Sources of Inter-individual Variability in the Therapeutic Response of Blood Glucose Control to Exercise in Type 2 Diabetes: Going Beyond Exercise Dose

Thomas P J Solomon, Thomas P J Solomon

Abstract

In the context of type 2 diabetes, inter-individual variability in the therapeutic response of blood glucose control to exercise exists to the extent that some individuals, occasionally referred to as "non-responders," may not experience therapeutic benefit to their blood glucose control. This narrative review examines the evidence and, more importantly, identifies the sources of such inter-individual variability. In doing so, this review highlights that no randomized controlled trial of exercise has yet prospectively measured inter-individual variability in blood glucose control in individuals with prediabetes or type 2 diabetes. Of the identified sources of inter-individual variability, neither has a prospective randomized controlled trial yet quantified the impact of exercise dose, exercise frequency, exercise type, behavioral/environmental barriers, exercise-meal timing, or anti-hyperglycemic drugs on changes in blood glucose control, in individuals with prediabetes or type 2 diabetes. In addition, there is also an urgent need for prospective trials to identify molecular or physiological predictors of inter-individual variability in the changes in blood glucose control following exercise. Therefore, the narrative identifies critical science gaps that must be filled if exercise scientists are to succeed in optimizing health care policy recommendations for type 2 diabetes, so that the therapeutic benefit of exercise may be maximized for all individuals with, or at risk of, diabetes.

Keywords: HbA1c; blood glucose control; exercise; heterogeneity; non-responder; training; type 2 diabetes; variability.

Figures

FIGURE 1
FIGURE 1
A cartoon depicting the inter-individual variability of changes in HbA1c levels following exercise training in individuals with prediabetes or type 2 diabetes. The y-axis represents the training-induced change in HbA1c (post- minus pre-intervention value). The x-axis represents the individual participants taking part in a study. Adverse outcomes are illustrated as participants’ responses showing a training-induced increase in HbA1c that is more than 1.96 times the technical error (TE). Therapeutic outcomes are shown as training-induced decreases in HbA1c that are greater than 1.96 times the technical error.
FIGURE 2
FIGURE 2
(A) A schematic for a repeated-measures double-crossover study design which, if the patient-by-treatment interaction term were statistically significant, would accurately indicate the presence of inter-individual variability. All patients undergo all interventions twice. The type of trial each participant first undergoes should be randomized and the primary outcome is measured at the beginning and the end of each intervention period. The time between interventions would have to be sufficient such that training effect was washed out. (B) Perhaps a more practical and logistically feasible method for determining the technical error of measurement, and thereby identifying non-responders, is a randomized controlled intervention where the primary outcome variable is measured repeatedly within an intervention. Participants are randomized to either the control arm (no training) or the treatment arm (exercise training). Ideally, the variable would be repeatedly measured within a time frame where intervention-induced changes are unlikely (e.g., measuring HbA1c three times within a 2-week period towards the end of a long-term training intervention). Gray stars indicate repeated measurement of the variable, HbA1c, for example.
FIGURE 3
FIGURE 3
Evidence-based sources of inter-individual variability in the blood glucose lowering effects of exercise in individuals with prediabetes or T2DM. Other sources that have not been adequately studied to conclusively state that they contribute to this variability in individuals with prediabetes or T2DM include age, sex, race, body weight, family history of diabetes, and duration of diabetes.

References

    1. Aas V., Hessvik N. P., Wettergreen M., Hvammen A. W., Hallén S., Thoresen G. H., et al. (2011). Chronic hyperglycemia reduces substrate oxidation and impairs metabolic switching of human myotubes. Biochim. Biophys. Acta 1812 94–105. 10.1016/j.bbadis.2010.09.014
    1. AbouAssi H., Slentz C. A., Mikus C. R., Tanner C. J., Bateman L. A., Willis L. H., et al. (2015). The effects of aerobic, resistance, and combination training on insulin sensitivity and secretion in overweight adults from STRRIDE AT/RT: a randomized trial. J. Appl. Physiol. 118 1474–1482. 10.1152/japplphysiol.00509.2014
    1. Álvarez C., Ramírez-Campillo R., Ramírez-Vélez R., Izquierdo M. (2017). Prevalence of non-responders for glucose control markers after 10 weeks of high-intensity interval training in adult women with higher and lower insulin resistance. Front. Physiol. 8:479. 10.3389/fphys.2017.00479
    1. American Diabetes Association (2018a). 2. Classification and diagnosis of diabetes: standards of medical care in diabetes—2018. Diabetes Care 41 S13–S27. 10.2337/dc18-S002
    1. American Diabetes Association (2018b). 4. lifestyle management: standards of medical care in diabetes—2018. Diabetes Care 41 S38–S50. 10.2337/dc18-S004
    1. American Diabetes Association (2018c). 8. pharmacologic approaches to glycemic treatment: standards of medical care in diabetes—2018. Diabetes Care 41 S73–S85. 10.2337/dc18-S008
    1. Atkinson G., Williamson P., Batterham A. M. (2018). Exercise training response heterogeneity: statistical insights. Diabetologia 61 496–497. 10.1007/s00125-017-4501-2
    1. Balducci S., Zanuso S., Cardelli P. (2012). Cardiovascular risk factors independently of body weight loss in subjects with type 2 diabetes participating in the italian diabetes and exercise study (IDES). Diabetes Care 35 1347–1354. 10.2337/dc11-1859
    1. Barrès R., Yan J., Egan B., Treebak J. T., Rasmussen M., Fritz T., et al. (2012). Acute exercise remodels promoter methylation in human skeletal muscle. Cell Metab. 15 405–411. 10.1016/j.cmet.2012.01.001
    1. Bateman L. A., Slentz C. A., Willis L. H., Shields A. T., Piner L. W., Bales C. W., et al. (2011). Comparison of aerobic versus resistance exercise training effects on metabolic syndrome (from the studies of a targeted risk reduction intervention through defined exercise - STRRIDE-AT/RT. Am. J. Cardiol. 108 838–844. 10.1016/j.amjcard.2011.04.037
    1. Bonafiglia J. T., Rotundo M. P., Whittall J. P., Scribbans T. D., Graham R. B., Gurd B. J. (2016). Inter-individual variability in the adaptive responses to endurance and sprint interval training: a randomized crossover study. PLoS One 11:e0167790. 10.1371/journal.pone.0167790
    1. Bouchard C., Blair S. N., Church T. S., Earnest C. P., Hagberg J. M., Häkkinen K., et al. (2012). Adverse metabolic response to regular exercise: is it a rare or common occurrence? PLoS One 7:e37887. 10.1371/journal.pone.0037887
    1. Bouchonville M., Armamento-Villareal R., Shah K., Napoli N., Sinacore D. R., Qualls C., et al. (2014). Weight loss, exercise, or both and cardiometabolic risk factors in obese older adults: results of a randomized controlled trial. Int. J. Obes. 38 423–431. 10.1038/ijo.2013.122
    1. Boulé N. G., Kenny G. P., Larose J., Khandwala F., Kuzik N., Sigal R. J. (2013). Does metformin modify the effect on glycaemic control of aerobic exercise, resistance exercise or both? Diabetologia 56 2378–2382. 10.1007/s00125-013-3026-6
    1. Boulé N. G., Robert C., Bell G. J., Johnson S. T., Bell R. C., Lewanczuk R. Z., et al. (2011). Metformin and exercise in type 2 diabetes: examining treatment modality interactions. Diabetes Care 34 1469–1474. 10.2337/dc10-2207
    1. Boulé N. G., Weisnagel S. J., Lakka T. A., Tremblay A., Bergman R. N., Rankinen T., et al. (2005). Effects of exercise training on glucose homeostasis: the HERITAGE family study. Diabetes Care 28 108–114. 10.2337/diacare.28.1.108
    1. Burns N., Finucane F. M., Hatunic M., Gilman M., Murphy M., Gasparro D., et al. (2007). Early-onset type 2 diabetes in obese white subjects is characterised by a marked defect in beta cell insulin secretion, severe insulin resistance and a lack of response to aerobic exercise training. Diabetologia 50 1500–1508. 10.1007/s00125-007-0655-7
    1. Chacko E. (2014). Timing and intensity of exercise for glucose control. Diabetologia 57 2425–2426. 10.1007/s00125-014-3339-0
    1. Chacko E. (2016). A time for exercise: the exercise window. J. Appl. Physiol. 4:ja00685.2016. 10.1152/japplphysiol.00685.2016
    1. Church T. S., Blair S. N., Cocreham S., Johannsen N., Johnson W., Kramer K., et al. (2010). Effects of aerobic and resistance training on hemoglobin A1c levels in patients with type 2 diabetes: a randomized controlled trial. JAMA 304 2253–2262. 10.1001/jama.2010.1710
    1. Colberg S. R., Zarrabi L., Bennington L., Nakave A., Thomas Somma C., Swain D. P., et al. (2009). Postprandial walking is better for lowering the glycemic effect of dinner than pre-dinner exercise in type 2 diabetic individuals. J. Am. Med. Dir. Assoc. 10 394–397. 10.1016/j.jamda.2009.03.015
    1. De Filippis E., Alvarez G., Berria R., Cusi K., Everman S., Meyer C., et al. (2008). Insulin-resistant muscle is exercise resistant: evidence for reduced response of nuclear-encoded mitochondrial genes to exercise. Am. J. Physiol. Endocrinol. Metab. 294 E607–E614. 10.1152/ajpendo.00729.2007
    1. De Lannoy L., Clarke J., Stotz P. J., Ross R. (2017). Effects of intensity and amount of exercise on measures of insulin and glucose: analysis of inter-individual variability. PLoS One 12:e0177095. 10.1371/journal.pone.0177095
    1. Dela F., von Linstow M. E., Mikines K. J., Galbo H. (2004). Physical training may enhance beta-cell function in type 2 diabetes. Am. J. Physiol. Endocrinol. Metab. 287 E1024–E1031. 10.1152/ajpendo.00056.2004
    1. Dempsey P. C., Owen N., Yates T. E., Kingwell B. A., Dunstan D. W. (2016). Sitting less and moving more: improved glycaemic control for type 2 diabetes prevention and management. Curr. Diab. Rep. 16:114. 10.1007/s11892-016-0797-4
    1. DiPietro L., Gribok A., Stevens M. S., Hamm L. F., Rumpler W. (2013). Three 15-min bouts of moderate postmeal walking significantly improves 24-h glycemic control in older people at risk for impaired glucose tolerance. Diabetes Care 36 3262–3268. 10.2337/dc13-0084
    1. Donath M. Y., Gross D. J., Cerasi E., Kaiser N. (1999). Hyperglycemia-induced beta-cell apoptosis in pancreatic islets of Psammomys obesus during development of diabetes. Diabetes Metab. Res. Rev. 48 738–744. 10.2337/diabetes.48.4.738
    1. Draeger A., Monastyrskaya K., Mohaupt M., Hoppeler H., Savolainen H., Alleman C., et al. (2006). Statin therapy induces ultrastructural damage in skeletal muscle in patients without myalgia. J. Pathol. 210 94–102. 10.1002/path
    1. Dubé J., Fleighman K., Rousson V., Goodpaster B. H., Amati F. (2012). Exercise dose and insulin sensitivity: relevance for diabetes prevention. Med. Sci. Sport Exerc. 44 793–799. 10.1249/MSS.0b013e31823f679f.Exercise
    1. Dubé J. J., Amati F., Toledo F. G. S., Stefanovic-Racic M., Rossi A., Coen P., et al. (2011). Effects of weight loss and exercise on insulin resistance, and intramyocellular triacylglycerol, diacylglycerol and ceramide. Diabetologia 1147–1156. 10.1007/s00125-011-2065-0
    1. Dunstan D. W., Salmon J., Owen N., Armstrong T., Zimmet P. Z., Welborn, et al. (2004). Physical activity and television viewing in relation to risk of undiagnosed. Diabetes Care 27 2603–2609. 10.2337/diacare.27.11.2603
    1. Erickson M. L., Little J. P., Gay J. L., McCully K. K., Jenkins N. T. (2017a). Postmeal exercise blunts postprandial glucose excursions in people on metformin monotherapy. J. Appl. Physiol. 123 444–450. 10.1152/japplphysiol.00213.2017
    1. Erickson M. L., Little J. P., Gay J. L., McCully K. K., Jenkins N. T. (2017b). Effects of postmeal exercise on postprandial glucose excursions in people with type 2 diabetes treated with add-on hypoglycemic agents. Diabetes Res. Clin. Pract. 126 240–247. 10.1016/j.diabres.2017.02.015
    1. Feng Y. Z., Nikoliæ N., Bakke S. S., Kase E. T., Guderud K., Hjelmesæth J., et al. (2015). Myotubes from lean and severely obese subjects with and without type 2 diabetes respond differently to an in vitro model of exercise. Am. J. Physiol. Cell Physiol. 308 C548–C556. 10.1152/ajpcell.00314.2014
    1. Francois M. E., Baldi J. C., Manning P. J., Lucas S. J. E., Hawley J. A., Williams M. J. A., et al. (2014). ‘Exercise snacks’ before meals: a novel strategy to improve glycaemic control in individuals with insulin resistance. Diabetologia 57 1437–1445. 10.1007/s00125-014-3244-6
    1. Francois M. E., Gilbertson N. M., Eichner N. Z. M., Heiston E. M., Fabris C., Breton M., et al. (2018). Combining short-term interval training with caloric restriction improves ß-cell function in obese adults. Nutrients 10:E717. 10.3390/nu10060717
    1. Gaudet-Savard T., Ferland A., Broderick T. L., Garneau C., Tremblay A., Nadeau A., et al. (2007). Safety and magnitude of changes in blood glucose levels following exercise performed in the fasted and the postprandial state in men with type 2 diabetes. Eur. J. Cardiovasc. Prev. Rehabil. 14 831–836. 10.1097/HJR.0b013e3282efaf38
    1. Goltz F. R., Thackray A. E., King J. A., Dorling J. L., Atkinson G., Stensel D. J. (2018). Interindividual responses of appetite to acute exercise: a replicated crossover study. Med. Sci. Sports Exerc. 50 758–768. 10.1249/MSS.0000000000001504
    1. Gonzalez J. T., Veasey R. C., Rumbold P. L. S., Stevenson E. J. (2013). Breakfast and exercise contingently affect postprandial metabolism and energy balance in physically active males. Br. J. Nutr. 110 721–732. 10.1017/S0007114512005582
    1. Goodpaster B. H., DeLany J. P., Otto A. D., Kuller L., Vockley J., South-Paul J. E., et al. (2010). Effects of diet and physical activity interventions on weight loss and cardiometabolic risk factors in severely obese adults: a randomized trial. JAMA 304 1795–1802. 10.1001/jama.2010.1505
    1. Goodpaster B. H., Katsiaras A., Kelley D. E. (2003). Enhanced fat oxidation through physical activity is associated with improvements in insulin sensitivity in obesity. Diabetes Metab. Res. Rev. 52 2191–2197. 10.2337/diabetes.52.9.2191
    1. Green C. J., Henriksen T. I., Pedersen B. K., Solomon T. (2012). Glucagon like peptide-1-induced glucose metabolism in differentiated human muscle satellite cells is attenuated by hyperglycemia. PLoS One 7:e44284. 10.1371/journal.pone.0044284
    1. Gregg E. W., Chen H., Wagenknecht L. E., Clark J. M., Delahanty L. M., Bantle J., et al. (2012). Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA 308 2489–2496. 10.1001/jama.2012.67929
    1. Gurd B. J., Giles M. D., Bonafiglia J. T., Raleigh J. P., Boyd J. C., Ma J. K., et al. (2016). Incidence of nonresponse and individual patterns of response following sprint interval training. Appl. Physiol. Nutr. Metab. 41 229–234. 10.1139/apnm-2015-0449
    1. Hällsten K., Virtanen K. A., Lönnqvist F., Sipilä H., Oksanen A., Viljanen T., et al. (2002). Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes. Diabetes Metab. Res. Rev. 51 3479–3485. 10.2337/diabetes.51.12.3479
    1. Haupt A., Kausch C., Dahl D., Bachmann O., Stumvoll M., Haring H. U., et al. (2002). Effect of glimepiride on insulin-stimulated glycogen synthesis in cultured human skeletal muscle cells: a comparison to glibenclamide. Diabetes Care 25 2129–2132. 10.2337/diacare.25.12.2129
    1. Hecksteden A., Kraushaar J., Scharhag-Rosenberger F., Theisen D., Senn S., Meyer T. (2015). Individual response to exercise training - a statistical perspective. J. Appl. Physiol. 118 1450–1459. 10.1152/japplphysiol.00714.2014
    1. Hex N., Bartlett C., Wright D., Taylor M., Varley D. (2012). Estimating the current and future costs of Type 1 and Type 2 diabetes in the UK, including direct health costs and indirect societal and productivity costs. Diabet. Med. 29 855–862. 10.1111/j.1464-5491.2012.03698.x
    1. Holloszy J. O., Narahara H. T. (1965). Studies of tissue permeability. X. Changes in permeability to 3-methylglucose associated with contraction of isolated frog muscle. J. Biol. Chem. 240 3493–3500.
    1. Hopkins W. G. (2000). Measures of reliability in sports medicine and science. Sport Med. 30 1–15. 10.2165/00007256-200030050-00006
    1. Houmard J. A., Tanner C. J., Slentz C. A., Duscha B. D., McCartney J. S., Kraus W. E. (2004). Effect of the volume and intensity of exercise training on insulin sensitivity. J. Appl. Physiol. 96 101–106. 10.1152/japplphysiol.00707.2003
    1. Jakobsen I., Solomon T. P. J., Karstoft K. (2016). The acute effects of interval-type exercise on glycemic control in type 2 diabetes subjects: importance of interval length. A controlled, counterbalanced, crossover study. PLoS One 11:e0163562. 10.1371/journal.pone.0163562
    1. Karstoft K., Winding K., Knudsen S. H., Nielsen J. S., Thomsen C., Pedersen B. K., et al. (2013). The effects of free-living interval- walking training on glycemic control, body composition, and physical fitness in type 2 diabetic patients. Diabetes Care 36 228–236. 10.2337/dc12-0658
    1. Klimentidis Y. C., Chen Z., Arora A., Hsu C.-H. (2014). Association of physical activity with lower type 2 diabetes incidence is weaker among individuals at high genetic risk. Diabetologia 57 2530–2534. 10.1007/s00125-014-3380-z
    1. Knudsen S., Karstoft K., Winding K., Holst J., Pedersen B., Solomon T. P. J. (2015). Effects of acute exercise on pancreatic endocrine function in subjects with type 2 diabetes. Diabetes Obes. Metab. 17 207–210. 10.1111/dom.12413
    1. Krotkiewski M., Lonnroth P., Mandroukas K., Wroblewski Z., Rebuffe-Scrive M., Holm G., et al. (1985). The effects of physical training on insulin secretion and effectiveness and on glucose metabolism in obesity and type 2 (non-insulin-dependent) diabetes mellitus. Diabetologia 28 881–890. 10.1007/BF00703130
    1. Lakka T., Rankinen T., Weisnagel S., Chagnon Y., Lakka H.-M., Ukkola O., et al. (2004). Leptin and leptin receptor gene polymorphisms and changes in glucose homeostasis in response to regular exercise in nondiabetic individuals: the HERITAGE family study. Diabetes Metab. Res. Rev. 53 1603–1608. 10.2337/diabetes.53.6.1603
    1. Lakka T. A., Rankinen T., Weisnagel S. J., Chagnon Y. C., Rice T., Leon A. S., et al. (2003). A quantitative trait locus on 7q31 for the changes in plasma insulin in response to exercise training: the HERITAGE Family Study. Diabetes Metab. Res. Rev. 52 1583–1587. 10.2337/diabetes.52.6.1583
    1. Larsen J. J., Dela F., Madsbad S., Vibe-Petersen J., Galbo H. (1999). Interaction of sulfonylureas and exercise on glucose homeostasis in type 2 diabetic patients. Diabetes Care 22 1647–1654. 10.2337/diacare.22.10.1647
    1. Larsen S., Ci M. S., Stride N., Hey-mogensen M., Hansen C. N., Bang L. E., et al. (2013). Simvastatin effects on skeletal muscle relation to decreased mitochondrial function and glucose intolerance. J. Am. Coll. Cardiol. 61 44–53. 10.1016/j.jacc.2012.09.036
    1. Loizides-Mangold U., Perrin L., Vandereycken B., Betts J. A., Walhin J.-P., Templeman I., et al. (2017). Lipidomics reveals diurnal lipid oscillations in human skeletal muscle persisting in cellular myotubes cultured in vitro. Proc. Natl. Acad. Sci. U.S.A. 114 E8565–E8574. 10.1073/pnas.1705821114
    1. Maedler K., Sergeev P., Ris F., Oberholzer J., Joller-jemelka H. I., Spinas G. A., et al. (2002). Glucose-induced β cell production of IL-1β contributes to glucotoxicity in human pancreatic islets. J. Clin. Invest. 110 851–860. 10.1172/JCI200215318.Introduction
    1. Malin S. K., Gerber R., Chipkin S. R., Braun B. (2012). Independent and combined effects of exercise training and metformin on insulin sensitivity in individuals with prediabetes. Diabetes Care 35 131–136. 10.2337/dc11-0925
    1. Malin S. K., Kirwan J. P. (2012). Fasting hyperglycaemia blunts the reversal of impaired glucose tolerance after exercise training in obese older adults. Diabetes Obes. Metab. 14 835–841. 10.1111/j.1463-1326.2012.01608.x
    1. Malin S. K., Solomon T. P. J., Blaszczak A., Finnegan S., Filion J., Kirwan J. P. (2013). Pancreatic -cell function increases in a linear dose-response manner following exercise training in adults with prediabetes. Am. J. Physiol. Endocrinol. Metab. 305 E1248–E1254. 10.1152/ajpendo.00260.2013
    1. Massi-Benedetti M., Herz M., Pfeiffer C. (1996). The effects of acute exercise on metabolic control in type II diabetic patients treated with Glimepiride or Glibenclamide. Horm. Metab. Res. 28 451–455. 10.1055/s-2007-979836
    1. Meex R., Phielix E., Schrauwen-Hinderling V., Moonen-Kornips E., Schaart G., Schrauwen P., et al. (2010). The use of statins potentiates the insulin-sensitizing effect of exercise training in obese males with and without type 2 diabetes. Clin. Sci. 119 293–301. 10.1042/CS20100153
    1. Mensberg P. F., Nyby S., Jørgensen P. G., Storgaard H., Sivertsen J., Jensen M. T., et al. (2014). Near-normalisation of glycaemic control in patients with type 2 diabetes with a glucagon-like peptide-1 receptor agonist in combination with exercise. Diabetologia 57 S376. 10.1111/dom.12797
    1. Mikus C. R., Boyle L. J., Borengasser S. J., Oberlin D. J., Naples S. P., Fletcher J., et al. (2013). Simvastatin impairs exercise training adaptations. J. Am. Coll. Cardiol. 62 709–714. 10.1016/j.jacc.2013.02.074
    1. Montero D., Lundby C. (2017). Refuting the myth of non-response to exercise training: ‘non-responders’ do respond to higher dose of training. J. Physiol. 595 3377–3387. 10.1113/JP273480
    1. Päivä H., Thelen K. M., Van Coster R., Smet J., De Paepe B., Mattila K. M., et al. (2005). High-dose statins and skeletal muscle metabolism in humans: a randomized, controlled trial. Clin. Pharmacol. Ther. 78 60–68. 10.1016/j.clpt.2005.03.006
    1. Phillips B. E., Kelly B. M., Lilja M., Ponce-González J. G., Brogan R. J., Morris D. L., et al. (2017). A practical and time-efficient high-intensity interval training program modifies cardio-metabolic risk factors in adults with risk factors for type II diabetes. Front. Endocrinol. 8:229. 10.3389/fendo.2017.00229
    1. Poirier P., Mawhinney S., Grondin L., Tremblay A., Broderick T., Cléroux J., et al. (2001). Prior meal enhances the plasma glucose lowering effect of exercise in type 2 diabetes. Med. Sci. Sports Exerc. 33 1259–1264. 10.1097/00005768-200108000-00003
    1. Poirier P., Tremblay A., Catellier C., Tancrède G., Garneau C., Nadeau A. (2000). Impact of time interval from the last meal on glucose response to exercise in subjects with type 2 diabetes. J. Clin. Endocrinol. Metab. 85 2860–2864. 10.1210/jcem.85.8.6760
    1. Poitout V., Robertson R. P. (2008). Glucolipotoxicity: fuel excess and beta-cell dysfunction. Endocr. Rev. 29 351–366. 10.1210/er.2007-0023
    1. Prasad R. B., Groop L. (2015). Genetics of type 2 diabetes—pitfalls and possibilities. Genes 6 87–123. 10.3390/genes6010087
    1. Price T. B., Perseghin G., Duleba A., Chen W., Chase J., Rothman D. L., et al. (1996). NMR studies of muscle glycogen synthesis in insulin-resistant offspring of parents with non-insulin-dependent diabetes mellitus immediately after glycogen-depleting exercise. Proc. Natl. Acad. Sci. U.S.A. 93 5329–5334. 10.1073/pnas.93.11.5329
    1. Richter E. A., Garetto L. P., Goodman M. N., Ruderman N. B. (1982). Muscle glucose metabolism following exercise in the rat: increased sensitivity to insulin. J. Clin. Invest. 69 785–793. 10.1172/JCI110517
    1. Rowlands D. S., Page R. A., Sukala W. R., Giri M., Svetlana D., Hayat I., et al. (2014). Multi-omic integrated networks connect DNA methylation and miRNA with skeletal muscle plasticity to chronic exercise in Type 2 diabetic obesity. Physiol. Genomics 46 747–765. 10.1152/physiolgenomics.00024.2014
    1. Ruchat S.-M., Rankinen T., Weisnagel S. J., Rice T., Rao D. C., Bergman R. N., et al. (2010). Improvements in glucose homeostasis in response to regular exercise are influenced by the PPARG Pro12Ala variant: results from the HERITAGE Family Study. Diabetologia 53 679–689. 10.1007/s00125-009-1630-2
    1. Schick B. A., Laaksonen R., Frohlich J. J., Päivä H., Lehtimäki T., Humphries K. H., et al. (2007). Decreased skeletal muscle mitochondrial DNA in patients treated with high-dose simvastatin. Clin. Pharmacol. Ther. 81 650–653. 10.1038/sj.clpt.6100124
    1. Senn S. (2004). Individual response to treatment: is it a valid assumption? BMJ 329 966–968. 10.1136/bmj.329.7472.966
    1. Senn S., Rolfe K., Julious S. A. (2011). Investigating variability in patient response to treatment – a case study from a replicate cross-over study. Stat. Methods Med. Res. 20 657–666. 10.1177/0962280210379174
    1. Sharoff C. G., Hagobian T. A., Malin S. K., Chipkin S. R., Yu H., Hirshman M. F., et al. (2010). Combining short-term metformin treatment and one bout of exercise does not increase insulin action in insulin-resistant individuals. Am. J. Physiol. Endocrinol. Metab. 298 E815–E823. 10.1152/ajpendo.00517.2009
    1. Sigal R. J., Kenny G. P., Boulé N. G., Wells G. A., Prud’homme D., Fortier M., et al. (2007). Effects of aerobic training, resistance training, or both on glycemic control in type 2 diabetes. Ann. Intern. Med. 147 357–369. 10.7326/0003-4819-147-6-200709180-00005
    1. Slentz C. A., Bateman L. A., Willis L. H., Granville E. O., Piner L. W., Samsa G. P., et al. (2016). Effects of exercise training alone vs a combined exercise and nutritional lifestyle intervention on glucose homeostasis in prediabetic individuals: a randomised controlled trial. Diabetologia 59 2088–2098. 10.1007/s00125-016-4051-z
    1. Slentz C. A., Tanner C. J., Bateman L., Durheim M., Huffman K., Houmard J. A., et al. (2009). Effects of exercise training intensity on pancreatic beta-cell function. Diabetes Care 32 1807–1811. 10.2337/dc09-0032
    1. Solomon T. P., Malin S., Karstoft K., Haus J., Kirwan J. (2013a). The influence of hyperglycemia on the therapeutic effect of exercise on glycemic control in patients with type 2 diabetes mellitus. JAMA Intern. Med. 173 1834–1836. 10.1001/jamainternmed.2013.7783
    1. Solomon T. P., Malin S. K., Karstoft K., Kashyap S. R., Haus J. M., Kirwan J. P. (2013b). Pancreatic β-cell function is a stronger predictor of changes in glycemic control after an aerobic exercise intervention than insulin sensitivity. J. Clin. Endocrinol. Metab. 98 4176–4186. 10.1210/jc.2013-2232
    1. Solomon T. P. J., Haus J. M., Marchetti C. M., Stanley W. C., Kirwan J. P. (2009). Effects of exercise training and diet on lipid kinetics during free fatty acid-induced insulin resistance in older obese humans with impaired glucose tolerance. Am. J. Physiol. Endocrinol. Metab. 297 E552–E559. 10.1152/ajpendo.00220.2009
    1. Solomon T. P. J., Knudsen S. H., Karstoft K., Winding K., Holst J. J., Pedersen B. K. (2012). Examining the effects of hyperglycemia on pancreatic endocrine function in humans: evidence for in vivo glucotoxicity. J. Clin. Endocrinol. Metab. 97 4682–4691. 10.1210/jc.2012-2097
    1. Solomon T. P. J., Sistrun S. N., Krishnan R. K., Del Aguila L. F., Marchetti C. M., O’Carroll S. M., et al. (2008). Exercise and diet enhance fat oxidation and reduce insulin resistance in older obese adults. J. Appl. Physiol. 104 1313–1319. 10.1152/japplphysiol.00890.2007
    1. Soman V. R., Koivisto V. A., Deibert D., Felig P., DeFronzo R. A. (1979). Increased insulin sensitivity and insulin binding to monocytes after physical training. N. Engl. J. Med. 301 1200–1204. 10.1056/NEJM197911293012203
    1. Stephens N. A., Sparks L. M. (2015). Resistance to the beneficial effects of exercise in type 2 diabetes: are some individuals programmed to fail? J. Clin. Endocrinol. Metab. 100 43–52. 10.1210/jc.2014-2545
    1. Stephens N. A., Xie H., Johannsen N. M., Church T. S., Smith S. R., Sparks L. M. (2015). A transcriptional signature of “exercise resistance” in skeletal muscle of individuals with type 2 diabetes mellitus. Metabolism 64 999–1004. 10.1016/j.metabol.2015.06.008
    1. Taylor H. L., Wu C. L., Chen Y. C., Wang P. G., Gonzalez J. T., Betts J. A. (2018). Post-exercise carbohydrate-energy replacement attenuates insulin sensitivity and glucose tolerance the following morning in healthy adults. Nutrients 10:E123. 10.3390/nu10020123
    1. Terada T., Friesen A., Chahal B. S., Bell G. J., Mccargar L. J., Boulé N. G. (2013a). Exploring the variability in acute glycemic responses to exercise in type 2 diabetes. J. Diabetes Res. 2013:591574. 10.1155/2013/591574
    1. Terada T., Friesen A., Chahal B. S., Bell G. J., McCargar L. J., Boulé N. G. (2013b). Feasibility and preliminary efficacy of high intensity interval training in type 2 diabetes. Diabetes Res. Clin. Pract. 99 120–129. 10.1016/j.diabres.2012.10.019
    1. Teran-Garcia M., Rankinen T., Rice T., Leon A. S., Rao D. C., Skinner J. S., et al. (2007). Variations in the four and a half LIM domains 1 gene (FHL1) are associated with fasting insulin and insulin sensitivity responses to regular exercise. Diabetologia 50 1858–1866. 10.1007/s00125-007-0733-x
    1. Thomas T. R., Warner S. O., Dellsperger K. C., Hinton P. S., Whaley-Connell A. T., Rector R. S., et al. (2010). Exercise and the metabolic syndrome with weight regain. J. Appl. Physiol. 109 3–10. 10.1152/japplphysiol.01361.2009
    1. Thompson D., Peacock O. J., Betts J. A. (2014). Substitution and compensation erode the energy deficit from exercise interventions. Med. Sci. Sports Exerc. 46:423. 10.1249/MSS.0000000000000164
    1. Thompson P. D., Zmuda J. M., Domalik L. J., Zimet R. J., Staggers J., Guyton J. R. (1997). Lovastatin increases exercise-induced skeletal muscle injury. Metabolism 46 1206–1210. 10.1016/S0026-0495(97)90218-3
    1. van der Ploeg H. P., Chey T., Korda R. J., Banks E., Bauman A. (2012). Sitting time and all-cause mortality risk in 222 497 Australian adults. Arch. Intern. Med. 172 494–500. 10.1001/archinternmed.2011.2174
    1. Van dijk J., Manders R., Canfora E., Mechelen W., Hartgens F., Stehouwer C., et al. (2013). Exercise and 24-h glycemic control: equal effects for all type 2 diabetes patients? Med. Sci. Sport Exerc. 45 628–635. 10.1249/MSS.0b013e31827ad8b4
    1. van Dijk J., Tummers K., Stehouwer C., Hartgens F., van Loon L. J. (2012). Exercise therapy in type 2 diabetes is daily exercise required to optimize glycemic control? Diabetes Care 35 948–954. 10.2337/dc11-2112
    1. Van Proeyen K., Szlufcik K., Nielens H., Pelgrim K., Deldicque L., Hesselink M., et al. (2010). Training in the fasted state improves glucose tolerance during fat-rich diet. J. Physiol. 588 4289–4302. 10.1113/jphysiol.2010.196493
    1. Weiss E. P., Albert S. G., Reeds D. N., Kress K. S., Ezekiel U. R., McDaniel J. L., et al. (2015). Calorie restriction and matched weight loss from exercise: independent and additive effects on glucoregulation and the incretin system in overweight women and men. Diabetes Care 38 1253–1262. 10.2337/dc14-2913
    1. Weyrich P., Stefan N., Häring H.-U., Laakso M., Fritsche A. (2007). Effect of genotype on success of lifestyle intervention in subjects at risk for type 2 diabetes. J. Mol. Med. 85 107–117. 10.1007/s00109-006-0134-5
    1. Wilmot E. G., Edwardson C. L., Achana F. A., Davies M. J., Gorely T., Gray L. J., et al. (2012). Sedentary time in adults and the association with diabetes, cardiovascular disease and death: systematic review and meta-analysis. Diabetologia 55 2895–2905. 10.1007/s00125-012-2677-z
    1. Wing R. R., Goldstein M. G., Acton K. J., Birch L. L., Jakicic J. M., Sallis J. F., et al. (2001). Behavioral science research in diabetes: lifestyle changes related to obesity, eating behavior, and physical activity. Diabetes Care 24 117–123. 10.2337/diacare.24.1.117

Source: PubMed

3
Subskrybuj