s40359-014-0052-1
    1. Terreberry RR, Neafsay EJ. Rat medial frontal cortex: a visceral motor region with a direct projection to the solitary nucleus. Brain Res. 1983;278: 245–24.
    1. Hurley KM, Herbert H, Moga MM, Saper CB. Efferent projections of the infralimbic cortex of the rat. J Comp Neurol. 1991;308: 249–276. 10.1002/cne.903080210
    1. Davis M, Whalen PJ. The amygdala: vigilance and emotion. Mol Psychiatry. 2001;6(1): 13–34.
    1. Zald DH, Pardo JV. Emotion, olfaction, and the human amyg- dala: amygdala activation during aversive olfactory stimulation. Proc Natl Acad Sci USA. 1997;94: 4119–4124.
    1. Zald DH, Lee JT, Fluegel KW, Pardo JV. Aversive gustatory stimulation activates limbic circuits in humans. Brain. 1998;121: 1143–1154.
    1. Irwin W, Davidson RJ, Lowe MJ, Mock BJ. Sorenson JA, Turski PA. Human amygdala activation detected with echo-planar functional magnetic resonance imaging. Neuroreport. 1996;7: 1765–1769.
    1. Lane RD, Reiman E, Bradley MM, Lang PJ, Ahern GL, Davidson RJ. Neuroanatomical correlates of pleasant and unpleasant emotion. Neuropsychologia. 1997;35: 1437–1444.
    1. Taylor SF, Liberzon I, Fig LM, Decker L, Minoshima S, Koeppe RA. The effect of emotional content on visual recognition memory: A PET activation study. Neuroimage. 1998;8: 188–197. 10.1006/nimg.1998.0356
    1. Phillips ML, Young AW, Scott SK, Calder AJ, Andrew C, Giampietro V, et al. Neural responses to facial and vocal expressions of fear and disgust. Proc R Soc London B. 1998;265: 1809–1817.
    1. Morris JS, Scott SK, Dolan RJ. Saying it with feeling: neural responses toemotional vocalizations. Neuropsychologia. 1999;37: 1155–1163.
    1. Sander K, Scheich H. Auditory perception of laughing and crying activates human amygdala regardless of attentional state. Cogn Brain Res. 2001;12: 181–198.
    1. Mirz F, Gjedde A, Sødkilde-Jrgensen H, Pedersen CB. Functional brain imaging of tinnitus-like perception induced by aversive auditory stimuli. NeuroReport. 2000;11: 633–637.
    1. Morris JS, Scott SK, Dolan RJ. Saying it with feeling: neural responses toemotional vocalizations. Neuropsychologia. 1999;37: 1155–1163.
    1. Zald D, Pardo J. The neural correlates of aversive auditory stimulation. NeuroImage. 2001;16: 746–753.
    1. Auerbach BD., Rodrigues PV, Salvi RJ. Central gain control in tinnitus and hyperacusis. Front Neurol. 2014;5: 206 10.3389/fneur.2014.00206
    1. Graybiel AM. Some ascending connections of the pulvinar and lateralis posterior of the thalamus in the cat. Brain Res. 1972;44: 99–125.
    1. Aitkin L. The Auditory Midbrain: Structure and Function in the Central Auditory Pathways. New Jersey: Humana Press; 1986.
    1. LeDoux JE. Brain mechanisms of emotion and emotional learning. Curr Opin Neurobiol. 1992;2: 191–197.
    1. Møller AR, Rollins PR. The non-classical auditory pathways are involved in hearing in children but not in adults. Neurosci Lett. 2002;319(1): 41–4.
    1. Møller AR, Møller MB, Yokota M. Some forms of tinnitus may involve the extralemniscal auditory pathway. Laryngoscope. 1992;102(10): 1165–1171. 10.1288/00005537-199210000-00012
    1. Møller AR. Pathophysiology of tinnitus. Otolaryngol Clin North Am. 2003;36(2): 249–66.
    1. Gläscher J, Adolphs R. Processing of the arousal of sub- and supraliminal emotional stimuli by the human amygdala. J Neurosci. 2003;23(32): 10274–10282.
    1. Curtis CE, D'Esposito M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn Sci. 2003;7: 415–423.
    1. Henckens MJ, van Wingen GA, Joëls M, Fernández G. Corticosteroid induced decoupling of the amygdala in men. Cereb Cortex. 2012;22(10): 2336–45. 10.1093/cercor/bhr313
    1. Roy AK, Shehzad Z, Margulies DS, et al. Functional connectivity of the human amygdala using resting state fMRI. Neuroimage. 2009;45: 614–26. 10.1016/j.neuroimage.2008.11.030
    1. Welch BL, Welch AS. Physiological effects of noise. Plenum Press: New York: 1970.
    1. Cantrell RW. Prolonged exposure to intermittent noise: audiometric, biochemical, motor, psychological and sleep effects. Laryngoscope. 1974;84: 4–55.
    1. Cavatorta A, Falzoi M, Cigala F, Riccò M, Bruschi G, Franchini I, et al. Adrenal response in the pathogenesis of arterial hypertension in workers exposed to high noise levels. J Hypertens Suppl. 1987;5(5): 463–466.
    1. Karpova NI, Alekseev SV, Erokhin VN, Kadyskina EN, Reutov OV. Early response of the organism to low-frequency acoustical oscillations. Noise and Vibr Bull. 1970:11(65): 100–103.
    1. Danielsson A, Landstrom U. Blood pressure changes in man during infrasonic exposure. An experimental study. Acta Med Scand. 1985;217(5): 531–535.

Source: PubMed

3
Subskrybuj