Evidence That the Etiology of Congenital Hypopituitarism Has a Major Genetic Component but Is Infrequently Monogenic

Youn Hee Jee, Mariam Gangat, Olga Yeliosof, Adrian G Temnycky, Selena Vanapruks, Philip Whalen, Evgenia Gourgari, Cortney Bleach, Christine H Yu, Ian Marshall, Jack A Yanovski, Kathleen Link, Svetlana Ten, Jeffrey Baron, Sally Radovick, Youn Hee Jee, Mariam Gangat, Olga Yeliosof, Adrian G Temnycky, Selena Vanapruks, Philip Whalen, Evgenia Gourgari, Cortney Bleach, Christine H Yu, Ian Marshall, Jack A Yanovski, Kathleen Link, Svetlana Ten, Jeffrey Baron, Sally Radovick

Abstract

Purpose: Congenital hypopituitarism usually occurs sporadically. In most patients, the etiology remains unknown.

Methods: We studied 13 children with sporadic congenital hypopituitarism. Children with non-endocrine, non-familial idiopathic short stature (NFSS) (n = 19) served as a control group. Exome sequencing was performed in probands and both unaffected parents. A burden testing approach was used to compare the number of candidate variants in the two groups.

Results: First, we assessed the frequency of rare, predicted-pathogenic variants in 42 genes previously reported to be associated with pituitary gland development. The average number of variants per individual was greater in probands with congenital hypopituitarism than those with NFSS (1.1 vs. 0.21, mean variants/proband, P = 0.03). The number of probands with at least 1 variant in a pituitary-associated gene was greater in congenital hypopituitarism than in NFSS (62% vs. 21%, P = 0.03). Second, we assessed the frequency of rare, predicted-pathogenic variants in the exome (to capture undiscovered causes) that were inherited in a fashion that could explain the sporadic occurrence of the proband's condition with a monogenic etiology (de novo mutation, autosomal recessive, or X-linked recessive) with complete penetrance. There were fewer monogenic candidates in the probands with congenital hypopituitarism than those with NFSS (1.3 vs. 2.5 candidate variants/proband, P = 0.024). We did not find any candidate variants (0 of 13 probands) in genes previously reported to explain the phenotype in congenital hypopituitarism, unlike NFSS (8 of 19 probands, P = 0.01).

Conclusion: Our findings provide evidence that the etiology of sporadic congenital hypopituitarism has a major genetic component but may be infrequently monogenic with full penetrance, suggesting a more complex etiology.

Keywords: combined pituitary hormone deficiencies; congenital hypopituitarism; digenic; ectopic posterior pituitary gland; monogenic.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest. The reviewer MD declared a past co-authorship with one of the authors JB to the handling editor.

Copyright © 2021 Jee, Gangat, Yeliosof, Temnycky, Vanapruks, Whalen, Gourgari, Bleach, Yu, Marshall, Yanovski, Link, Ten, Baron and Radovick.

Figures

FIGURE 1
FIGURE 1
Rare, predicted-pathogenic variants in subjects with congenital hypopituitarism and non-familial short stature. (A) Mean number of rare, predicted-pathogenic variants per proband in 42 genes associated with pituitary development. (B) Percent of probands with at least 1 variant in any of 42 pituitary-associated genes. (C) Mean number of monogenic candidates for the condition (hypopituitarism or non-familial short stature) per proband. Square indicates mean. Error bar shows 95% confidence interval. HP, congenital hypopituitarism; NFSS, non-familial short stature.

References

    1. Adams D. R., Sincan M., Fajardo K. F., Mullikin J. C., Pierson T. M., Toro C., et al. (2012). Analysis of DNA sequence variants detected by high-throughput sequencing. Hum. Mutat. 33 599–608. 10.1002/humu.22035
    1. Adzhubei I. A., Schmidt S., Peshkin L., Ramensky V. E., Gerasimova A., Bork P., et al. (2010). A method and server for predicting damaging missense mutations. Nat. Methods 7 248–249. 10.1038/nmeth0410-248
    1. Alatzoglou K., Kelberman D., Cowell C. T., Palmer R., Arnhold I. J. P., Melo M. E., et al. (2011). Increased transactivation associated with SOX3 polyalanine tract deletion in a patient with hypopituitarism. J. Clin. Endocrinol. Metab. 96 E685–E690.
    1. Babu D., Fanelli A., Mellone S., Muniswamy R., Wasniewska M., Prodam F., et al. (2019). Novel GLI2 mutations identified in patients with combined pituitary hormone deficiency (CPHD): evidence for a pathogenic effect by functional characterization. Clin. Endocrinol. (Oxf) 90 449–456.
    1. Bancalari R. E., Gregory L. C., McCabe M. J., Dattani M. T. (2012). Pituitary gland development: an update. Endocr. Dev. 23 1–15. 10.1159/000341733
    1. Barbu M. C., Spiliopoulou A., Colombo M., McKeigue P., Clarke T. K., Howard S. M., et al. (2020). Expression quantitative trait loci-derived scores and white matter microstructure in UK Biobank: a novel approach to integrating genetics and neuroimaging. Transl. Psychiatr. 10 55.
    1. Bashamboo A., Bignon-Topalovic J., Moussi N., McElreavey K., Brauner R. (2017). Mutations in the human ROBO1 gene in pituitary stalk interruption syndrome. J. Clin. Endocrinol. Metab. 102 2401–2406. 10.1210/jc.2016-1095
    1. Bashamboo A., Bignon-Topalovic J., Rouba H., McElreavey K., Brauner R. A. (2016). Nonsense Mutation in the hedgehog receptor CDON associated with pituitary stalk interruption syndrome. J. Clin. Endocrinol. Metab. 101 12–15. 10.1210/jc.2015-2995
    1. BIRLA S., Vijayakumar P., Sehgal S., Bhatnagar S., Pallavi K., Sharma A. (2019). Characterization of a novel POU1F1 mutation identified on screening 160 growth hormone deficiency patients. Horm. Metab. Res. 51 248–255. 10.1055/a-0867-1026
    1. Castinetti F., Reynaud R., Quentien M.-H., Jullien N., Marquant E., Rochette C., et al. (2015). Combined pituitary hormone deficiency: current and future status. J. Endocrinol. Invest. 38 1–12. 10.1007/s40618-014-0141-2
    1. Celen C., Chuang J. C., Luo X., Nijem N., Walker A. K., Chen F., et al. (2017). Arid1b haploinsufficient mice reveal neurops ychiatric phenotypes and reversible causes of growth impairment. eLife 6:e25730.
    1. Cha K. B., Douglas K. R., Potok M. A., Liang H., Jones S. N., Camper S. A. (2004). WNT5A signaling affects pituitary gland shape. Mech. Dev. 121 183–194.
    1. Cohen E., Maghnie M., Collot N., Leger J., Dastot F., Polak M., et al. (2017). Contribution of LHX4 mutations to pituitary deficits in a cohort of 417 unrelated patients. J. Clin. Endocrinol. Metab. 102 290–301. 10.1210/jc.2016-3158
    1. Correa F. A., Jorge A. I., Nakaguma M., Canton A. P., Costa S. S., Funari M. F., et al. (2018). Pathogenic copy number variants in patients with congenital hypopituitarism associated with complex phenotypes. Clin. Endocrinol. (Oxf). 88 425–431. 10.1111/cen.13535
    1. Correa F. A., Nakaguma M., Madeira J. L. O., Nishi M. Y., Abrão M. G., Jorge A. L., et al. (2019). Combined pituitary hormone deficiency caused by PROP1 mutations: update 20 years post-discovery. Arch. Endocrinol. Metab. 63 167–174. 10.20945/2359-3997000000139
    1. Cox K. B., Hamm D. A., Millington D. S., Matern D., Vockley K., Rinaldo P., et al. (2001). Gestational, pathologic and biochemical differences between very long-chain acyl-CoA dehydrogenase deficiency and long-chain acyl-CoA dehydrogenase deficiency in the mouse. Comp. Study Hum. Mol. Genet. 10 2069–2077. 10.1093/hmg/10.19.2069
    1. Dateki S., Watanabe S., Mishima H., Shirakawa T., Morikawa M., Kinoshita E., et al. (2019). Homozygous splice site ROBO1 mutation in a patient with a novel syndrome with combined pituitary hormone deficiency. J. Hum. Genet. 64 341–346. 10.1038/s10038-019-0566-8
    1. Fallon P. G., Sasaki T., Sandilands A., Campbell L. E., Saunders S. P., Mangan N. F., et al. (2009). A homozygous frameshift mutation in the mouse Flg gene facilitates enhanced percutaneous allergen priming. Nat. Genet. 41 602–608. 10.1038/ng.358
    1. Fatehchand K., Ren L., Elavazhagan S., Fang H., Mo X., Vasilakos J. P., et al. (2016). Toll-like receptor 4 ligands down-regulate Fcγ receptor IIb (FcγRIIb) via MARCH3 protein-mediated ubiquitination. J. Biol. Chem. 291 3895–3904. 10.1074/jbc.m115.701151
    1. Fu L., Pelicano H., Liu J., Huang P., Lee C. (2002). The circadian gene Period2 plays an important role in tumor suppression and DNA damage response in vivo. Cell 111 41–50. 10.1016/s0092-8674(02)00961-3
    1. Graveel C. R., DeGroot J. D., Su Y., Koeman J., Dykema K., Leung S., et al. (2009). Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proc. Natl. Acad. Sci. U.S.A. 106 12909–12914. 10.1073/pnas.0810403106
    1. Gregory L. C. (2020). Mehul tulsidas dattani. the molecular basis of congenital hypopituitarism and related disorders. J. Clin. Endocrinol. Metab. 105:dgz184. 10.1210/clinem/dgz184
    1. Gregory L. C., Gevers E. F., Baker J., Kasia T., Chong K., Josifova D. J., et al. (2013). Structural pituitary abnormalities associated with CHARGE syndrome. J. Clin. Endocrinol. Metab. 98 E737–E743.
    1. Guo M. H., Plummer L., Chan Y. M., Hirschhorn J. N., Lippincott M. F. (2018). Burden testing of rare variants identified through exome sequencing via publicly available control data. Am J. Hum.Genet. 103 522–534.
    1. Hamdi-Rozé H., Ware M., Guyodo H., Rizzo A., Ratié L., Rupin L., et al. (2020). Disrupted hypothalamo-pituitary axis in association with reduced SHH underlies the pathogenesis of NOTCH-deficiency. J. Clin. Endocrinol. Metab. 105 dgaa249.
    1. Hong M., Krauss R. S. (2012). Cdon mutation and fetal ethanol exposure synergize to produce midline signaling defects and holoprosencephaly spectrum disorders in mice. PLoS Genet. 8:e1002999. 10.1371/journal.pgen.1002999
    1. Hovinga I. C. L. K., Giltay J. C., van der Crabben S. N., Steyls A., van der Kamp H. J., Paulussen A. D. C. (2018). Extreme phenotypic variability of a novel GLI2 mutation in a large family with panhypopituitarism and polydactyly: clinical implications. Clin. Endocrinol. (Oxf). 89 378–380. 10.1111/cen.13760
    1. Hughes J., Piltz S., Rogers N., McAninch D., Rowley L., Thomas P. (2013). Mechanistic insight into the pathology of polyalanine expansion disorders revealed by a mouse model for X linked hypopituitarism. PLoS Genet. 9:e1003290. 10.1371/journal.pgen.1003290
    1. Ijaz F., Hatanaka Y., Hatanaka Y., Tsutsumi K., Iwaki T., Umemura K., et al. (2017). Proper cytoskeletal architecture beneath the plasma membrane of red blood cells requires Ttll4. Mol. Biol. Cell 28 535–544. 10.1091/mbc.e16-02-0089
    1. Jean D., Bernier G., Gruss P. (1999). Six6 (Optx2) is a novel murine Six3-related homeobox gene that demarcates the presumptive pituitary/hypothalamic axis and the ventral optic stalk. Mech. Dev. 84 31–40. 10.1016/s0925-4773(99)00068-4
    1. Jee Y. H., Sowada N., Markello T. C., Rezvani I., Borck G., Baron J. (2017). BRF1 Mutations in a family with growth failure, markedly delayed bone age, and central nervous system anomalies. Clin. Genet. 91 739–747. 10.1111/cge.12887
    1. Jullien N., Romanet P., Philippon M., Quentien M. H., Beck-Peccoz P., Bergada I., et al. (2019). Heterozygous LHX3 mutations may lead to a mild phenotype of combined pituitary hormone deficiency. Eur. J. Hum. Genet. 27 216–225. 10.1038/s41431-018-0264-6
    1. Kibschull M., Colaco K., Matysiak-Zablocki E., Winterhager E., Lye S. J. (2014). Connexin31.1 (Gjb5) deficiency blocks trophoblast stem cell differentiation and delays placental development. Stem Cells Dev. 23 2649–2660. 10.1089/scd.2014.0013
    1. Kikuchi K., Fujisawa I., Momoi T., Yamanaka C., Kaji M., Nakano Y., et al. (1988). Hypothalamic-pituitary function in growth hormone-deficient patients with pituitary stalk transection. J. Clin. Endocrinol. Metab. 67 817–823. 10.1210/jcem-67-4-817
    1. Lee J. E., Silhavy J. L., Zaki M. S., Schroth J., Bielas S. L., Marsh S. E., et al. (2012). CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nat. Genet. 44 193–199. 10.1038/ng.1078
    1. Lian Y. F., Yuan J., Cui Q., Feng Q. S., Xu M., Bei J. X., et al. (2016). Upregulation of KLHDC4 predicts a poor prognosis in human nasopharyngeal carcinoma. PLoS One 11:e0152820. 10.1371/journal.pone.0152820
    1. Lin H., Gao D., Hu M. M., Zhang M., Wu X. X., Feng L., et al. (2018). MARCH3 attenuates IL-1β-triggered inflammation by mediating K48-linked polyubiquitination and degradation of IL-1RI. Proc. Natl. Acad. Sci. U.S.A. 115 12483–12488. 10.1073/pnas.1806217115
    1. Lui J. C., Jee Y. H., Lee A., Yue S., Wagner J., Donnelly D. E., et al. (2019). QRICH1 mutations cause a chondrodysplasia with developmental delay. Clin. Genet. 95 160–164. 10.1111/cge.13457
    1. Maghnie M., Larizza D., Triulzi F., Sampaolo P., Scotti G., Severi F. (1991). Hypopituitarism and stalk agenesis: a congenital syndrome worsened by breech delivery? Horm. Res. 35 104–108. 10.1159/000181883
    1. McCormack S. E., Li D., Kim Y. J., Lee J. Y., Kim S. H., Rapaport R., et al. (2017). Digenic inheritance of PROKR2 and WDR11 mutations in pituitary stalk interruption syndrome. J. Clin. Endocrinol. Metab. 102 2501–2507. 10.1210/jc.2017-00332
    1. Mönnich M., Borgeskov L., Breslin L., Jakobsen L., Rogowski M., Doganli C., et al. (2018). CEP128 localizes to the subdistal appendages of the mother centriole and regulates TGF-β/BMP signaling at the primary cilium. Cell Rep. 22 2584–2592. 10.1016/j.celrep.2018.02.043
    1. Müller M. B., Preil J., Renner U., Zimmermann S., Kresse A. E., Stalla G. K., et al. (2001). Expression of CRHR1 and CRHR2 in mouse pituitary and adrenal gland: implications for HPA system regulation. Endocrinology 142 4150–4153. 10.1210/endo.142.9.8491
    1. Paine-Saunders S., Viviano B. L., Zupicich J., Skarnes W. C., Saunders S. (2000). glypican-3 controls cellular responses to Bmp4 in limb patterning and skeletal development. Dev. Biol. 225 179–187. 10.1006/dbio.2000.9831
    1. Rajab A., Kelberman D., de Castro S. C. P., Biebermann H., Shaikh H., Pearce K., et al. (2008). Novel mutations in LHX3 are associated with hypopituitarism and sensorineural hearing loss. Hum. Mol. Genet. 17 2150–2159. 10.1093/hmg/ddn114
    1. Rizzoti K. (2015). Genetic regulation of murine pituitary development. J. Mol. Endocrinol. 54 R55–R73.
    1. Schwarz J. M., Cooper D. N., Schuelke M., Seelow D. (2014). MutationTaster2: mutation prediction for the deep-sequencing age. Nat. Methods. 11 361–362. 10.1038/nmeth.2890
    1. Shapshak P. (2012). Molecule of the month, PDE4DIP. Bioinformation 8 740–741. 10.6026/97320630008740
    1. Tajima T., Hattori T., Nakajima T., Okuhara K., Tsubaki J., Fujieda K. A. (2007). Novel missense mutation (P366T) of the LHX4 gene causes severe combined pituitary hormone deficiency with pituitary hypoplasia, ectopic posterior lobe and a poorly developed sella turcica. Endocr. J. 54 637–641. 10.1507/endocrj.k06-200
    1. Tatsi C., Gkourogianni A., Mohnike K., DeArment D., Witchel S., Andrade A. C., et al. (2017). Aggrecan mutations in nonfamilial short stature and short stature without accelerated skeletal maturation. J. Endocr. Soc. 1 1006–1011. 10.1210/js.2017-00229
    1. Teer J. K., Green E. D., Mullikin J. C., Biesecker L. G. (2012). VarSifter: visualizing and analyzing exome-scale sequence variation data on a desktop computer. Bioinformatics 28 599–600. 10.1093/bioinformatics/btr711
    1. Thomas P. Q., Dattani M. T., Brickman J. M., McNay D., Warne G., Zacharin M., et al. (2001). Heterozygous HESX1 mutations associated with isolated congenital pituitary hypoplasia and septo-optic dysplasia. Hum. Mol. Genet. 10 39–45. 10.1093/hmg/10.1.39
    1. Turton J. P. G., Reynaud R., Mehta A., Torpiano J., Saveanu A., Woods K. S., et al. (2005). Novel mutations within the POU1F1 gene associated with variable combined pituitary hormone deficiency. J. Clin. Endocrinol. Metab. 90 4762–4770. 10.1210/jc.2005-0570
    1. Vaser R., Adusumalli S., Leng S. N., Sikic M., Ng P. C. (2016). SIFT missense predictions for genomes. Nat. Protoc. 11 1–9. 10.1038/nprot.2015.123
    1. Villavicencio E. H., Walterhouse D. O., Iannaccone P. M. (2000). The sonic hedgehog–patched–gli pathway in human development and disease. Am. J. Hum. Genet. 67 1047–1054. 10.1016/s0002-9297(07)62934-6
    1. Wang Y., Martin J. F., Bai C. B. (2010). Direct and indirect requirements of Shh/Gli signaling in early pituitary development. Dev. Biol. 348 199–209. 10.1016/j.ydbio.2010.09.024
    1. Wu W., Cogan J. D., Pfäffle R. W., Dasen J. S., Frisch H., O’Connell S. M., et al. (1998). Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat. Genet. 18 147–149. 10.1038/ng0298-147
    1. Wu W., Zhai G., Xu Z., Hou B., Liu D., Liu T., et al. (2019). Whole-exome sequencing identified four loci influencing craniofacial morphology in northern Han Chinese. Hum. Genet. 138 601–611. 10.1007/s00439-019-02008-6
    1. Xie H., Hoffmann H. M., Meadows J. D., Mayo S. L., Trang C., Leming S. S., et al. (2015). Homeodomain proteins SIX3 and six6 regulate gonadotrope-specific genes during pituitary development. Mol. Endocrinol. 29 842–855. 10.1210/me.2014-1279
    1. Yazicioglu M. N., Monaldini L., Chu K., Khazi F. R., Murphy S. L., Huang H., et al. (2013). Cellular localization and characterization of cytosolic binding partners for Gla domain-containing proteins PRRG4 and PRRG2. J. Biol. Chem. 288 25908–25914. 10.1074/jbc.m113.484683
    1. Yu Y., Yao R., Wang L., Fan Y., Huang X., Hirschhorn J., et al. (2015). De novo mutations in ARID1B associated with both syndromic and non-syndromic short stature. BMC Genomics 16:701. 10.1186/s12864-015-1898-1
    1. Zheng-Fischhöfer Q., Kibschull M., Schnichels M., Kretz M., Petrasch-Parwez E., Strotmann J., et al. (2007). Characterization of connexin31.1-deficient mice reveals impaired placental development. Dev. Biol. 312 258–271. 10.1016/j.ydbio.2007.09.025
    1. Zimmer B., Piao J., Ramnarine K., Tomishima M. J., Tabar V., Studer L. (2016). Derivation of diverse hormone-releasing pituitary cells from human pluripotent stem cells. Stem Cell Rep. 6 858–872. 10.1016/j.stemcr.2016.05.005
    1. Zwaveling-Soonawala N., Alders M., Jongejan A., Kovacic L., Duijkers F. A., Maas S. M., et al. (2018). Clues for polygenic inheritance of pituitary stalk interruption syndrome from exome sequencing in 20 patients. J. Clin. Endocrinol. Metab. 103 415–428. 10.1210/jc.2017-01660

Source: PubMed

3
Subskrybuj