Antimicrobial therapeutic drug monitoring in critically ill adult patients: a Position Paper

Mohd H Abdul-Aziz, Jan-Willem C Alffenaar, Matteo Bassetti, Hendrik Bracht, George Dimopoulos, Deborah Marriott, Michael N Neely, Jose-Artur Paiva, Federico Pea, Fredrik Sjovall, Jean F Timsit, Andrew A Udy, Sebastian G Wicha, Markus Zeitlinger, Jan J De Waele, Jason A Roberts, Infection Section of European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Group of International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), Infections in the ICU and Sepsis Working Group of International Society of Antimicrobial Chemotherapy (ISAC), Mohd H Abdul-Aziz, Jan-Willem C Alffenaar, Matteo Bassetti, Hendrik Bracht, George Dimopoulos, Deborah Marriott, Michael N Neely, Jose-Artur Paiva, Federico Pea, Fredrik Sjovall, Jean F Timsit, Andrew A Udy, Sebastian G Wicha, Markus Zeitlinger, Jan J De Waele, Jason A Roberts, Infection Section of European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), Infectious Diseases Group of International Association of Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT), Infections in the ICU and Sepsis Working Group of International Society of Antimicrobial Chemotherapy (ISAC)

Abstract

Purpose: This Position Paper aims to review and discuss the available data on therapeutic drug monitoring (TDM) of antibacterials, antifungals and antivirals in critically ill adult patients in the intensive care unit (ICU). This Position Paper also provides a practical guide on how TDM can be applied in routine clinical practice to improve therapeutic outcomes in critically ill adult patients.

Methods: Literature review and analysis were performed by Panel Members nominated by the endorsing organisations, European Society of Intensive Care Medicine (ESICM), Pharmacokinetic/Pharmacodynamic and Critically Ill Patient Study Groups of European Society of Clinical Microbiology and Infectious Diseases (ESCMID), International Association for Therapeutic Drug Monitoring and Clinical Toxicology (IATDMCT) and International Society of Antimicrobial Chemotherapy (ISAC). Panel members made recommendations for whether TDM should be applied clinically for different antimicrobials/classes.

Results: TDM-guided dosing has been shown to be clinically beneficial for aminoglycosides, voriconazole and ribavirin. For most common antibiotics and antifungals in the ICU, a clear therapeutic range has been established, and for these agents, routine TDM in critically ill patients appears meritorious. For the antivirals, research is needed to identify therapeutic targets and determine whether antiviral TDM is indeed meritorious in this patient population. The Panel Members recommend routine TDM to be performed for aminoglycosides, beta-lactam antibiotics, linezolid, teicoplanin, vancomycin and voriconazole in critically ill patients.

Conclusion: Although TDM should be the standard of care for most antimicrobials in every ICU, important barriers need to be addressed before routine TDM can be widely employed worldwide.

Keywords: Antibacterials; Antifungals; Antivirals; Pharmacodynamics; Pharmacokinetics; Sepsis.

Conflict of interest statement

Mohd H. Abdul-Aziz, Jan-Willem C. Alffenaar, Matteo Bassetti, Hendrik Bracht, George Dimopoulos, Deborah Marriott, Michael Neely, Jose-Artur Paiva, Fredrik Sjovall, Sebastian G. Wicha and Markus Zeitlinger declare no conflict of interest. Federico Pea participated in speaker bureau for Angelini, Basilea Pharmaceutica, Gilead, Hikma, Merck Sharp & Dohme, Nordic Pharma, Pfizer and Sanofi Aventis and in advisory board for Angelini, Basilea Pharmaceutica, Correvio, Gilead, Merck Sharp & Dohme, Nordic Pharma, Novartis, Pfizer and Thermo-Fisher. Jean F. Timsit has contributed to Medical Advisory Boards for Gilead Sciences, Inc., Merck Sharp & Dohme, MedImmune, Paratek Pharmaceuticals, Pfizer Inc. and Venatorx Pharmaceuticals, Inc. Jean F. Timsit has received research grants and/or lecture fees from Biomerieux, Gilead Sciences, Inc., Merck Sharp & Dohme and Pfizer Inc. Andrew A. Udy has contributed to Medical Advisory Boards for Baxter Healthcare Pty Ltd, Merck Sharp & Dohme (Australia) Pty Ltd, in addition to previously receiving honorarium and travel support from Pfizer Australia Pty Ltd. Jan J. De Waele has received consultation fees for Accelerate Diagnostics, Inc., Bayer Healthcare, Cubist Pharmaceuticals, Grifols, Merck Sharp & Dohme and Pfizer Inc. Jan J. De Waele is supported by a grant from the Research Foundation Flanders (Senior Clinical Investigator Grant FWO, Ref. 1881020 N). Jason A. Roberts receives funding from the Australian National Health and Medical Research Council for a Centre of Research Excellence (APP1099452) and a Practitioner Fellowship (APP1117065).

References

    1. Dulhunty JM, Paterson D, Webb SA, Lipman J. Antimicrobial utilisation in 37 Australian and New Zealand intensive care units. Anaesth Intensive Care. 2011;39:231–237. doi: 10.1177/0310057X1103900212.
    1. Roberts JA, Abdul-Aziz MH, Lipman J, Mouton JW, Vinks AA, Felton TW, Hope WW, Farkas A, Neely MN, Schentag JJ, Drusano G, Frey OR, Theuretzbacher U, Kuti JL, International Society of Anti-Infective Pharmacology and the Pharmacokinetics and Pharmacodynamics Study Group of the European Society of Clinical Microbiology and Infectious Diseases Individualised antibiotic dosing for patients who are critically ill: challenges and potential solutions. Lancet Infect Dis. 2014;14:498–509. doi: 10.1016/S1473-3099(14)70036-2.
    1. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J, DALI Study DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58:1072–1083. doi: 10.1093/cid/ciu027.
    1. Sumi CD, Heffernan AJ, Lipman J, Roberts JA, Sime FB. What antibiotic exposures are required to suppress the emergence of resistance for gram-negative bacteria? A systematic review. Clin Pharmacokinet. 2019;58:1407–1443. doi: 10.1007/s40262-019-00791-z.
    1. Tabah A, De Waele J, Lipman J, Zahar JR, Cotta MO, Barton G, Timsit JF, Roberts JA. The ADMIN-ICU survey: a survey on antimicrobial dosing and monitoring in ICUs. J Antimicrob Chemother. 2015;70:2671–2677. doi: 10.1093/jac/dkv165.
    1. Wong G, Brinkman A, Benefield RJ, Carlier M, De Waele JJ, El Helali N, Frey O, Harbarth S, Huttner A, McWhinney B, Misset B, Pea F, Preisenberger J, Roberts MS, Robertson TA, Roehr A, Sime FB, Taccone FS, Ungerer JP, Lipman J, Roberts JA. An international, multicentre survey of beta-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother. 2014;69:1416–1423. doi: 10.1093/jac/dkt523.
    1. Goncalves-Pereira J, Povoa P. Antibiotics in critically ill patients: a systematic review of the pharmacokinetics of beta-lactams. Crit Care. 2011;15:R206. doi: 10.1186/cc10441.
    1. Roberts JA, Pea F, Lipman J. The clinical relevance of plasma protein binding changes. Clin Pharmacokinet. 2013;52:1–8. doi: 10.1007/s40262-012-0018-5.
    1. Alobaid AS, Hites M, Lipman J, Taccone FS, Roberts JA. Effect of obesity on the pharmacokinetics of antimicrobials in critically ill patients: a structured review. Int J Antimicrob Agents. 2016;47:259–268. doi: 10.1016/j.ijantimicag.2016.01.009.
    1. Mahmoud SH, Shen C. Augmented renal clearance in critical illness: an important consideration in drug dosing. Pharmaceutics. 2017;9(3):36. doi: 10.3390/pharmaceutics9030036.
    1. Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, Lipman J, Roberts JA. Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142:30–39. doi: 10.1378/chest.11-1671.
    1. Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, Boots RJ, Lipman J. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med. 2014;42:520–527. doi: 10.1097/CCM.0000000000000029.
    1. Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, Lipman J. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care. 2011;15:R139. doi: 10.1186/cc10262.
    1. Udy AA, Dulhunty JM, Roberts JA, Davis JS, Webb SAR, Bellomo R, Gomersall C, Shirwadkar C, Eastwood GM, Myburgh J, Paterson DL, Starr T, Paul SK, Lipman J, BLING-II Investigators. ANZICS Clinical Trials Group Association between augmented renal clearance and clinical outcomes in patients receiving beta-lactam antibiotic therapy by continuous or intermittent infusion: a nested cohort study of the BLING-II randomised, placebo-controlled, clinical trial. Int J Antimicrob Agents. 2017;49:624–630. doi: 10.1016/j.ijantimicag.2016.12.022.
    1. Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med. 2009;37:2268–2282. doi: 10.1097/CCM.0b013e3181aab3d0.
    1. Roberts DM, Roberts JA, Roberts MS, Liu X, Nair P, Cole L, Lipman J, Bellomo R, Investigators RRTS. Variability of antibiotic concentrations in critically ill patients receiving continuous renal replacement therapy: a multicentre pharmacokinetic study. Crit Care Med. 2012;40:1523–1528. doi: 10.1097/CCM.0b013e318241e553.
    1. Roberts JA, Joynt G, Lee A, Choi G, Bellomo R, Kanji S, Mudaliar MY, Peake SL, Stephens D, Taccone FS, Ulldemolins M, Valkonen MM, Agbeve J, Baptista JP, Bekos V, Boidin C, Brinkmann A, Buizen L, Castro P, Cole CL, Creteur J, De Waele JJ, Deans R, Eastwood GM, Escobar L, Gomersall C, Gresham R, Jamal JA, Kluge S, Konig C, Koulouras VP, Lassig-Smith M, Laterre PF, Lei K, Leung P, Lefrant JY, Llaurado-Serra M, Martin-Loeches I, Mat Nor MB, Ostermann M, Parker SL, Rello J, Roberts DM, Roberts MS, Richards B, Rodriguez A, Roehr AC, Roger C, Seoane L, Sinnollareddy M, Sousa E, Soy D, Spring A, Starr T, Thomas J, Turnidge J, Wallis SC, Williams T, Wittebole X, Zikou XT, Paul S, Lipman J (2020) The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational SMARRT Study. Clin Infect Dis
    1. Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K. Optimising drug dosing in patients receiving extracorporeal membrane oxygenation. J Thorac Dis. 2018;10:S629–s641. doi: 10.21037/jtd.2017.09.154.
    1. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26:1–10. doi: 10.1086/516284.
    1. Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL. Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother. 2005;55:601–607. doi: 10.1093/jac/dki079.
    1. Sievert DM, Ricks P, Edwards JR, Schneider A, Patel J, Srinivasan A, Kallen A, Limbago B, Fridkin S, National Healthcare Safety Network (NHSN) Team and Participating NHSN Facilities Antimicrobial-resistant pathogens associated with healthcare-associated infections: summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2009-2010. Infect Control Hosp Epidemiol. 2013;34:1–14. doi: 10.1086/668770.
    1. Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G, Turnidge J. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother. 2018;73:564–568. doi: 10.1093/jac/dkx427.
    1. Kim EJ, Oh J, Lee K, Yu KS, Chung JY, Hwang JH, Nam EY, Kim HS, Kim M, Park JS, Song KH, Kim ES, Song J, Kim HB. Pharmacokinetic characteristics and limited sampling strategies for therapeutic drug monitoring of colistin in patients with multidrug-resistant gram-negative bacterial infections. Ther Drug Monit. 2019;41:102–106. doi: 10.1097/FTD.0000000000000572.
    1. Padulles Caldes A, Colom H, Caldes A, Cerezo G, Torras J, Grinyo JM, Lloberas N. Optimal sparse sampling for estimating ganciclovir/valganciclovir AUC in solid organ transplant patients using NONMEM. Ther Drug Monit. 2014;36:371–377. doi: 10.1097/FTD.0000000000000007.
    1. Alsultan A, An G, Peloquin CA. Limited sampling strategy and target attainment analysis for levofloxacin in patients with tuberculosis. Antimicrob Agents Chemother. 2015;59:3800–3807. doi: 10.1128/AAC.00341-15.
    1. Carlier M, Athanasopoulos A, Borrey D, Colin P, Cotton F, Denooz R, Neels H, Spriet I, Ghys T, Verstraete AG, Stove V. Proficiency testing for meropenem and piperacillin therapeutic drug monitoring: preliminary results from the Belgian society on infectiology and clinical microbiology pharmacokinetic-pharmacodynamic working group. Ther Drug Monit. 2018;40:156–158.
    1. Lempers VJ, Alffenaar JW, Touw DJ, Burger DM, Uges DR, Aarnoutse RE, Bruggemann RJ. Five year results of an international proficiency testing programme for measurement of antifungal drug concentrations. J Antimicrob Chemother. 2014;69:2988–2994. doi: 10.1093/jac/dku242.
    1. Dorn C, Kratzer A, Liebchen U, Schleibinger M, Murschhauser A, Schlossmann J, Kees F, Simon P, Kees MG. Impact of experimental variables on the protein binding of tigecycline in human plasma as determined by ultrafiltration. J Pharm Sci. 2018;107:739–744. doi: 10.1016/j.xphs.2017.09.006.
    1. Cristallini S, Hites M, Kabtouri H, Roberts JA, Beumier M, Cotton F, Lipman J, Jacobs F, Vincent JL, Creteur J, Taccone FS. New regimen for continuous infusion of vancomycin in critically Ill patients. Antimicrob Agents Chemother. 2016;60:4750–4756. doi: 10.1128/AAC.00330-16.
    1. Pea F, Viale P, Cojutti P, Furlanut M. Dosing nomograms for attaining optimum concentrations of meropenem by continuous infusion in critically ill patients with severe gram-negative infections: a pharmacokinetics/pharmacodynamics-based approach. Antimicrob Agents Chemother. 2012;56:6343–6348. doi: 10.1128/AAC.01291-12.
    1. Neely MN, Kato L, Youn G, Kraler L, Bayard D, van Guilder M, Schumitzky A, Yamada W, Jones B, Minejima E. Prospective trial on the use of trough concentration versus area under the curve to determine therapeutic vancomycin dosing. Antimicrob Agents Chemother. 2018;62:e02042-17. doi: 10.1128/AAC.02042-17.
    1. Broeker A, Nardecchia M, Klinker KP, Derendorf H, Day RO, Marriott DJ, Carland JE, Stocker SL, Wicha SG (2019) Towards precision dosing of vancomycin: a systematic evaluation of pharmacometric models for Bayesian forecasting. Clin Microbiol Infect 25:1286 e1281–e1286 e1287
    1. Ruiz J, Ramirez P, Company MJ, Gordon M, Villarreal E, Concha P, Aroca M, Frasquet J, Remedios-Marques M, Castellanos-Ortega A. Impact of amikacin pharmacokinetic/pharmacodynamic index on treatment response in critically ill patients. J Glob Antimicrob Resist. 2018;12:90–95. doi: 10.1016/j.jgar.2017.09.019.
    1. Duszynska W, Taccone FS, Hurkacz M, Kowalska-Krochmal B, Wiela-Hojenska A, Kubler A. Therapeutic drug monitoring of amikacin in septic patients. Crit Care. 2013;17:R165. doi: 10.1186/cc12844.
    1. Moore RD, Lietman PS, Smith CR. Clinical response to aminoglycoside therapy: importance of the ratio of peak concentration to minimal inhibitory concentration. J Infect Dis. 1987;155:93–99. doi: 10.1093/infdis/155.1.93.
    1. De Winter S, Wauters J, Meersseman W, Verhaegen J, Van Wijngaerden E, Peetermans W, Annaert P, Verelst S, Spriet I. Higher versus standard amikacin single dose in emergency department patients with severe sepsis and septic shock: a randomised controlled trial. Int J Antimicrob Agents. 2018;51:562–570. doi: 10.1016/j.ijantimicag.2017.11.009.
    1. de Montmollin E, Bouadma L, Gault N, Mourvillier B, Mariotte E, Chemam S, Massias L, Papy E, Tubach F, Wolff M, Sonneville R. Predictors of insufficient amikacin peak concentration in critically ill patients receiving a 25 mg/kg total body weight regimen. Intensive Care Med. 2014;40:998–1005. doi: 10.1007/s00134-014-3276-x.
    1. Delattre IK, Musuamba FT, Nyberg J, Taccone FS, Laterre PF, Verbeeck RK, Jacobs F, Wallemacq PE. Population pharmacokinetic modeling and optimal sampling strategy for Bayesian estimation of amikacin exposure in critically ill septic patients. Ther Drug Monit. 2010;32:749–756. doi: 10.1097/FTD.0b013e3181f675c2.
    1. van Lent-Evers NA, Mathot RA, Geus WP, van Hout BA, Vinks AA. Impact of goal-oriented and model-based clinical pharmacokinetic dosing of aminoglycosides on clinical outcome: a cost-effectiveness analysis. Ther Drug Monit. 1999;21:63–73. doi: 10.1097/00007691-199902000-00010.
    1. Begg EJ, Barclay ML, Duffull SB. A suggested approach to once-daily aminoglycoside dosing. Br J Clin Pharmacol. 1995;39:605–609. doi: 10.1111/j.1365-2125.1995.tb05719.x.
    1. McKinnon PS, Paladino JA, Schentag JJ. Evaluation of area under the inhibitory curve (AUIC) and time above the minimum inhibitory concentration (T > MIC) as predictors of outcome for cefepime and ceftazidime in serious bacterial infections. Int J Antimicrob Agents. 2008;31:345–351. doi: 10.1016/j.ijantimicag.2007.12.009.
    1. Li C, Du X, Kuti JL, Nicolau DP. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother. 2007;51:1725–1730. doi: 10.1128/AAC.00294-06.
    1. Tam VH, McKinnon PS, Akins RL, Rybak MJ, Drusano GL. Pharmacodynamics of cefepime in patients with Gram-negative infections. J Antimicrob Chemother. 2002;50:425–428. doi: 10.1093/jac/dkf130.
    1. Aitken SL, Altshuler J, Guervil DJ, Hirsch EB, Ostrosky-Zeichner LL, Ericsson CD, Tam VH. Cefepime free minimum concentration to minimum inhibitory concentration (fCmin/MIC) ratio predicts clinical failure in patients with Gram-negative bacterial pneumonia. Int J Antimicrob Agents. 2015;45:541–544. doi: 10.1016/j.ijantimicag.2014.12.018.
    1. Vial T, Bailly H, Perault-Pochat MC, Default A, Boulay C, Chouchana L, Kassai B, French Network of Pharmacovigilance Centres Beta-lactam-induced severe neutropaenia: a descriptive study. Fundam Clin Pharmacol. 2019;33:225–231. doi: 10.1111/fcp.12419.
    1. Vardakas KZ, Voulgaris GL, Maliaros A, Samonis G, Falagas ME. Prolonged versus short-term intravenous infusion of antipseudomonal beta-lactams for patients with sepsis: a systematic review and meta-analysis of randomised trials. Lancet Infect Dis. 2018;18:108–120. doi: 10.1016/S1473-3099(17)30615-1.
    1. Wong G, Briscoe S, McWhinney B, Ally M, Ungerer J, Lipman J, Roberts JA. Therapeutic drug monitoring of beta-lactam antibiotics in the critically ill: direct measurement of unbound drug concentrations to achieve appropriate drug exposures. J Antimicrob Chemother. 2018;73:3087–3094. doi: 10.1093/jac/dky314.
    1. Heil EL, Nicolau DP, Farkas A, Roberts JA, Thom KA. Pharmacodynamic target attainment for cefepime, meropenem, and piperacillin-tazobactam using a pharmacokinetic/pharmacodynamic-based dosing calculator in critically ill patients. Antimicrob Agents Chemother. 2018;62:e01008-18. doi: 10.1128/AAC.01008-18.
    1. Blaser J, Joos B, Opravil M, Luthy R. Variability of serum concentrations of trimethoprim and sulfamethoxazole during high dose therapy. Infection. 1993;21:206–209. doi: 10.1007/BF01728888.
    1. Hess MM, Boucher BA, Laizure SC, Stevens RC, Sanders PL, Janning SW, Croce MA, Fabian TC. Trimethoprim-sulfamethoxazole pharmacokinetics in trauma patients. Pharmacotherapy. 1993;13:602–606.
    1. Falcone M, Russo A, Cassetta MI, Lappa A, Tritapepe L, d’Ettorre G, Fallani S, Novelli A, Venditti M. Variability of pharmacokinetic parameters in patients receiving different dosages of daptomycin: is therapeutic drug monitoring necessary? J Infect Chemother. 2013;19:732–739. doi: 10.1007/s10156-013-0559-z.
    1. Galar A, Munoz P, Valerio M, Cercenado E, Garcia-Gonzalez X, Burillo A, Sanchez-Somolinos M, Juarez M, Verde E, Bouza E. Current use of daptomycin and systematic therapeutic drug monitoring: clinical experience in a tertiary care institution. Int J Antimicrob Agents. 2019;53:40–48. doi: 10.1016/j.ijantimicag.2018.09.015.
    1. Bhavnani SM, Rubino CM, Ambrose PG, Drusano GL. Daptomycin exposure and the probability of elevations in the creatine phosphokinase level: data from a randomized trial of patients with bacteremia and endocarditis. Clin Infect Dis. 2010;50:1568–1574. doi: 10.1086/652767.
    1. Soraluce A, Asin-Prieto E, Rodriguez-Gascon A, Barrasa H, Maynar J, Carcelero E, Soy D, Isla A. Population pharmacokinetics of daptomycin in critically ill patients. Int J Antimicrob Agents. 2018;52:158–165. doi: 10.1016/j.ijantimicag.2018.03.008.
    1. Di Paolo A, Tascini C, Polillo M, Gemignani G, Nielsen EI, Bocci G, Karlsson MO, Menichetti F, Danesi R. Population pharmacokinetics of daptomycin in patients affected by severe Gram-positive infections. Int J Antimicrob Agents. 2013;42:250–255. doi: 10.1016/j.ijantimicag.2013.06.006.
    1. Barreau S, Benaboud S, Kerneis S, Moachon L, Blanche P, Groh M, Massias L, Treluyer JM, Poyart C, Raymond J. Staphylococcus aureus osteo-articular infection: usefulness of the determination of daptomycin serum concentration to explain a treatment failure. Int J Clin Pharmacol Ther. 2016;54:923–927. doi: 10.5414/CP202538.
    1. Reiber C, Senn O, Muller D, Kullak-Ublick GA, Corti N. Therapeutic drug monitoring of daptomycin: a retrospective monocentric analysis. Ther Drug Monit. 2015;37:634–640. doi: 10.1097/FTD.0000000000000196.
    1. Pai MP, Russo A, Novelli A, Venditti M, Falcone M. Simplified equations using two concentrations to calculate area under the curve for antimicrobials with concentration-dependent pharmacodynamics: daptomycin as a motivating example. Antimicrob Agents Chemother. 2014;58:3162–3167. doi: 10.1128/AAC.02355-14.
    1. Drusano GL, Johnson DE, Rosen M, Standiford HC. Pharmacodynamics of a fluoroquinolone antimicrobial agent in a neutropenic rat model of Pseudomonas sepsis. Antimicrob Agents Chemother. 1993;37:483–490. doi: 10.1128/AAC.37.3.483.
    1. Blaser J, Stone BB, Groner MC, Zinner SH. Comparative study with enoxacin and netilmicin in a pharmacodynamic model to determine importance of ratio of antibiotic peak concentration to MIC for bactericidal activity and emergence of resistance. Antimicrob Agents Chemother. 1987;31:1054–1060. doi: 10.1128/AAC.31.7.1054.
    1. Zelenitsky SA, Ariano RE. Support for higher ciprofloxacin AUC 24/MIC targets in treating Enterobacteriaceae bloodstream infection. J Antimicrob Chemother. 2010;65:1725–1732. doi: 10.1093/jac/dkq211.
    1. Forrest A, Nix DE, Ballow CH, Goss TF, Birmingham MC, Schentag JJ. Pharmacodynamics of intravenous ciprofloxacin in seriously ill patients. Antimicrob Agents Chemother. 1993;37:1073–1081. doi: 10.1128/AAC.37.5.1073.
    1. Cone C, Horowitz B. Convulsions associated with moxifloxacin. Am J Health Syst Pharm. 2015;72(910):912.
    1. Mazzei D, Accardo J, Ferrari A, Primavera A. Levofloxacin neurotoxicity and non-convulsive status epilepticus (NCSE): a case report. Clin Neurol Neurosurg. 2012;114:1371–1373. doi: 10.1016/j.clineuro.2012.03.029.
    1. Bellon A, Perez-Garcia G, Coverdale JH, Chacko RC. Seizures associated with levofloxacin: case presentation and literature review. Eur J Clin Pharmacol. 2009;65:959–962. doi: 10.1007/s00228-009-0717-5.
    1. Chui CS, Chan EW, Wong AY, Root A, Douglas IJ, Wong IC. Association between oral fluoroquinolones and seizures: a self-controlled case series study. Neurology. 2016;86:1708–1715. doi: 10.1212/WNL.0000000000002633.
    1. Byrne CJ, Roberts JA, McWhinney B, Fennell JP, O’Byrne P, Deasy E, Egan S, Desmond R, Enright H, Ryder SA, D’Arcy DM, McHugh J. Variability in trough total and unbound teicoplanin concentrations and achievement of therapeutic drug monitoring targets in adult patients with hematological malignancy. Antimicrob Agents Chemother. 2017;61:e02466-16. doi: 10.1128/AAC.02466-16.
    1. Brink AJ, Richards GA, Lautenbach EE, Rapeport N, Schillack V, van Niekerk L, Lipman J, Roberts JA. Albumin concentration significantly impacts on free teicoplanin plasma concentrations in non-critically ill patients with chronic bone sepsis. Int J Antimicrob Agents. 2015;45:647–651. doi: 10.1016/j.ijantimicag.2015.01.015.
    1. Roberts JA, Stove V, De Waele JJ, Sipinkoski B, McWhinney B, Ungerer JP, Akova M, Bassetti M, Dimopoulos G, Kaukonen KM, Koulenti D, Martin C, Montravers P, Rello J, Rhodes A, Starr T, Wallis SC, Lipman J, Authors DS. Variability in protein binding of teicoplanin and achievement of therapeutic drug monitoring targets in critically ill patients: lessons from the DALI Study. Int J Antimicrob Agents. 2014;43:423–430. doi: 10.1016/j.ijantimicag.2014.01.023.
    1. Zhou L, Gao Y, Cao W, Liu J, Guan H, Zhang H, Shi Y, Lv W, Cheng L. Retrospective analysis of relationships among the dose regimen, trough concentration, efficacy, and safety of teicoplanin in Chinese patients with moderate-severe Gram-positive infections. Infect Drug Resist. 2018;11:29–36. doi: 10.2147/IDR.S146961.
    1. Wang T, Li N, Hu S, Xie J, Lei J, Wang Y, Zheng X, Xing J, Dong Y. Factors on trough teicoplanin levels, associations between levels, efficacy and safety in patients with gram-positive infections. Int J Clin Pharmacol Ther. 2015;53:356–362. doi: 10.5414/CP202247.
    1. Ramos-Martin V, Johnson A, McEntee L, Farrington N, Padmore K, Cojutti P, Pea F, Neely MN, Hope WW. Pharmacodynamics of teicoplanin against MRSA. J Antimicrob Chemother. 2017;72:3382–3389. doi: 10.1093/jac/dkx289.
    1. Matsumoto K, Watanabe E, Kanazawa N, Fukamizu T, Shigemi A, Yokoyama Y, Ikawa K, Morikawa N, Takeda Y. Pharmacokinetic/pharmacodynamic analysis of teicoplanin in patients with MRSA infections. Clin Pharmacol. 2016;8:15–18.
    1. Martirosov DM, Bidell MR, Pai MP, Scheetz MH, Rosenkranz SL, Lodise TP. Relationship between vancomycin exposure and outcomes among patients with MRSA bloodstream infections with vancomycin Etest(R) MIC values of 1.5 mg/L: a pilot study. Diagn Microbiol Infect Dis. 2017;88:259–263. doi: 10.1016/j.diagmicrobio.2017.03.008.
    1. Ghosh N, Chavada R, Maley M, van Hal SJ. Impact of source of infection and vancomycin AUC0-24/MICBMD targets on treatment failure in patients with methicillin-resistant Staphylococcus aureus bacteraemia. Clin Microbiol Infect. 2014;20:O1098–01105. doi: 10.1111/1469-0691.12695.
    1. Zelenitsky S, Rubinstein E, Ariano R, Iacovides H, Dodek P, Mirzanejad Y, Kumar A, Cooperative Antimicrobial Therapy of Septic Shock-CATSS Database Research Group Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents. 2013;41:255–260. doi: 10.1016/j.ijantimicag.2012.10.015.
    1. Choi EY, Huh JW, Lim CM, Koh Y, Kim SH, Choi SH, Kim YS, Kim MN, Hong SB. Relationship between the MIC of vancomycin and clinical outcome in patients with MRSA nosocomial pneumonia. Intensive Care Med. 2011;37:639–647. doi: 10.1007/s00134-011-2130-7.
    1. Hao JJ, Chen H, Zhou JX. Continuous versus intermittent infusion of vancomycin in adult patients: a systematic review and meta-analysis. Int J Antimicrob Agents. 2016;47:28–35. doi: 10.1016/j.ijantimicag.2015.10.019.
    1. Cataldo MA, Tacconelli E, Grilli E, Pea F, Petrosillo N. Continuous versus intermittent infusion of vancomycin for the treatment of Gram-positive infections: systematic review and meta-analysis. J Antimicrob Chemother. 2012;67:17–24. doi: 10.1093/jac/dkr442.
    1. Turner RB, Kojiro K, Won R, Chang E, Chan D, Elbarbry F. Prospective evaluation of vancomycin pharmacokinetics in a heterogeneous critically ill population. Diagn Microbiol Infect Dis. 2018;92:346–351. doi: 10.1016/j.diagmicrobio.2018.06.022.
    1. Finch NA, Zasowski EJ, Murray KP, Mynatt RP, Zhao JJ, Yost R, Pogue JM, Rybak MJ. A quasi-experiment to study the impact of vancomycin area under the concentration-time curve-guided dosing on vancomycin-associated nephrotoxicity. Antimicrob Agents Chemother. 2017;61:e01293-17. doi: 10.1128/AAC.01293-17.
    1. Hale CM, Seabury RW, Steele JM, Darko W, Miller CD. Are vancomycin trough concentrations of 15 to 20 mg/L associated with increased attainment of an AUC/MIC >/= 400 in patients with presumed MRSA infection? J Pharm Pract. 2017;30:329–335. doi: 10.1177/0897190016642692.
    1. Neely MN, Youn G, Jones B, Jelliffe RW, Drusano GL, Rodvold KA, Lodise TP. Are vancomycin trough concentrations adequate for optimal dosing? Antimicrob Agents Chemother. 2014;58:309–316. doi: 10.1128/AAC.01653-13.
    1. Holmes NE, Turnidge JD, Munckhof WJ, Robinson JO, Korman TM, O’Sullivan MV, Anderson TL, Roberts SA, Warren SJ, Gao W, Howden BP, Johnson PD. Vancomycin AUC/MIC ratio and 30-day mortality in patients with Staphylococcus aureus bacteremia. Antimicrob Agents Chemother. 2013;57:1654–1663. doi: 10.1128/AAC.01485-12.
    1. Rayner CR, Forrest A, Meagher AK, Birmingham MC, Schentag JJ. Clinical pharmacodynamics of linezolid in seriously ill patients treated in a compassionate use programme. Clin Pharmacokinet. 2003;42:1411–1423. doi: 10.2165/00003088-200342150-00007.
    1. Taubert M, Zoller M, Maier B, Frechen S, Scharf C, Holdt LM, Frey L, Vogeser M, Fuhr U, Zander J. Predictors of inadequate linezolid concentrations after standard dosing in critically ill patients. Antimicrob Agents Chemother. 2016;60:5254–5261. doi: 10.1128/AAC.00356-16.
    1. Pea F, Furlanut M, Cojutti P, Cristini F, Zamparini E, Franceschi L, Viale P. Therapeutic drug monitoring of linezolid: a retrospective monocentric analysis. Antimicrob Agents Chemother. 2010;54:4605–4610. doi: 10.1128/AAC.00177-10.
    1. Pea F, Viale P, Cojutti P, Del Pin B, Zamparini E, Furlanut M. Therapeutic drug monitoring may improve safety outcomes of long-term treatment with linezolid in adult patients. J Antimicrob Chemother. 2012;67:2034–2042. doi: 10.1093/jac/dks153.
    1. Kamp J, Bolhuis MS, Tiberi S, Akkerman OW, Centis R, de Lange WC, Kosterink JG, van der Werf TS, Migliori GB, Alffenaar JC. Simple strategy to assess linezolid exposure in patients with multi-drug-resistant and extensively-drug-resistant tuberculosis. Int J Antimicrob Agents. 2017;49:688–694. doi: 10.1016/j.ijantimicag.2017.01.017.
    1. Mohamed AF, Karaiskos I, Plachouras D, Karvanen M, Pontikis K, Jansson B, Papadomichelakis E, Antoniadou A, Giamarellou H, Armaganidis A, Cars O, Friberg LE. Application of a loading dose of colistin methanesulfonate in critically ill patients: population pharmacokinetics, protein binding, and prediction of bacterial kill. Antimicrob Agents Chemother. 2012;56:4241–4249. doi: 10.1128/AAC.06426-11.
    1. Cheah SE, Wang J, Nguyen VT, Turnidge JD, Li J, Nation RL. New pharmacokinetic/pharmacodynamic studies of systemically administered colistin against Pseudomonas aeruginosa and Acinetobacter baumannii in mouse thigh and lung infection models: smaller response in lung infection. J Antimicrob Chemother. 2015;70:3291–3297.
    1. Forrest A, Garonzik SM, Thamlikitkul V, Giamarellos-Bourboulis EJ, Paterson DL, Li J, Silveira FP, Nation RL. Pharmacokinetic/toxicodynamic analysis of colistin-associated acute kidney injury in critically ill patients. Antimicrob Agents Chemother. 2017;61:e01367-17. doi: 10.1128/AAC.01367-17.
    1. Phe K, Johnson ML, Palmer HR, Tam VH. Validation of a model to predict the risk of nephrotoxicity in patients receiving colistin. Antimicrob Agents Chemother. 2014;58:6946–6948. doi: 10.1128/AAC.03776-14.
    1. Pogue JM, Lee J, Marchaim D, Yee V, Zhao JJ, Chopra T, Lephart P, Kaye KS. Incidence of and risk factors for colistin-associated nephrotoxicity in a large academic health system. Clin Infect Dis. 2011;53:879–884. doi: 10.1093/cid/cir611.
    1. Rattanaumpawan P, Ungprasert P, Thamlikitkul V. Risk factors for colistin-associated nephrotoxicity. J Infect. 2011;62:187–190. doi: 10.1016/j.jinf.2010.11.013.
    1. Horcajada JP, Sorli L, Luque S, Benito N, Segura C, Campillo N, Montero M, Esteve E, Mirelis B, Pomar V, Cuquet J, Marti C, Garro P, Grau S. Validation of a colistin plasma concentration breakpoint as a predictor of nephrotoxicity in patients treated with colistin methanesulfonate. Int J Antimicrob Agents. 2016;48:725–727. doi: 10.1016/j.ijantimicag.2016.08.020.
    1. Sorli L, Luque S, Grau S, Berenguer N, Segura C, Montero MM, Alvarez-Lerma F, Knobel H, Benito N, Horcajada JP. Trough colistin plasma level is an independent risk factor for nephrotoxicity: a prospective observational cohort study. BMC Infect Dis. 2013;13:380. doi: 10.1186/1471-2334-13-380.
    1. Nation RL, Garonzik SM, Li J, Thamlikitkul V, Giamarellos-Bourboulis EJ, Paterson DL, Turnidge JD, Forrest A, Silveira FP. Updated US and European dose recommendations for intravenous colistin: how do they perform? Clin Infect Dis. 2016;62:552–558. doi: 10.1093/cid/civ964.
    1. Nation RL, Garonzik SM, Thamlikitkul V, Giamarellos-Bourboulis EJ, Forrest A, Paterson DL, Li J, Silveira FP. Dosing guidance for intravenous colistin in critically-ill patients. Clin Infect Dis. 2017;64:565–571.
    1. Landersdorfer CB, Wang J, Wirth V, Chen K, Kaye KS, Tsuji BT, Li J, Nation RL. Pharmacokinetics/pharmacodynamics of systemically administered polymyxin B against Klebsiella pneumoniae in mouse thigh and lung infection models. J Antimicrob Chemother. 2018;73:462–468. doi: 10.1093/jac/dkx409.
    1. Lakota EA, Landersdorfer CB, Nation RL, Li J, Kaye KS, Rao GG, Forrest A. Personalizing polymyxin B dosing using an adaptive feedback control algorithm. Antimicrob Agents Chemother. 2018;62:e00483-18. doi: 10.1128/AAC.00483-18.
    1. Miglis C, Rhodes NJ, Avedissian SN, Kubin CJ, Yin MT, Nelson BC, Pai MP, Scheetz MH. Population pharmacokinetics of polymyxin B in acutely ill adult patients. Antimicrob Agents Chemother. 2018;62:e01475-17. doi: 10.1128/AAC.01475-17.
    1. Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci DR, Behle TF, Bordinhao RC, Wang J, Forrest A, Nation RL, Li J, Zavascki AP. Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis. 2013;57:524–531. doi: 10.1093/cid/cit334.
    1. Kubin CJ, Nelson BC, Miglis C, Scheetz MH, Rhodes NJ, Avedissian SN, Cremers S, Yin MT. Population pharmacokinetics of intravenous polymyxin B from clinical Samples. Antimicrob Agents Chemother. 2018;62:e01493-17. doi: 10.1128/AAC.01493-17.
    1. Andes D, Ambrose PG, Hammel JP, Van Wart SA, Iyer V, Reynolds DK, Buell DN, Kovanda LL, Bhavnani SM. Use of pharmacokinetic-pharmacodynamic analyses to optimize therapy with the systemic antifungal micafungin for invasive candidiasis or candidemia. Antimicrob Agents Chemother. 2011;55:2113–2121. doi: 10.1128/AAC.01430-10.
    1. Maseda E, Grau S, Luque S, Castillo-Mafla MP, Suarez-de-la-Rica A, Montero-Feijoo A, Salgado P, Gimenez MJ, Garcia-Bernedo CA, Gilsanz F, Roberts JA. Population pharmacokinetics/pharmacodynamics of micafungin against Candida species in obese, critically ill, and morbidly obese critically ill patients. Crit Care. 2018;22:94. doi: 10.1186/s13054-018-2019-8.
    1. van der Elst KC, Veringa A, Zijlstra JG, Beishuizen A, Klont R, Brummelhuis-Visser P, Uges DR, Touw DJ, Kosterink JG, van der Werf TS, Alffenaar JC. Low caspofungin exposure in patients in intensive care units. Antimicrob Agents Chemother. 2017;61:e01582-16. doi: 10.1128/AAC.01582-16.
    1. Lempers VJ, van Rongen A, van Dongen EP, van Ramshorst B, Burger DM, Aarnoutse RE, Knibbe CA, Bruggemann RJ. Does weight impact anidulafungin pharmacokinetics? Clin Pharmacokinet. 2016;55:1289–1294. doi: 10.1007/s40262-016-0401-8.
    1. Martial LC, Bruggemann RJ, Schouten JA, van Leeuwen HJ, van Zanten AR, de Lange DW, Muilwijk EW, Verweij PE, Burger DM, Aarnoutse RE, Pickkers P, Dorlo TP. Dose reduction of caspofungin in intensive care unit patients with Child Pugh B will result in suboptimal exposure. Clin Pharmacokinet. 2016;55:723–733. doi: 10.1007/s40262-015-0347-2.
    1. Undre N, Pretorius B, Stevenson P. Pharmacokinetics of micafungin in subjects with severe hepatic dysfunction. Eur J Drug Metab Pharmacokinet. 2015;40:285–293. doi: 10.1007/s13318-014-0204-y.
    1. Mistry GC, Migoya E, Deutsch PJ, Winchell G, Hesney M, Li S, Bi S, Dilzer S, Lasseter KC, Stone JA. Single- and multiple-dose administration of caspofungin in patients with hepatic insufficiency: implications for safety and dosing recommendations. J Clin Pharmacol. 2007;47:951–961. doi: 10.1177/0091270007303764.
    1. Pai MP, Turpin RS, Garey KW. Association of fluconazole area under the concentration-time curve/MIC and dose/MIC ratios with mortality in nonneutropenic patients with candidemia. Antimicrob Agents Chemother. 2007;51:35–39. doi: 10.1128/AAC.00474-06.
    1. Rodriguez-Tudela JL, Almirante B, Rodriguez-Pardo D, Laguna F, Donnelly JP, Mouton JW, Pahissa A, Cuenca-Estrella M. Correlation of the MIC and dose/MIC ratio of fluconazole to the therapeutic response of patients with mucosal candidiasis and candidemia. Antimicrob Agents Chemother. 2007;51:3599–3604. doi: 10.1128/AAC.00296-07.
    1. Louie A, Drusano GL, Banerjee P, Liu QF, Liu W, Kaw P, Shayegani M, Taber H, Miller MH. Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob Agents Chemother. 1998;42:1105–1109. doi: 10.1128/AAC.42.5.1105.
    1. Clancy CJ, Yu VL, Morris AJ, Snydman DR, Nguyen MH. Fluconazole MIC and the fluconazole dose/MIC ratio correlate with therapeutic response among patients with candidemia. Antimicrob Agents Chemother. 2005;49:3171–3177. doi: 10.1128/AAC.49.8.3171-3177.2005.
    1. Anaissie EJ, Kontoyiannis DP, Huls C, Vartivarian SE, Karl C, Prince RA, Bosso J, Bodey GP. Safety, plasma concentrations, and efficacy of high-dose fluconazole in invasive mold infections. J Infect Dis. 1995;172:599–602. doi: 10.1093/infdis/172.2.599.
    1. Alobaid AS, Wallis SC, Jarrett P, Starr T, Stuart J, Lassig-Smith M, Mejia JL, Roberts MS, Sinnollareddy MG, Roger C, Lipman J, Roberts JA. Effect of obesity on the population pharmacokinetics of fluconazole in critically ill patients. Antimicrob Agents Chemother. 2016;60:6550–6557. doi: 10.1128/AAC.01088-16.
    1. Vermes A, van Der Sijs H, Guchelaar HJ. Flucytosine: correlation between toxicity and pharmacokinetic parameters. Chemotherapy. 2000;46:86–94. doi: 10.1159/000007260.
    1. Stamm AM, Diasio RB, Dismukes WE, Shadomy S, Cloud GA, Bowles CA, Karam GH, Espinel-Ingroff A. Toxicity of amphotericin B plus flucytosine in 194 patients with cryptococcal meningitis. Am J Med. 1987;83:236–242. doi: 10.1016/0002-9343(87)90691-7.
    1. Bennett JE, Dismukes WE, Duma RJ, Medoff G, Sande MA, Gallis H, Leonard J, Fields BT, Bradshaw M, Haywood H, McGee ZA, Cate TR, Cobbs CG, Warner JF, Alling DW. A comparison of amphotericin B alone and combined with flucytosine in the treatment of cryptoccal meningitis. N Engl J Med. 1979;301:126–131. doi: 10.1056/NEJM197907193010303.
    1. Kauffman CA, Frame PT. Bone marrow toxicity associated with 5-fluorocytosine therapy. Antimicrob Agents Chemother. 1977;11:244–247. doi: 10.1128/AAC.11.2.244.
    1. Normark S, Schonebeck J. In vitro studies of 5-fluorocytosine resistance in Candida albicans and Torulopsis glabrata. Antimicrob Agents Chemother. 1972;2:114–121. doi: 10.1128/AAC.2.3.114.
    1. Andes D, Kovanda L, Desai A, Kitt T, Zhao M, Walsh TJ. Isavuconazole concentration in real-world practice: consistency with results from clinical trials. Antimicrob Agents Chemother. 2018;62:e00585-18. doi: 10.1128/AAC.00585-18.
    1. Desai A, Kovanda L, Kowalski D, Lu Q, Townsend R, Bonate PL. Population pharmacokinetics of isavuconazole from phase 1 and phase 3 (SECURE) trials in adults and target attainment in patients with invasive infections due to aspergillus and other filamentous fungi. Antimicrob Agents Chemother. 2016;60:5483–5491. doi: 10.1128/AAC.02819-15.
    1. Coronel B, Persat F, Dorez D, Moskovtchenko JF, Peins MA, Mercatello A. Itraconazole concentrations during continuous haemodiafiltration. J Antimicrob Chemother. 1994;34:448–449. doi: 10.1093/jac/34.3.448.
    1. Denning DW, Tucker RM, Hanson LH, Stevens DA. Treatment of invasive aspergillosis with itraconazole. Am J Med. 1989;86:791–800. doi: 10.1016/0002-9343(89)90475-0.
    1. Sharkey PK, Rinaldi MG, Dunn JF, Hardin TC, Fetchick RJ, Graybill JR. High-dose itraconazole in the treatment of severe mycoses. Antimicrob Agents Chemother. 1991;35:707–713. doi: 10.1128/AAC.35.4.707.
    1. Denning DW, Tucker RM, Hanson LH, Hamilton JR, Stevens DA. Itraconazole therapy for cryptococcal meningitis and cryptococcosis. Arch Intern Med. 1989;149:2301–2308. doi: 10.1001/archinte.1989.00390100107024.
    1. Wheat J, Hafner R, Korzun AH, Limjoco MT, Spencer P, Larsen RA, Hecht FM, Powderly W. Itraconazole treatment of disseminated histoplasmosis in patients with the acquired immunodeficiency syndrome. AIDS Clinical Trial Group. Am J Med. 1995;98:336–342. doi: 10.1016/S0002-9343(99)80311-8.
    1. Glasmacher A, Hahn C, Leutner C, Molitor E, Wardelmann E, Losem C, Sauerbruch T, Marklein G, Schmidt-Wolf IG. Breakthrough invasive fungal infections in neutropenic patients after prophylaxis with itraconazole. Mycoses. 1999;42:443–451. doi: 10.1046/j.1439-0507.1999.00505.x.
    1. Boogaerts MA, Verhoef GE, Zachee P, Demuynck H, Verbist L, De Beule K. Antifungal prophylaxis with itraconazole in prolonged neutropenia: correlation with plasma levels. Mycoses. 1989;32(Suppl 1):103–108. doi: 10.1111/j.1439-0507.1989.tb02299.x.
    1. Tricot G, Joosten E, Boogaerts MA, VandePitte J, Cauwenbergh G. Ketoconazole vs. itraconazole for antifungal prophylaxis in patients with severe granulocytopenia: preliminary results of two nonrandomized studies. Rev Infect Dis. 1987;9(Suppl 1):S94–S99.
    1. Cross LJ, Bagg J, Oliver D, Warnock D. Serum itraconazole concentrations and clinical responses in Candida-associated denture stomatitis patients treated with itraconazole solution and itraconazole capsules. J Antimicrob Chemother. 2000;45:95–99. doi: 10.1093/jac/45.1.95.
    1. Cartledge JD, Midgely J, Gazzard BG. Itraconazole solution: higher serum drug concentrations and better clinical response rates than the capsule formulation in acquired immunodeficiency syndrome patients with candidosis. J Clin Pathol. 1997;50:477–480. doi: 10.1136/jcp.50.6.477.
    1. Lestner JM, Denning DW. Tremor: a newly described adverse event with long-term itraconazole therapy. J Neurol Neurosurg Psychiatry. 2010;81:327–329. doi: 10.1136/jnnp.2009.174706.
    1. Lestner JM, Roberts SA, Moore CB, Howard SJ, Denning DW, Hope WW. Toxicodynamics of itraconazole: implications for therapeutic drug monitoring. Clin Infect Dis. 2009;49:928–930. doi: 10.1086/605499.
    1. Hardin TC, Graybill JR, Fetchick R, Woestenborghs R, Rinaldi MG, Kuhn JG. Pharmacokinetics of itraconazole following oral administration to normal volunteers. Antimicrob Agents Chemother. 1988;32:1310–1313. doi: 10.1128/AAC.32.9.1310.
    1. Yi WM, Schoeppler KE, Jaeger J, Mueller SW, MacLaren R, Fish DN, Kiser TH. Voriconazole and posaconazole therapeutic drug monitoring: a retrospective study. Ann Clin Microbiol Antimicrob. 2017;16:60. doi: 10.1186/s12941-017-0235-8.
    1. van der Elst KC, Brouwers CH, van den Heuvel ER, van Wanrooy MJ, Uges DR, van der Werf TS, Kosterink JG, Span LF, Alffenaar JW. Subtherapeutic posaconazole exposure and treatment outcome in patients with invasive fungal disease. Ther Drug Monit. 2015;37:766–771. doi: 10.1097/FTD.0000000000000235.
    1. Dolton MJ, Bruggemann RJ, Burger DM, McLachlan AJ. Understanding variability in posaconazole exposure using an integrated population pharmacokinetic analysis. Antimicrob Agents Chemother. 2014;58:6879–6885. doi: 10.1128/AAC.03777-14.
    1. Ray J, Campbell L, Rudham S, Nguyen Q, Marriott D. Posaconazole plasma concentrations in critically ill patients. Ther Drug Monit. 2011;33:387–392. doi: 10.1097/FTD.0b013e31821fb197.
    1. Walravens J, Brouwers J, Spriet I, Tack J, Annaert P, Augustijns P. Effect of pH and comedication on gastrointestinal absorption of posaconazole: monitoring of intraluminal and plasma drug concentrations. Clin Pharmacokinet. 2011;50:725–734. doi: 10.2165/11592630-000000000-00000.
    1. Chen L, Wang Y, Zhang T, Li Y, Meng T, Liu L, Hao R, Dong Y. Utility of posaconazole therapeutic drug monitoring and assessment of plasma concentration threshold for effective prophylaxis of invasive fungal infections: a meta-analysis with trial sequential analysis. BMC Infect Dis. 2018;18:155. doi: 10.1186/s12879-018-3055-3.
    1. Cattaneo C, Panzali A, Passi A, Borlenghi E, Lamorgese C, Petulla M, Re A, Caimi L, Rossi G. Serum posaconazole levels during acute myeloid leukaemia induction therapy: correlations with breakthrough invasive fungal infections. Mycoses. 2015;58:362–367. doi: 10.1111/myc.12326.
    1. Eiden C, Meniane JC, Peyriere H, Eymard-Duvernay S, Le Falher G, Ceballos P, Fegueux N, Cociglio M, Reynes J, Hillaire-Buys D. Therapeutic drug monitoring of posaconazole in hematology adults under posaconazole prophylaxis: influence of food intake. Eur J Clin Microbiol Infect Dis. 2012;31:161–167. doi: 10.1007/s10096-011-1288-9.
    1. Hoenigl M, Raggam RB, Salzer HJ, Valentin T, Valentin A, Zollner-Schwetz I, Strohmeier AT, Seeber K, Wolfler A, Sill H, Krause R. Posaconazole plasma concentrations and invasive mould infections in patients with haematological malignancies. Int J Antimicrob Agents. 2012;39:510–513. doi: 10.1016/j.ijantimicag.2012.02.002.
    1. Tonini J, Thiebaut A, Jourdil JF, Berruyer AS, Bulabois CE, Cahn JY, Stanke-Labesque F. Therapeutic drug monitoring of posaconazole in allogeneic hematopoietic stem cell transplantation patients who develop gastrointestinal graft-versus-host disease. Antimicrob Agents Chemother. 2012;56:5247–5252. doi: 10.1128/AAC.00815-12.
    1. Bryant AM, Slain D, Cumpston A, Craig M. A post-marketing evaluation of posaconazole plasma concentrations in neutropenic patients with haematological malignancy receiving posaconazole prophylaxis. Int J Antimicrob Agents. 2011;37:266–269. doi: 10.1016/j.ijantimicag.2010.11.021.
    1. Shields RK, Clancy CJ, Vadnerkar A, Kwak EJ, Silveira FP, Massih RC, Pilewski JM, Crespo M, Toyoda Y, Bhama JK, Bermudez C, Nguyen MH. Posaconazole serum concentrations among cardiothoracic transplant recipients: factors impacting trough levels and correlation with clinical response to therapy. Antimicrob Agents Chemother. 2011;55:1308–1311. doi: 10.1128/AAC.01325-10.
    1. Lebeaux D, Lanternier F, Elie C, Suarez F, Buzyn A, Viard JP, Bougnoux ME, Lecuit M, Jullien V, Lortholary O. Therapeutic drug monitoring of posaconazole: a monocentric study with 54 adults. Antimicrob Agents Chemother. 2009;53:5224–5229. doi: 10.1128/AAC.00939-09.
    1. Jang SH, Colangelo PM, Gobburu JV. Exposure-response of posaconazole used for prophylaxis against invasive fungal infections: evaluating the need to adjust doses based on drug concentrations in plasma. Clin Pharmacol Ther. 2010;88:115–119. doi: 10.1038/clpt.2010.64.
    1. Walsh TJ, Raad I, Patterson TF, Chandrasekar P, Donowitz GR, Graybill R, Greene RE, Hachem R, Hadley S, Herbrecht R, Langston A, Louie A, Ribaud P, Segal BH, Stevens DA, van Burik JA, White CS, Corcoran G, Gogate J, Krishna G, Pedicone L, Hardalo C, Perfect JR. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis. 2007;44:2–12. doi: 10.1086/508774.
    1. Boglione-Kerrien C, Picard S, Tron C, Nimubona S, Gangneux JP, Lalanne S, Lemaitre F, Bellissant E, Verdier MC, Petitcollin A. Safety study and therapeutic drug monitoring of the oral tablet formulation of posaconazole in patients with haematological malignancies. J Cancer Res Clin Oncol. 2018;144:127–134. doi: 10.1007/s00432-017-2523-2.
    1. Cornely OA, Duarte RF, Haider S, Chandrasekar P, Helfgott D, Jimenez JL, Candoni A, Raad I, Laverdiere M, Langston A, Kartsonis N, Van Iersel M, Connelly N, Waskin H. Phase 3 pharmacokinetics and safety study of a posaconazole tablet formulation in patients at risk for invasive fungal disease. J Antimicrob Chemother. 2016;71:1747. doi: 10.1093/jac/dkw079.
    1. Duarte RF, Lopez-Jimenez J, Cornely OA, Laverdiere M, Helfgott D, Haider S, Chandrasekar P, Langston A, Perfect J, Ma L, van Iersel ML, Connelly N, Kartsonis N, Waskin H. Phase 1b study of new posaconazole tablet for prevention of invasive fungal infections in high-risk patients with neutropenia. Antimicrob Agents Chemother. 2014;58:5758–5765. doi: 10.1128/AAC.03050-14.
    1. Maertens J, Cornely OA, Ullmann AJ, Heinz WJ, Krishna G, Patino H, Caceres M, Kartsonis N, Waskin H, Robertson MN. Phase 1B study of the pharmacokinetics and safety of posaconazole intravenous solution in patients at risk for invasive fungal disease. Antimicrob Agents Chemother. 2014;58:3610–3617. doi: 10.1128/AAC.02686-13.
    1. Sime FB, Stuart J, Butler J, Starr T, Wallis SC, Pandey S, Lipman J, Roberts JA. Pharmacokinetics of intravenous posaconazole in critically ill patients. Antimicrob Agents Chemother. 2018;62:e00242-18. doi: 10.1128/AAC.00242-18.
    1. Nagappan V, Deresinski S. Reviews of anti-infective agents: posaconazole: a broad-spectrum triazole antifungal agent. Clin Infect Dis. 2007;45:1610–1617. doi: 10.1086/523576.
    1. Hashemizadeh Z, Badiee P, Malekhoseini SA, Raeisi Shahraki H, Geramizadeh B, Montaseri H. Observational study of associations between voriconazole therapeutic drug monitoring, toxicity, and outcome in liver transplant patients. Antimicrob Agents Chemother. 2017;61:e01211-17. doi: 10.1128/AAC.01211-17.
    1. Hoenigl M, Duettmann W, Raggam RB, Seeber K, Troppan K, Fruhwald S, Prueller F, Wagner J, Valentin T, Zollner-Schwetz I, Wolfler A, Krause R. Potential factors for inadequate voriconazole plasma concentrations in intensive care unit patients and patients with hematological malignancies. Antimicrob Agents Chemother. 2013;57:3262–3267. doi: 10.1128/AAC.00251-13.
    1. Dolton MJ, Ray JE, Chen SC, Ng K, Pont LG, McLachlan AJ. Multicenter study of voriconazole pharmacokinetics and therapeutic drug monitoring. Antimicrob Agents Chemother. 2012;56:4793–4799. doi: 10.1128/AAC.00626-12.
    1. Gomez-Lopez A, Cendejas-Bueno E, Cuesta I, Garcia Rodriguez J, Rodriguez-Tudela JL, Gutierrez-Altes A, Cuenca-Estrella M. Voriconazole serum levels measured by high-performance liquid chromatography: a monocentric study in treated patients. Med Mycol. 2012;50:439–445. doi: 10.3109/13693786.2011.630039.
    1. Park WB, Kim NH, Kim KH, Lee SH, Nam WS, Yoon SH, Song KH, Choe PG, Kim NJ, Jang IJ, Oh MD, Yu KS. The effect of therapeutic drug monitoring on safety and efficacy of voriconazole in invasive fungal infections: a randomized controlled trial. Clin Infect Dis. 2012;55:1080–1087. doi: 10.1093/cid/cis599.
    1. Pascual A, Csajka C, Buclin T, Bolay S, Bille J, Calandra T, Marchetti O. Challenging recommended oral and intravenous voriconazole doses for improved efficacy and safety: population pharmacokinetics-based analysis of adult patients with invasive fungal infections. Clin Infect Dis. 2012;55:381–390. doi: 10.1093/cid/cis437.
    1. Pascual A, Calandra T, Bolay S, Buclin T, Bille J, Marchetti O. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46:201–211. doi: 10.1086/524669.
    1. Miyakis S, van Hal SJ, Ray J, Marriott D. Voriconazole concentrations and outcome of invasive fungal infections. Clin Microbiol Infect. 2010;16:927–933. doi: 10.1111/j.1469-0691.2009.02990.x.
    1. Ueda K, Nannya Y, Kumano K, Hangaishi A, Takahashi T, Imai Y, Kurokawa M. Monitoring trough concentration of voriconazole is important to ensure successful antifungal therapy and to avoid hepatic damage in patients with hematological disorders. Int J Hematol. 2009;89:592–599. doi: 10.1007/s12185-009-0296-3.
    1. Smith J, Safdar N, Knasinski V, Simmons W, Bhavnani SM, Ambrose PG, Andes D. Voriconazole therapeutic drug monitoring. Antimicrob Agents Chemother. 2006;50:1570–1572. doi: 10.1128/AAC.50.4.1570-1572.2006.
    1. Troke PF, Hockey HP, Hope WW. Observational study of the clinical efficacy of voriconazole and its relationship to plasma concentrations in patients. Antimicrob Agents Chemother. 2011;55:4782–4788. doi: 10.1128/AAC.01083-10.
    1. Mitsani D, Nguyen MH, Shields RK, Toyoda Y, Kwak EJ, Silveira FP, Pilewski JM, Crespo MM, Bermudez C, Bhama JK, Clancy CJ. Prospective, observational study of voriconazole therapeutic drug monitoring among lung transplant recipients receiving prophylaxis: factors impacting levels of and associations between serum troughs, efficacy, and toxicity. Antimicrob Agents Chemother. 2012;56:2371–2377. doi: 10.1128/AAC.05219-11.
    1. Trifilio S, Singhal S, Williams S, Frankfurt O, Gordon L, Evens A, Winter J, Tallman M, Pi J, Mehta J. Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazole. Bone Marrow Transplant. 2007;40:451–456. doi: 10.1038/sj.bmt.1705754.
    1. Suzuki Y, Tokimatsu I, Sato Y, Kawasaki K, Sato Y, Goto T, Hashinaga K, Itoh H, Hiramatsu K, Kadota J. Association of sustained high plasma trough concentration of voriconazole with the incidence of hepatotoxicity. Clin Chim Acta. 2013;424:119–122. doi: 10.1016/j.cca.2013.05.025.
    1. Kim SH, Yim DS, Choi SM, Kwon JC, Han S, Lee DG, Park C, Kwon EY, Park SH, Choi JH, Yoo JH. Voriconazole-related severe adverse events: clinical application of therapeutic drug monitoring in Korean patients. Int J Infect Dis. 2011;15:e753–e758. doi: 10.1016/j.ijid.2011.06.004.
    1. Matsumoto K, Ikawa K, Abematsu K, Fukunaga N, Nishida K, Fukamizu T, Shimodozono Y, Morikawa N, Takeda Y, Yamada K. Correlation between voriconazole trough plasma concentration and hepatotoxicity in patients with different CYP2C19 genotypes. Int J Antimicrob Agents. 2009;34:91–94. doi: 10.1016/j.ijantimicag.2009.01.008.
    1. Imhof A, Schaer DJ, Schanz U, Schwarz U. Neurological adverse events to voriconazole: evidence for therapeutic drug monitoring. Swiss Med Wkly. 2006;136:739–742.
    1. Veringa A, Ter Avest M, Span LF, van den Heuvel ER, Touw DJ, Zijlstra JG, Kosterink JG, van der Werf TS, Alffenaar JC. Voriconazole metabolism is influenced by severe inflammation: a prospective study. J Antimicrob Chemother. 2017;72:261–267. doi: 10.1093/jac/dkw349.
    1. Encalada Ventura MA, van Wanrooy MJ, Span LF, Rodgers MG, van den Heuvel ER, Uges DR, van der Werf TS, Kosterink JG, Alffenaar JW. Longitudinal analysis of the effect of inflammation on voriconazole trough concentrations. Antimicrob Agents Chemother. 2016;60:2727–2731. doi: 10.1128/AAC.02830-15.
    1. van Wanrooy MJ, Span LF, Rodgers MG, van den Heuvel ER, Uges DR, van der Werf TS, Kosterink JG, Alffenaar JW. Inflammation is associated with voriconazole trough concentrations. Antimicrob Agents Chemother. 2014;58:7098–7101. doi: 10.1128/AAC.03820-14.
    1. Tod M, Lokiec F, Bidault R, De Bony F, Petitjean O, Aujard Y. Pharmacokinetics of oral acyclovir in neonates and in infants: a population analysis. Antimicrob Agents Chemother. 2001;45:150–157. doi: 10.1128/AAC.45.1.150-157.2001.
    1. Saiag P, Praindhui D, Chastang C. A double-blind, randomized study assessing the equivalence of valacyclovir 1000 mg once daily versus 500 mg twice daily in the episodic treatment of recurrent genital herpes. Genival Study Group. J Antimicrob Chemother. 1999;44:525–531. doi: 10.1093/jac/44.4.525.
    1. Reitano M, Tyring S, Lang W, Thoming C, Worm AM, Borelli S, Chambers LO, Robinson JM, Corey L. Valaciclovir for the suppression of recurrent genital herpes simplex virus infection: a large-scale dose range-finding study. International Valaciclovir HSV Study Group. J Infect Dis. 1998;178:603–610. doi: 10.1086/515385.
    1. Spruance SL, Tyring SK, DeGregorio B, Miller C, Beutner K. A large-scale, placebo-controlled, dose-ranging trial of peroral valaciclovir for episodic treatment of recurrent herpes genitalis. Valaciclovir HSV Study Group. Arch Intern Med. 1996;156:1729–1735. doi: 10.1001/archinte.1996.00440140169018.
    1. Weller S, Blum MR, Doucette M, Burnette T, Cederberg DM, de Miranda P, Smiley ML. Pharmacokinetics of the acyclovir pro-drug valaciclovir after escalating single- and multiple-dose administration to normal volunteers. Clin Pharmacol Ther. 1993;54:595–605. doi: 10.1038/clpt.1993.196.
    1. Chowdhury MA, Derar N, Hasan S, Hinch B, Ratnam S, Assaly R. Acyclovir-induced neurotoxicity: a case report and review of literature. Am J Ther. 2016;23:e941–e943. doi: 10.1097/MJT.0000000000000093.
    1. Bradley J, Forero N, Pho H, Escobar B, Kasinath BS, Anzueto A. Progressive somnolence leading to coma in a 68-year-old man. Chest. 1997;112:538–540. doi: 10.1378/chest.112.2.538.
    1. Haefeli WE, Schoenenberger RA, Weiss P, Ritz RF. Acyclovir-induced neurotoxicity: concentration-side effect relationship in acyclovir overdose. Am J Med. 1993;94:212–215. doi: 10.1016/0002-9343(93)90186-S.
    1. Bean B, Aeppli D. Adverse effects of high-dose intravenous acyclovir in ambulatory patients with acute herpes zoster. J Infect Dis. 1985;151:362–365. doi: 10.1093/infdis/151.2.362.
    1. Pouplin T, Pouplin JN, Van Toi P, Lindegardh N, Rogier van Doorn H, Hien TT, Farrar J, Torok ME, Chau TT. Valacyclovir for herpes simplex encephalitis. Antimicrob Agents Chemother. 2011;55:3624–3626. doi: 10.1128/AAC.01023-10.
    1. Lim M, Menson E, Tong CY, Lin JP. Use of therapeutic drug monitoring in the long-term valaciclovir therapy of relapsing herpes simplex virus encephalitis in children. J Antimicrob Chemother. 2009;64:1340–1341. doi: 10.1093/jac/dkp373.
    1. Balfour HH, Jr, Fletcher CV, Erice A, Henry WK, Acosta EP, Smith SA, Holm MA, Boivin G, Shepp DH, Crumpacker CS, Eaton CA, Martin-Munley SS. Effect of foscarnet on quantities of cytomegalovirus and human immunodeficiency virus in blood of persons with AIDS. Antimicrob Agents Chemother. 1996;40:2721–2726. doi: 10.1128/AAC.40.12.2721.
    1. Drusano GL, Aweeka F, Gambertoglio J, Jacobson M, Polis M, Lane HC, Eaton C, Martin-Munley S. Relationship between foscarnet exposure, baseline cytomegalovirus (CMV) blood culture and the time to progression of CMV retinitis in HIV-positive patients. AIDS. 1996;10:1113–1119.
    1. Fletcher CV, Collier AC, Rhame FS, Bennett D, Para MF, Beatty CC, Jones CE, Balfour HH., Jr Foscarnet for suppression of human immunodeficiency virus replication. Antimicrob Agents Chemother. 1994;38:604–607. doi: 10.1128/AAC.38.3.604.
    1. Jacobson MA, Polsky B, Causey D, Davis R, Tong W, O’Donnell JJ, Kuppermann BD, Heinemann MH, Feinberg J, Lizak P, et al. Pharmacodynamic relationship of pharmacokinetic parameters of maintenance doses of foscarnet and clinical outcome of cytomegalovirus retinitis. Antimicrob Agents Chemother. 1994;38:1190–1193. doi: 10.1128/AAC.38.5.1190.
    1. Jacobson MA, Crowe S, Levy J, Aweeka F, Gambertoglio J, McManus N, Mills J. Effect of Foscarnet therapy on infection with human immunodeficiency virus in patients with AIDS. J Infect Dis. 1988;158:862–865.
    1. Billat PA, Woillard JB, Essig M, Sauvage FL, Picard N, Alain S, Neely M, Marquet P, Saint-Marcoux F. Plasma and intracellular exposure to ganciclovir in adult renal transplant recipients: is there an association with haematological toxicity? J Antimicrob Chemother. 2016;71:484–489. doi: 10.1093/jac/dkv342.
    1. Perrottet N, Manuel O, Lamoth F, Venetz JP, Sahli R, Decosterd LA, Buclin T, Pascual M, Meylan P. Variable viral clearance despite adequate ganciclovir plasma levels during valganciclovir treatment for cytomegalovirus disease in D +/R − transplant recipients. BMC Infect Dis. 2010;10:2. doi: 10.1186/1471-2334-10-2.
    1. Vezina HE, Brundage RC, Balfour HH., Jr Population pharmacokinetics of valganciclovir prophylaxis in paediatric and adult solid organ transplant recipients. Br J Clin Pharmacol. 2014;78:343–352. doi: 10.1111/bcp.12343.
    1. Boivin G, Goyette N, Gilbert C, Covington E. Analysis of cytomegalovirus DNA polymerase (UL54) mutations in solid organ transplant patients receiving valganciclovir or ganciclovir prophylaxis. J Med Virol. 2005;77:425–429. doi: 10.1002/jmv.20471.
    1. Wiltshire H, Paya CV, Pescovitz MD, Humar A, Dominguez E, Washburn K, Blumberg E, Alexander B, Freeman R, Heaton N, Zuideveld KP, Valganciclovir Solid Organ Transplant Study Group Pharmacodynamics of oral ganciclovir and valganciclovir in solid organ transplant recipients. Transplantation. 2005;79:1477–1483. doi: 10.1097/.
    1. Boivin G, Goyette N, Gilbert C, Roberts N, Macey K, Paya C, Pescovitz MD, Humar A, Dominguez E, Washburn K, Blumberg E, Alexander B, Freeman R, Heaton N, Covington E. Absence of cytomegalovirus-resistance mutations after valganciclovir prophylaxis, in a prospective multicenter study of solid-organ transplant recipients. J Infect Dis. 2004;189:1615–1618. doi: 10.1086/382753.
    1. Lalezari JP, Friedberg DN, Bissett J, Giordano MF, Hardy WD, Drew WL, Hubbard LD, Buhles WC, Stempien MJ, Georgiou P, Jung DT, Robinson CA, Roche Cooperative Oral Ganciclovir Study Group High dose oral ganciclovir treatment for cytomegalovirus retinitis. J Clin Virol. 2002;24:67–77. doi: 10.1016/S1386-6532(01)00229-3.
    1. Fishman JA, Doran MT, Volpicelli SA, Cosimi AB, Flood JG, Rubin RH. Dosing of intravenous ganciclovir for the prophylaxis and treatment of cytomegalovirus infection in solid organ transplant recipients. Transplantation. 2000;69:389–394. doi: 10.1097/00007890-200002150-00014.
    1. Piketty C, Bardin C, Gilquin J, Gairard A, Kazatchkine MD, Chast F. Monitoring plasma levels of ganciclovir in AIDS patients receiving oral ganciclovir as maintenance therapy for CMV retinitis. Clin Microbiol Infect. 2000;6:117–120. doi: 10.1046/j.1469-0691.2000.00014.x.
    1. Spector SA, Busch DF, Follansbee S, Squires K, Lalezari JP, Jacobson MA, Connor JD, Jung D, Shadman A, Mastre B, et al. Pharmacokinetic, safety, and antiviral profiles of oral ganciclovir in persons infected with human immunodeficiency virus: a phase I/II study. AIDS Clinical Trials Group, and Cytomegalovirus Cooperative Study Group. J Infect Dis. 1995;171:1431–1437. doi: 10.1093/infdis/171.6.1431.
    1. Sommadossi JP, Bevan R, Ling T, Lee F, Mastre B, Chaplin MD, Nerenberg C, Koretz S, Buhles WC., Jr Clinical pharmacokinetics of ganciclovir in patients with normal and impaired renal function. Rev Infect Dis. 1988;10(Suppl 3):S507–S514. doi: 10.1093/clinids/10.Supplement_3.S507.
    1. Winston DJ, Ho WG, Bartoni K, Holland GN, Mitsuyasu RT, Gale RP, Busuttil RW, Champlin RE. Ganciclovir therapy for cytomegalovirus infections in recipients of bone marrow transplants and other immunosuppressed patients. Rev Infect Dis. 1988;10(Suppl 3):S547–S553. doi: 10.1093/clinids/10.Supplement_3.S547.
    1. Fletcher C, Sawchuk R, Chinnock B, de Miranda P, Balfour HH., Jr Human pharmacokinetics of the antiviral drug DHPG. Clin Pharmacol Ther. 1986;40:281–286. doi: 10.1038/clpt.1986.177.
    1. Padulles A, Colom H, Bestard O, Melilli E, Sabe N, Rigo R, Niubo J, Torras J, Llado L, Manito N, Caldes A, Cruzado JM, Grinyo JM, Lloberas N. Contribution of population pharmacokinetics to dose optimization of ganciclovir-valganciclovir in solid-organ transplant patients. Antimicrob Agents Chemother. 2016;60:1992–2002. doi: 10.1128/AAC.02130-15.
    1. Tangden T, Cojutti PG, Roberts JA, Pea F. Valganciclovir pharmacokinetics in patients receiving oral prophylaxis following kidney transplantation and model-based predictions of optimal dosing regimens. Clin Pharmacokinet. 2018;57:1399–1405. doi: 10.1007/s40262-018-0638-5.
    1. Gimenez E, Solano C, Azanza JR, Amat P, Navarro D. Monitoring of trough plasma ganciclovir levels and peripheral blood cytomegalovirus (CMV)-specific CD8 + T cells to predict CMV DNAemia clearance in preemptively treated allogeneic stem cell transplant recipients. Antimicrob Agents Chemother. 2014;58:5602–5605. doi: 10.1128/AAC.02953-14.
    1. Lilleri D, Gerna G, Zelini P, Chiesa A, Rognoni V, Mastronuzzi A, Giorgiani G, Zecca M, Locatelli F. Monitoring of human cytomegalovirus and virus-specific T-cell response in young patients receiving allogeneic hematopoietic stem cell transplantation. PLoS ONE. 2012;7:e41648. doi: 10.1371/journal.pone.0041648.
    1. Reddy MB, Yang KH, Rao G, Rayner CR, Nie J, Pamulapati C, Marathe BM, Forrest A, Govorkova EA. Oseltamivir population pharmacokinetics in the ferret: model application for pharmacokinetic/pharmacodynamic study design. PLoS ONE. 2015;10:e0138069. doi: 10.1371/journal.pone.0138069.
    1. Oh DY, Lowther S, McCaw JM, Sullivan SG, Leang SK, Haining J, Arkinstall R, Kelso A, McVernon J, Barr IG, Middleton D, Hurt AC. Evaluation of oseltamivir prophylaxis regimens for reducing influenza virus infection, transmission and disease severity in a ferret model of household contact. J Antimicrob Chemother. 2014;69:2458–2469. doi: 10.1093/jac/dku146.
    1. Mendel DB, Tai CY, Escarpe PA, Li W, Sidwell RW, Huffman JH, Sweet C, Jakeman KJ, Merson J, Lacy SA, Lew W, Williams MA, Zhang L, Chen MS, Bischofberger N, Kim CU. Oral administration of a prodrug of the influenza virus neuraminidase inhibitor GS 4071 protects mice and ferrets against influenza infection. Antimicrob Agents Chemother. 1998;42:640–646. doi: 10.1128/AAC.42.3.640.
    1. Rayner CR, Bulik CC, Kamal MA, Reynolds DK, Toovey S, Hammel JP, Smith PF, Bhavnani SM, Van Wart SA, Ambrose PG, Forrest A. Pharmacokinetic-pharmacodynamic determinants of oseltamivir efficacy using data from phase 2 inoculation studies. Antimicrob Agents Chemother. 2013;57:3478–3487. doi: 10.1128/AAC.02440-12.
    1. McSharry JJ, Weng Q, Brown A, Kulawy R, Drusano GL. Prediction of the pharmacodynamically linked variable of oseltamivir carboxylate for influenza A virus using an in vitro hollow-fiber infection model system. Antimicrob Agents Chemother. 2009;53:2375–2381. doi: 10.1128/AAC.00167-09.
    1. Wattanagoon Y, Stepniewska K, Lindegardh N, Pukrittayakamee S, Silachamroon U, Piyaphanee W, Singtoroj T, Hanpithakpong W, Davies G, Tarning J, Pongtavornpinyo W, Fukuda C, Singhasivanon P, Day NP, White NJ. Pharmacokinetics of high-dose oseltamivir in healthy volunteers. Antimicrob Agents Chemother. 2009;53:945–952. doi: 10.1128/AAC.00588-08.
    1. Rayner CR, Chanu P, Gieschke R, Boak LM, Jonsson EN. Population pharmacokinetics of oseltamivir when coadministered with probenecid. J Clin Pharmacol. 2008;48:935–947. doi: 10.1177/0091270008320317.
    1. May F, Peytavin G, Fourati S, Pressiat C, Carteaux G, Razazi K, Mekontso Dessap A, de Prost N. Paracetamol absorption test to detect poor enteric absorption of oseltamivir in intensive care unit patients with severe influenza: a pilot study. Intensive Care Med. 2019;45:1484–1486. doi: 10.1007/s00134-019-05693-z.
    1. Dominguez S, Ghosn J, Cassard B, Melica G, Poizot-Martin I, Solas C, Lascaux AS, Bouvier-Alias M, Katlama C, Levy Y, Peytavin G. Erythrocyte and plasma ribavirin concentrations in the assessment of early and sustained virological responses to pegylated interferon-alpha 2a and ribavirin in patients coinfected with hepatitis C virus and HIV. J Antimicrob Chemother. 2012;67:1449–1452. doi: 10.1093/jac/dks045.
    1. Pedersen C, Alsio A, Lagging M, Langeland N, Farkkila M, Buhl MR, Morch K, Westin J, Sangfelt P, Norkrans G, Christensen PB, NORDynamicIC Study Group Ribavirin plasma concentration is a predictor of sustained virological response in patients treated for chronic hepatitis C virus genotype 2/3 infection. J Viral Hepat. 2011;18:245–251. doi: 10.1111/j.1365-2893.2010.01303.x.
    1. Aguilar Marucco D, Gonzalez de Requena D, Bonora S, Tettoni C, Bonasso M, De Blasi T, D’Avolio A, Sciandra M, Siccardi M, Baietto L, Trentini L, Sinicco A, Cariti G, Di Perri G. The use of trough ribavirin concentration to predict sustained virological response and haematological toxicity in HIV/HCV-co-infected patients treated with ribavirin and pegylated interferon. J Antimicrob Chemother. 2008;61:919–924. doi: 10.1093/jac/dkn013.
    1. Maynard M, Pradat P, Gagnieu MC, Souvignet C, Trepo C. Prediction of sustained virological response by ribavirin plasma concentration at week 4 of therapy in hepatitis C virus genotype 1 patients. Antivir Ther. 2008;13:607–611.
    1. Arase Y, Ikeda K, Tsubota A, Suzuki F, Suzuki Y, Saitoh S, Kobayashi M, Akuta N, Someya T, Hosaka T, Sezaki H, Kobayashi M, Kumada H. Significance of serum ribavirin concentration in combination therapy of interferon and ribavirin for chronic hepatitis C. Intervirology. 2005;48:138–144. doi: 10.1159/000081741.
    1. Tsubota A, Hirose Y, Izumi N, Kumada H. Pharmacokinetics of ribavirin in combined interferon-alpha 2b and ribavirin therapy for chronic hepatitis C virus infection. Br J Clin Pharmacol. 2003;55:360–367. doi: 10.1046/j.1365-2125.2003.01780.x.
    1. Jen JF, Glue P, Gupta S, Zambas D, Hajian G. Population pharmacokinetic and pharmacodynamic analysis of ribavirin in patients with chronic hepatitis C. Ther Drug Monit. 2000;22:555–565. doi: 10.1097/00007691-200010000-00010.
    1. Stickel F, Worni M, Pache I, Moradpour D, Helbling B, Borovicka J, Gerlach TJ. Optimizing ribavirin exposure by therapeutic drug monitoring improves treatment response in patients with chronic hepatitis C genotype 1. Am J Gastroenterol. 2013;108:1176–1178. doi: 10.1038/ajg.2013.140.
    1. Loustaud-Ratti V, Alain S, Rousseau A, Hubert IF, Sauvage FL, Marquet P, Denis F, Lunel F, Cales P, Lefebvre A, Fauchais AL, Liozon E, Vidal E. Ribavirin exposure after the first dose is predictive of sustained virological response in chronic hepatitis C. Hepatology. 2008;47:1453–1461. doi: 10.1002/hep.22217.
    1. Rendon AL, Nunez M, Romero M, Barreiro P, Martin-Carbonero L, Garcia-Samaniego J, Jimenez-Nacher I, Gonzalez-Lahoz J, Soriano V. Early monitoring of ribavirin plasma concentrations may predict anemia and early virologic response in HIV/hepatitis C virus-coinfected patients. J Acquir Immune Defic Syndr. 2005;39:401–405. doi: 10.1097/01.qai.0000170034.90438.68.
    1. Maeda Y, Kiribayashi Y, Moriya T, Maruhashi A, Omoda K, Funakoshi S, Murakami T, Takano M. Dosage adjustment of ribavirin based on renal function in Japanese patients with chronic hepatitis C. Ther Drug Monit. 2004;26:9–15. doi: 10.1097/00007691-200402000-00004.
    1. Lopez-Cortes LF, Valera-Bestard B, Gutierrez-Valencia A, Ruiz-Valderas R, Jimenez L, Arizcorreta A, Terron A, Viciana P. Role of pegylated interferon-alpha-2a and ribavirin concentrations in sustained viral response in HCV/HIV-coinfected patients. Clin Pharmacol Ther. 2008;84:573–580. doi: 10.1038/clpt.2008.110.
    1. Milliken E, de Zwart AES, Alffenaar JC, Marriott DJE, Riezebos-Brilman A, Schteinman A, Evans AM, Glanville AR, Verschuuren EAM, Reuter SE. Population pharmacokinetics of ribavirin in lung transplant recipients and examination of current and alternative dosing regimens. J Antimicrob Chemother. 2019;74:691–698. doi: 10.1093/jac/dky466.
    1. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, Kumar A, Sevransky JE, Sprung CL, Nunnally ME, Rochwerg B, Rubenfeld GD, Angus DC, Annane D, Beale RJ, Bellinghan GJ, Bernard GR, Chiche JD, Coopersmith C, De Backer DP, French CJ, Fujishima S, Gerlach H, Hidalgo JL, Hollenberg SM, Jones AE, Karnad DR, Kleinpell RM, Koh Y, Lisboa TC, Machado FR, Marini JJ, Marshall JC, Mazuski JE, McIntyre LA, McLean AS, Mehta S, Moreno RP, Myburgh J, Navalesi P, Nishida O, Osborn TM, Perner A, Plunkett CM, Ranieri M, Schorr CA, Seckel MA, Seymour CW, Shieh L, Shukri KA, Simpson SQ, Singer M, Thompson BT, Townsend SR, Van der Poll T, Vincent JL, Wiersinga WJ, Zimmerman JL, Dellinger RP. Surviving sepsis campaign: international guidelines for management of sepsis and septic shock: 2016. Intensive Care Med. 2017;43:304–377. doi: 10.1007/s00134-017-4683-6.
    1. Kovanda LL, Kolamunnage-Dona R, Neely M, Maertens J, Lee M, Hope WW. Pharmacodynamics of isavuconazole for invasive mold disease: role of galactomannan for real-time monitoring of therapeutic response. Clin Infect Dis. 2017;64:1557–1563. doi: 10.1093/cid/cix198.
    1. Huurneman LJ, Neely M, Veringa A, Docobo Perez F, Ramos-Martin V, Tissing WJ, Alffenaar JW, Hope W. Pharmacodynamics of voriconazole in children: further steps along the path to true individualized therapy. Antimicrob Agents Chemother. 2016;60:2336–2342. doi: 10.1128/AAC.03023-15.

Source: PubMed

3
Subskrybuj