Soluble Urokinase Plasminogen Activator Receptor and Venous Thromboembolism in COVID-19

Shengyuan Luo, Alexi Vasbinder, Jeanne M Du-Fay-de-Lavallaz, Joanne Michelle D Gomez, Tisha Suboc, Elizabeth Anderson, Annika Tekumulla, Husam Shadid, Hanna Berlin, Michael Pan, Tariq U Azam, Ibrahim Khaleel, Kishan Padalia, Chelsea Meloche, Patrick O'Hayer, Tonimarie Catalan, Pennelope Blakely, Christopher Launius, Kingsley-Michael Amadi, Rodica Pop-Busui, Sven H Loosen, Athanasios Chalkias, Frank Tacke, Evangelos J Giamarellos-Bourboulis, Izzet Altintas, Jesper Eugen-Olsen, Kim A Williams, Annabelle Santos Volgman, Jochen Reiser, Salim S Hayek, ISIC (International Study of Inflammation in COVID‐19) Group, Salim S Hayek, Pennelope Blakely, Christopher Launius, Hanna Berlin, Kingsley Amadi, Tariq U Azam, Husam Shadid, Michael Pan, Patrick O'Hayer, Chelsea Meloche, Rafey Feroze, Kishan J Padalia, Elizabeth Anderson, Danny Perry, Abbas Bitar, Rayan Kaakati, Lili Zhao, Peiyao Zhao, Erinleigh Michaud, Yiyuan Huang, Toniemarie Catalan, Ibrahim Khaleel, Jochen Reiser, Beata Samelko, Alexander Hlepas, Xuexiang Wang, Priya Patel, Jesper Eugen-Olsen, Izzet Altintas, Jens Tingleff, Marius Stauning, Morten Baltzer Houlind, Mette B Lindstrøm, Ove Andersen, Hejdi Gamst-Jensen, Line Jee Hartmann Rasmussen, Christian Rasmussen, Jan O Nehlin, Thomas Kallemose, Imran Parvaiz, Evangelos J Giamarellos-Bourboulis, Maria-Evangelia Adami, Nicky Solomonidi, Maria Tsilika, Maria Saridaki, Vasileios Lekakis, Sven Loosen, Tom Luedde, Verena Keitel, Athanasios Chalkias, Ioannis Pantazopoulos, Eleni Laou, Anargyros Skoulakis, Frank Tacke, Pinkus Tober-Lau, Raphael Mohr, Florian Kurth, Leif Erik Sander, Christoph Jochum, Philipp Koehler, Shengyuan Luo, Alexi Vasbinder, Jeanne M Du-Fay-de-Lavallaz, Joanne Michelle D Gomez, Tisha Suboc, Elizabeth Anderson, Annika Tekumulla, Husam Shadid, Hanna Berlin, Michael Pan, Tariq U Azam, Ibrahim Khaleel, Kishan Padalia, Chelsea Meloche, Patrick O'Hayer, Tonimarie Catalan, Pennelope Blakely, Christopher Launius, Kingsley-Michael Amadi, Rodica Pop-Busui, Sven H Loosen, Athanasios Chalkias, Frank Tacke, Evangelos J Giamarellos-Bourboulis, Izzet Altintas, Jesper Eugen-Olsen, Kim A Williams, Annabelle Santos Volgman, Jochen Reiser, Salim S Hayek, ISIC (International Study of Inflammation in COVID‐19) Group, Salim S Hayek, Pennelope Blakely, Christopher Launius, Hanna Berlin, Kingsley Amadi, Tariq U Azam, Husam Shadid, Michael Pan, Patrick O'Hayer, Chelsea Meloche, Rafey Feroze, Kishan J Padalia, Elizabeth Anderson, Danny Perry, Abbas Bitar, Rayan Kaakati, Lili Zhao, Peiyao Zhao, Erinleigh Michaud, Yiyuan Huang, Toniemarie Catalan, Ibrahim Khaleel, Jochen Reiser, Beata Samelko, Alexander Hlepas, Xuexiang Wang, Priya Patel, Jesper Eugen-Olsen, Izzet Altintas, Jens Tingleff, Marius Stauning, Morten Baltzer Houlind, Mette B Lindstrøm, Ove Andersen, Hejdi Gamst-Jensen, Line Jee Hartmann Rasmussen, Christian Rasmussen, Jan O Nehlin, Thomas Kallemose, Imran Parvaiz, Evangelos J Giamarellos-Bourboulis, Maria-Evangelia Adami, Nicky Solomonidi, Maria Tsilika, Maria Saridaki, Vasileios Lekakis, Sven Loosen, Tom Luedde, Verena Keitel, Athanasios Chalkias, Ioannis Pantazopoulos, Eleni Laou, Anargyros Skoulakis, Frank Tacke, Pinkus Tober-Lau, Raphael Mohr, Florian Kurth, Leif Erik Sander, Christoph Jochum, Philipp Koehler

Abstract

Background Venous thromboembolism (VTE) contributes significantly to COVID-19 morbidity and mortality. The urokinase receptor system is involved in the regulation of coagulation. Levels of soluble urokinase plasminogen activator receptor (suPAR) reflect hyperinflammation and are strongly predictive of outcomes in COVID-19. Whether suPAR levels identify patients with COVID-19 at risk for VTE is unclear. Methods and Results We leveraged a multinational observational study of patients hospitalized for COVID-19 with suPAR and D-dimer levels measured on admission. In 1960 patients (mean age, 58 years; 57% men; 20% Black race), we assessed the association between suPAR and incident VTE (defined as pulmonary embolism or deep vein thrombosis) using logistic regression and Fine-Gray modeling, accounting for the competing risk of death. VTE occurred in 163 (8%) patients and was associated with higher suPAR and D-dimer levels. There was a positive association between suPAR and D-dimer (β=7.34; P=0.002). Adjusted for clinical covariables, including D-dimer, the odds of VTE were 168% higher comparing the third with first suPAR tertiles (adjusted odds ratio, 2.68 [95% CI, 1.51-4.75]; P<0.001). Findings were consistent when stratified by D-dimer levels and in survival analysis accounting for death as a competing risk. On the basis of predicted probabilities from random forest, a decision tree found the combined D-dimer <1 mg/L and suPAR <11 ng/mL cutoffs, identifying 41% of patients with only 3.6% VTE probability. Conclusions Higher suPAR was associated with incident VTE independently of D-dimer in patients hospitalized for COVID-19. Combining suPAR and D-dimer identified patients at low VTE risk. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT04818866.

Keywords: COVID‐19; soluble urokinase plasminogen activator receptor; thromboembolism.

Figures

Figure 1. Odds ratios and 95% CIs…
Figure 1. Odds ratios and 95% CIs for venous thromboembolism per soluble urokinase plasminogen activator receptor (suPAR) tertile in patients hospitalized with COVID‐19, with and without adjustments for baseline covariables and D‐dimer level.
Baseline clinical characteristics included in model 1: age, sex, Black race, body mass index, history of diabetes, history of hypertension, history of congestive heart failure, history of atrial fibrillation or flutter, history of stroke, history of chronic obstructive pulmonary disease, history of malignancy, before admission anticoagulation therapy, and estimated glomerular filtration rate.
Figure 2. Cumulative incidence of venous thromboembolism…
Figure 2. Cumulative incidence of venous thromboembolism (VTE) within 30 days of hospitalization by soluble urokinase plasminogen activator receptor (suPAR) tertile.
suPAR categories are defined as follows: first tertile, 0 to 5.2 ng/mL; second tertile, 5.3 to 8.7 ng/mL; and third tertile, 8.8 to 62.7 ng/mL
Figure 3. A decision tree based on…
Figure 3. A decision tree based on predicted probabilities from random forest exploring soluble urokinase plasminogen activator receptor (suPAR) and D‐dimer cutoff combinations for the stratification of patients by probability of venous thromboembolism (VTE).
The subgroup of patients with suPAR

References

    1. Porfidia A, Valeriani E, Pola R, Porreca E, Rutjes AWS, Di Nisio M. Venous thromboembolism in patients with COVID‐19: systematic review and meta‐analysis. Thromb Res. 2020;196:67–74. doi: 10.1016/j.thromres.2020.08.020
    1. Kyriazopoulou E, Poulakou G, Milionis H, Metallidis S, Adamis G, Tsiakos K, Fragkou A, Rapti A, Damoulari C, Fantoni M, et al. Early treatment of COVID‐19 with anakinra guided by soluble urokinase plasminogen receptor plasma levels: a double‐blind, randomized controlled phase 3 trial. Nat Med. 2021;27:1752–1760. doi: 10.1038/s41591-021-01499-z
    1. Wichmann D, Sperhake JP, Lütgehetmann M, Steurer S, Edler C, Heinemann A, Heinrich F, Mushumba H, Kniep I, Schröder AS, et al. Autopsy findings and venous thromboembolism in patients with COVID‐19: a prospective cohort study. Ann Intern Med. 2020;173:268–277. doi: 10.7326/M20-2003
    1. Loo J, Spittle DA, Newnham M. COVID‐19, immunothrombosis and venous thromboembolism: biological mechanisms. Thorax. 2021;76:412–420. doi: 10.1136/thoraxjnl-2020-216243
    1. Levi M, Coppens M. Vascular mechanisms and manifestations of COVID‐19. Lancet Respir Med. 2021;9:551–553. doi: 10.1016/S2213-2600(21)00221-6
    1. Varga Z, Flammer AJ, Steiger P, Haberecker M, Andermatt R, Zinkernagel AS, Mehra MR, Schuepbach RA, Ruschitzka F, Moch H. Endothelial cell infection and endotheliitis in COVID‐19. Lancet. 2020;395:1417–1418. doi: 10.1016/S0140-6736(20)30937-5
    1. Elberts SJ, Bateman R, Koutsoubis A, London KS, White JL, Fields JM. The impact of COVID‐19 on the sensitivity of D‐dimer for pulmonary embolism. Acad Emerg Med. 2021;28:1142–1149. doi: 10.1111/acem.14348
    1. D'Alonzo D, De Fenza M, Pavone V. COVID‐19 and pneumonia: a role for the uPA/uPAR system. Drug Discov Today. 2020;25:1528–1534. doi: 10.1016/j.drudis.2020.06.013
    1. Del Rosso M, Margheri F, Serratì S, Chillà A, Laurenzana A, Fibbi G. The urokinase receptor system, a key regulator at the intersection between inflammation, immunity, and coagulation. Curr Pharm Des. 2011;17:1924–1943. doi: 10.2174/138161211796718189
    1. Azam TU, Shadid HR, Blakely P, O'Hayer P, Berlin H, Pan M, Zhao P, Zhao L, Pennathur S, Pop‐Busui R, et al. Soluble urokinase receptor (SuPAR) in COVID‐19‐related AKI. J Am Soc Nephrol. 2020;31:2725–2735. doi: 10.1681/ASN.2020060829
    1. Rovina N, Akinosoglou K, Eugen‐Olsen J, Hayek S, Reiser J, Giamarellos‐Bourboulis EJ. Soluble urokinase plasminogen activator receptor (suPAR) as an early predictor of severe respiratory failure in patients with COVID‐19 pneumonia. Crit Care. 2020;24:187. doi: 10.1186/s13054-020-02897-4
    1. European Medicines Agency . EMA recommends approval for use of Kineret in adults with COVID‐19. European Medicines Agency Offficial Website, Date Published: 12/16/2021. 2021. Available at: . Accessed June 12, 2022.
    1. Engström G, Zöller B, Svensson PJ, Melander O, Persson M. Soluble urokinase plasminogen activator receptor and incidence of venous thromboembolism. Thromb Haemost. 2016;115:657–662. doi: 10.1160/TH15-06-0511
    1. Pan M, Vasbinder A, Anderson E, Catalan T, Shadid HR, Berlin H, Padalia K, O'Hayer P, Meloche C, Azam TU, et al. Angiotensin‐converting enzyme inhibitors, angiotensin II receptor blockers, and outcomes in patients hospitalized for COVID‐19. J Am Heart Assoc. 2021;10:e023535. doi: 10.1161/JAHA.121.023535
    1. Azam TU, Berlin H, Anderson E, Pan M, Shadid HR, Padalia K, O'Hayer P, Meloche C, Feroze R, Michaud E, et al. Differences in inflammation, treatment, and outcomes between black and non‐black patients hospitalized for COVID‐19: a prospective cohort study. Am J Med. 2022;135:360–368. doi: 10.1016/j.amjmed.2021.10.026
    1. Hayek SS, Roderburg C, Blakely P, Launius C, Eugen‐Olsen J, Tacke F, Ktena S, Keitel V, Luedde M, Giamarellos‐Bourboulis EJ, et al. Circulating osteopontin levels and outcomes in patients hospitalized for COVID‐19. J Clin Med. 2021;10:3907. doi: 10.3390/jcm10173907
    1. Vasbinder A, Anderson E, Shadid H, Berlin H, Pan M, Azam TU, Khaleel I, Padalia K, Meloche C, O'Hayer P, et al. Inflammation, hyperglycemia, and adverse outcomes in individuals with diabetes mellitus hospitalized for COVID‐19. Diabetes Care. 2022;45:692–700. doi: 10.2337/dc21-2102
    1. Levey AS, Stevens LA, Schmid CH, Zhang YL, Castro AF III, Feldman HI, Kusek JW, Eggers P, Van Lente F, Greene T, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med. 2009;150:604–612. doi: 10.7326/0003-4819-150-9-200905050-00006
    1. DeLong ER, DeLong DM, Clarke‐Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845. doi: 10.2307/2531595
    1. Hothorn T, Hornik K, Zeileis A. Unbiased recursive partitioning: a conditional inference framework. J Comput Graph Stat. 2006;15:651–674. doi: 10.1198/106186006x133933
    1. R Core Team . R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. 2021. Available at:
    1. Tan BK, Mainbourg S, Friggeri A, Bertoletti L, Douplat M, Dargaud Y, Grange C, Lobbes H, Provencher S, Lega JC. Arterial and venous thromboembolism in COVID‐19: a study‐level meta‐analysis. Thorax. 2021;76:970–979. doi: 10.1136/thoraxjnl-2020-215383
    1. Thachil J, Tang N, Gando S, Falanga A, Cattaneo M, Levi M, Clark C, Iba T. ISTH interim guidance on recognition and management of coagulopathy in COVID‐19. J Thromb Haemost. 2020;18:1023–1026. doi: 10.1111/jth.14810
    1. Fox SE, Akmatbekov A, Harbert JL, Li G, Quincy Brown J, Vander Heide RS. Pulmonary and cardiac pathology in African American patients with COVID‐19: an autopsy series from New Orleans. Lancet Respir Med. 2020;8:681–686. doi: 10.1016/S2213-2600(20)30243-5
    1. Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID‐19. Lancet Haematol. 2020;7:e438–e440. doi: 10.1016/S2352-3026(20)30145-9
    1. Hunt BJ, Levi M. Re The source of elevated plasma D‐dimer levels in COVID‐19 infection. Br J Haematol. 2020;190:e133–e134. doi: 10.1111/bjh.16907
    1. Vincent JL, Levi M, Hunt BJ. Prevention and management of thrombosis in hospitalised patients with COVID‐19 pneumonia. Lancet Respir Med. 2022;10:214–220. doi: 10.1016/S2213-2600(21)00455-0
    1. Fenyves BG, Mehta A, Kays KR, Beakes C, Margolin J, Goldberg MB, Hacohen N, Filbin MR. Plasma P‐selectin is an early marker of thromboembolism in COVID‐19. Am J Hematol. 2021;96:E468–E471. doi: 10.1002/ajh.26372
    1. Mulder MMG, Brandts L, Brüggemann RAG, Koelmann M, Streng AS, Olie RH, Gietema HA, Spronk HMH, van der Horst ICC, Sels JEM, et al. Serial markers of coagulation and inflammation and the occurrence of clinical pulmonary thromboembolism in mechanically ventilated patients with SARS‐CoV‐2 infection; the prospective Maastricht intensive care COVID cohort. Thromb J. 2021;19:35. doi: 10.1186/s12959-021-00286-7
    1. van de Sande D, van Genderen ME, Rosman B, Diether M, Endeman H, van den Akker JPC, Ludwig M, Huiskens J, Gommers D, van Bommel J. Predicting thromboembolic complications in COVID‐19 ICU patients using machine learning. J Clin Transl Res. 2020;6:179–186. doi: 10.18053/jctres.06.202005.003
    1. Luo S, Coresh J, Tin A, Rebholz CM, Chen TK, Hayek SS, Tracy M, Lipkowitz MS, Appel LJ, Levey AS, et al. Soluble urokinase‐type plasminogen activator receptor in black Americans with CKD. Clin J Am Soc Nephrol. 2018;13:1013–1021. doi: 10.2215/CJN.13631217
    1. Eapen DJ, Manocha P, Ghasemzadeh N, Patel RS, Al Kassem H, Hammadah M, Veledar E, Le NA, Pielak T, Thorball CW, et al. Soluble urokinase plasminogen activator receptor level is an independent predictor of the presence and severity of coronary artery disease and of future adverse events. J Am Heart Assoc. 2014;3:e001118. doi: 10.1161/JAHA.114.001118
    1. Hayek SS, Koh KH, Grams ME, Wei C, Ko YA, Li J, Samelko B, Lee H, Dande RR, Lee HW, et al. A tripartite complex of suPAR, APOL1 risk variants and alphavbeta3 integrin on podocytes mediates chronic kidney disease. Nat Med. 2017;23:945–953. doi: 10.1038/nm.4362
    1. Hayek SS, Sever S, Ko YA, Trachtman H, Awad M, Wadhwani S, Altintas MM, Wei C, Hotton AL, French AL, et al. Soluble urokinase receptor and chronic kidney disease. N Engl J Med. 2015;373:1916–1925. doi: 10.1056/NEJMoa1506362
    1. Hodges GW, Bang CN, Wachtell K, Eugen‐Olsen J, Jeppesen JL. suPAR: a new biomarker for cardiovascular disease? Can J Cardiol. 2015;31:1293–1302. doi: 10.1016/j.cjca.2015.03.023
    1. Hahm E, Wei C, Fernandez I, Li J, Tardi NJ, Tracy M, Wadhwani S, Cao Y, Peev V, Zloza A, et al. Bone marrow‐derived immature myeloid cells are a main source of circulating suPAR contributing to proteinuric kidney disease. Nat Med. 2017;23:100–106. doi: 10.1038/nm.4242
    1. Hayek SS, Leaf DE, Samman Tahhan A, Raad M, Sharma S, Waikar SS, Sever S, Camacho A, Wang X, Dande RR, et al. Soluble urokinase receptor and acute kidney injury. N Engl J Med. 2020;382:416–426. doi: 10.1056/NEJMoa1911481
    1. Anderson MR, Geleris J, Anderson DR, Zucker J, Nobel YR, Freedberg D, Small‐Saunders J, Rajagopalan KN, Greendyk R, Chae SR, et al. Body mass index and risk for intubation or death in SARS‐CoV‐2 infection: a retrospective cohort study. Ann Intern Med. 2020;173:782–790. doi: 10.7326/M20-3214

Source: PubMed

3
Subskrybuj