Muscle Wasting and Sarcopenia in Heart Failure-The Current State of Science

Alessia Lena, Markus S Anker, Jochen Springer, Alessia Lena, Markus S Anker, Jochen Springer

Abstract

Sarcopenia is primarily characterized by skeletal muscle disturbances such as loss of muscle mass, quality, strength, and physical performance. It is commonly seen in elderly patients with chronic diseases. The prevalence of sarcopenia in chronic heart failure (HF) patients amounts to up to 20% and may progress into cardiac cachexia. Muscle wasting is a strong predictor of frailty and reduced survival in HF patients. Despite many different techniques and clinical tests, there is still no broadly available gold standard for the diagnosis of sarcopenia. Resistance exercise and nutritional supplementation represent the currently most used strategies against wasting disorders. Ongoing research is investigating skeletal muscle mitochondrial dysfunction as a new possible target for pharmacological compounds. Novel agents such as synthetic ghrelin and selective androgen receptor modulators (SARMs) seem promising in counteracting muscle abnormalities but their effectiveness in HF patients has not been assessed yet. In the last decades, many advances have been accomplished but sarcopenia remains an underdiagnosed pathology and more efforts are needed to find an efficacious therapeutic plan. The purpose of this review is to illustrate the current knowledge in terms of pathogenesis, diagnosis, and treatment of sarcopenia in order to provide a better understanding of wasting disorders occurring in chronic heart failure.

Keywords: cardiac cachexia; heart failure; sarcopenia; treatment.

Conflict of interest statement

M.S.A. has received personal fees from Servier and research support from the German Center for Cardiovascular Research and by the BMBF (German Ministry of Education and Research). All other authors report no conflict of interest.

References

    1. Cruz-Jentoft A.J., Bahat G., Bauer J., Boirie Y., Bruyère O., Cederholm T., Cooper C., Landi F., Rolland Y., Sayer A.A., et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing. 2019;48:601. doi: 10.1093/ageing/afz046.
    1. Suetta C., Haddock B., Alcazar J., Noerst T., Hansen O.M., Ludivg H., Kamper R.S., Schnohr P., Prescott E., Frandsen U., et al. The Copenhagen Sarcopenia Study: Lean mass, strength, power, and physical function in a Danish cohort aged 20–93 years. J. Cachexia Sarcopenia Muscle. 2019;10:1316–1329. doi: 10.1002/jcsm.12477.
    1. Bauer J., Morley J.E., Schols A.M.W.G., Ferrucci L., Cruz-Jentoft A.J., Jatoi A., Kalantar-Zadeh K., Landi M., Laviano A., Mancuso M., et al. Sarcopenia: A Time for Action. An SCWD Position Paper. J. Cachexia Sarcopenia Muscle. 2019;10:956–961. doi: 10.1002/jcsm.12483.
    1. Mayhew A.J., Amog K., Phillips S., Parise G., McNicholas P.D., de Souza R.J., Thabane L., Raina P. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: A systematic review and meta-analyses. Age Ageing. 2019;48:48–56. doi: 10.1093/ageing/afy106.
    1. Wilkinson D.J., Piasecki M., Atherton P.J. The age-related loss of skeletal muscle mass and function: Measurement and physiology of muscle fibre atrophy and muscle fibre loss in humans. Ageing Res. Rev. 2018;47:123–132. doi: 10.1016/j.arr.2018.07.005.
    1. Papadopoulou S.K., Tsintavis P., Potsaki P., Papandreou D. Differences in the Prevalence of Sarcopenia in Community-Dwelling, Nursing Home and Hospitalized Individuals. A Systematic Review and Meta-Analysis. J. Nutr. Health Aging. 2020;24:83–90. doi: 10.1007/s12603-019-1267-x.
    1. Ferrucci L., Fabbri E. Inflammageing: Chronic inflammation in ageing, cardiovascular disease, and frailty. Nat. Rev. Cardiol. 2018;15:505–522. doi: 10.1038/s41569-018-0064-2.
    1. Li C.W., Yu K., Shyh-Chang N., Li G.X., Jiang L.J., Yu S.L., Xu L.Y., Liu R.J., Guo Z.J., Xie H.Y., et al. Circulating factors associated with sarcopenia during ageing and after intensive lifestyle intervention. J. Cachexia Sarcopenia Muscle. 2019;10:586–600. doi: 10.1002/jcsm.12417.
    1. Cao Dinh H., Njemini R., Okwudiri Onyema O., Beyer I., Liberman K., De Dobbeleer L., Renmans W., Vander Meeren S., Jochmans K., Delaere A., et al. Strength Endurance Training but Not Intensive Strength Training Reduces Senescence-Prone T Cells in Peripheral Blood in Community-Dwelling Elderly Women. J. Gerontol. A Biol. Sci. Med. Sci. 2019;74:1870–1878. doi: 10.1093/gerona/gly229.
    1. Wilson D., Jackson T., Sapey E., Lord J.M. Frailty and sarcopenia: The potential role of an aged immune system. Ageing Res. Rev. 2017;36:1–10. doi: 10.1016/j.arr.2017.01.006.
    1. Abete I., Konieczna J., Zulet M.A., Galmés-Panades A.M., Ibero-Baraibar I., Babio N., Estruch R., Vidal J., Toledo E., PREDIMED-PLUS Investigators et al. Association of lifestyle factors and inflammation with sarcopenic obesity: Data from the PREDIMED-Plus trial. J. Cachexia Sarcopenia Muscle. 2019;10:974–984. doi: 10.1002/jcsm.12442.
    1. He L., Khanal P., Morse C.I., Williams A., Thomis M. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women. J. Cachexia Sarcopenia Muscle. 2019;10:1295–1306. doi: 10.1002/jcsm.12478.
    1. Moore D.R., Kelly R.P., Devries M.C., Churchward-Venne T.A., Phillips S.M., Parise G., Johnston A.P. Low-load resistance exercise during inactivity is associated with greater fibre area and satellite cell expression in older skeletal muscle. J. Cachexia Sarcopenia Muscle. 2018;9:747–754. doi: 10.1002/jcsm.12306.
    1. Perez-Sousa M.A., Venegas-Sanabria L.C., Chavarro-Carvajal D.A., Cano-Gutierrez C.A., Izquierdo M., Correa-Bautista J.E., Ramírez-Vélez R. Gait speed as a mediator of the effect of sarcopenia on dependency in activities of daily living. J. Cachexia Sarcopenia Muscle. 2019;10:1009–1015. doi: 10.1002/jcsm.12444.
    1. Yeung S.S.Y., Reijnierse E.M., Pham V.K., Trappenburg M.C., Lim W.K., Meskers C.G.M., Maier A.B. Sarcopenia and its association with falls and fractures in older adults: A systematic review and meta-analysis. J. Cachexia Sarcopenia Muscle. 2019;10:485–500. doi: 10.1002/jcsm.12411.
    1. Uemura K., Doi T., Lee S., Shimada H. Sarcopenia and Low Serum Albumin Level Synergistically Increase the Risk of Incident Disability in Older Adults. J. Am. Med. Dir. Assoc. 2019;20:90–93. doi: 10.1016/j.jamda.2018.06.011.
    1. Deniz O., Coteli S., Karatoprak N.B., Pence M.C., Varan H.D., Kizilarslanoglu M.C., Oktar S.O., Goker B. Diaphragmatic muscle thickness in older people with and without sarcopenia. Aging Clin. Exp. Res. 2020 doi: 10.1007/s40520-020-01565-5.
    1. Locquet M., Beaudart C., Hajaoui M., Petermans J., Reginster J.Y., Bruyère O. Three-Year Adverse Health Consequences of Sarcopenia in Community-Dwelling Older Adults According to 5 Diagnosis Definitions. J. Am. Med. Dir. Assoc. 2019;20:43–46.e2. doi: 10.1016/j.jamda.2018.06.004.
    1. Buckinx F., Landi F., Cesari M., Fielding R.A., Visser M., Engelke K., Maggi S., Dennison E., Al-Daghri N.M., Allepaerts S., et al. Pitfalls in the measurement of muscle mass: A need for a reference standard. J. Cachexia Sarcopenia Muscle. 2018;9:269–278. doi: 10.1002/jcsm.12268.
    1. Scafoglieri A., Clarys J.P. Dual energy X-ray absorptiometry: Gold standard for muscle mass? J. Cachexia Sarcopenia Muscle. 2018;9:786–787. doi: 10.1002/jcsm.12308.
    1. Evans W.J., Hellerstein M., Orwoll E., Cummings S., Cawthon P.M. D3-Creatine dilution and the importance of accuracy in the assessment of skeletal muscle mass. J. Cachexia Sarcopenia Muscle. 2019;10:14–21. doi: 10.1002/jcsm.12390.
    1. Shankaran M., Czerwieniec G., Fessler C., Wong P.A., Killion S., Turner S.M., Hellerstein M.K., Evans W.J. Dilution of oral D3-Creatine to measure creatine pool size and estimate skeletal muscle mass: Development of a correction algorithm. J. Cachexia Sarcopenia Muscle. 2018;9:540–546. doi: 10.1002/jcsm.12278.
    1. Sánchez-Sánchez J.L., Mañas A., García-García F.J., Ara I., Carnicero J.A., Walter S., Rodríguez-Mañas L. Sedentary behaviour, physical activity, and sarcopenia among older adults in the TSHA: Isotemporal substitution model. J. Cachexia Sarcopenia Muscle. 2019;10:188–198. doi: 10.1002/jcsm.12369.
    1. Neves T., Fett C.A., Ferriolli E., Souza M.G.C., dos Reis Filho A.D., Lopes M.B.M., Martins N.M.C., Fett W.C.R. Correlation between muscle mass, nutritional status and physical performance of elderly people. Osteoporos Sarcopenia. 2018;4:145–149. doi: 10.1016/j.afos.2018.11.081.
    1. Scherbakov N., Doehner W. Do we need a reference standard for the muscle mass measurements? ESC Heart Fail. 2018;5:741–744. doi: 10.1002/ehf2.12356.
    1. Petermann-Rocha F., Ho F.K., Welsh P., Mackay D., Brown R., Gill J.M.R., Sattar N., Gray S.R., Pell J.P., Celis-Morales C.A. Physical capability markers used to define sarcopenia and their association with cardiovascular and respiratory outcomes and all-cause mortality: A prospective study from UK Biobank. Maturitas. 2020;138:69–75. doi: 10.1016/j.maturitas.2020.04.017.
    1. Tabara Y., Ikezoe T., Setoh K., Sugimoto K., Kawaguchi T., Kosugi S., Nakayama T., Ichihashi N., Tsuboyama T., Matsuda F., et al. Comparison of diagnostic significance of the initial versus revised diagnostic algorithm for sarcopenia from the Asian Working Group for Sarcopenia. Arch. Gerontol. Geriatr. 2020;89:104071. doi: 10.1016/j.archger.2020.104071.
    1. Chen L.K., Woo J., Assantachai P., Auyeung T.W., Chou M.Y., Iijima K., Jang H.C., Kang L., Kim M., Kim S., et al. Asian Working Group for Sarcopenia: 2019 Consensus Update on Sarcopenia Diagnosis and Treatment. J. Am. Med. Dir. Assoc. 2020;21:300–307.e2. doi: 10.1016/j.jamda.2019.12.012.
    1. Curcio F., Testa G., Liguori I., Papillo M., Flocco V., Panicara V., Galizia G., Della-Morte D., Gargiulo G., Cacciatore F., et al. Sarcopenia and Heart Failure. Nutrients. 2020;12:211. doi: 10.3390/nu12010211.
    1. Lee W.J., Peng L.N., Loh C.H., Chen L.K. Sex-different associations between serum homocysteine, high-sensitivity C-reactive protein and sarcopenia: Results from I-Lan Longitudinal Aging Study. Exp. Gerontol. 2020;132:110832. doi: 10.1016/j.exger.2020.110832.
    1. Wen C.P., Wai J.P., Tsai M.K., Yang Y.C., Cheng T.Y., Lee M.C., Chan H.T., Tsao C.K., Tsai S.P., Wu X. Minimum amount of physical activity for reduced mortality and extended life expectancy: A prospective cohort study. Lancet. 2011;378:1244–1253. doi: 10.1016/S0140-6736(11)60749-6.
    1. Haraldstad K., Rohde G., Stea T.H., Lohne-Seiler H., Hetlelid K., Paulsen G., Berntsen S. Changes in health-related quality of life in elderly men after 12 weeks of strength training. Eur. Rev. Aging Phys. Act. 2017;14:8. doi: 10.1186/s11556-017-0177-3.
    1. Kim H.K., Suzuki T., Saito K., Yoshida H.M., Kobayashi H., Kato H., Katayama M. Effects of exercise and amino acid supplementation on body composition and physical function in community-dwelling elderly Japanese sarcopenic women: A randomized controlled trial. J. Am. Geriatr. Soc. 2012;60:16–23. doi: 10.1111/j.1532-5415.2011.03776.x.
    1. Beasley J.M., Shikany J.M., Thomson C.A. The role of dietary protein intake in the prevention of sarcopenia of aging. Nutr. Clin. Pract. 2013;28:684–690. doi: 10.1177/0884533613507607.
    1. Karlsson M., Becker W., Michaëlsson K., Cederholm T., Sjögren P. Associations between dietary patterns at age 71 and the prevalence of sarcopenia 16 years later. Clin. Nutr. 2020;39:1077–1084. doi: 10.1016/j.clnu.2019.04.009.
    1. Rondanelli M., Rigon C., Perna S., Gasparri C., Iannello G., Akber R., Alalwan T.A., Freije A.M. Novel Insights on Intake of Fish and Prevention of Sarcopenia: All Reasons for an Adequate Consumption. Nutrients. 2020;12:307. doi: 10.3390/nu12020307.
    1. Tao J., Ke Y.Y., Zhang Z., Zhang Y., Wang Y.Y., Ren C.X., Xu J., Zhu Y.X., Zhang X.L., Zhang X.Y. Comparison of the value of malnutrition and sarcopenia for predicting mortality in hospitalized old adults over 80 years. Exp. Gerontol. 2020;138:111007. doi: 10.1016/j.exger.2020.111007.
    1. Lu Y., Karagounis L.G., Ng T.P., Carre C., Narang V., Wong G., Tan C.T.Y., Zin Nyunt M.S., Gao Q., Abel B., et al. Systemic and Metabolic Signature of Sarcopenia in Community-Dwelling Older Adults. J. Gerontol. A Biol. Sci. Med. Sci. 2020;75:309–317. doi: 10.1093/gerona/glz001.
    1. Oost L.J., Kustermann M., Armani A., Blaauw B., Romanello V. Fibroblast growth factor 21 controls mitophagy and muscle mass. J. Cachexia Sarcopenia Muscle. 2019;10:630–642. doi: 10.1002/jcsm.12409.
    1. Gill J.F., Santos G., Schnyder S., Handschin C. PGC-1α affects aging-related changes in muscle and motor function by modulating specific exercise-mediated changes in old mice. Aging Cell. 2018;17:e12697. doi: 10.1111/acel.12697.
    1. Migliavacca E., Tay S., Patel H.P., Sonntag T., Civiletto G., McFarlane C., Forrester T., Barton S.J., Leow M.K., Antoun E., et al. Mitochondrial oxidative capacity and NAD. Nat. Commun. 2019;10:5808. doi: 10.1038/s41467-019-13694-1.
    1. Zhang Q., Duplany A., Moncollin V., Mouradian S., Goillot E., Mazelin L., Gauthier K., Streichenberger N., Angleraux C., Chen J., et al. Lack of muscle mTOR kinase activity causes early onset myopathy and compromises whole-body homeostasis. J. Cachexia Sarcopenia Muscle. 2019;10:35–53. doi: 10.1002/jcsm.12336.
    1. Joseph G.A., Wang S.X., Jacobs C.E., Zhou W., Kimble G.C., Tse H.W., Eash J.K., Shavlakadze T., Glass D.J. Partial Inhibition of mTORC1 in Aged Rats Counteracts the Decline in Muscle Mass and Reverses Molecular Signaling Associated with Sarcopenia. Mol. Cell Biol. 2019;39:e00141-19. doi: 10.1128/MCB.00141-19.
    1. Crespo-Leiro M.G., Metra M., Lund L.H., Milicic D., Costanzo M.R., Filippatos G., Gustafsson F., Tsui S., Barge-Caballero E., De Jonge N., et al. European Society of Cardiology Heart Failure Long-Term Registry (ESC-HF-LT): 1-year follow-up outcomes and differences across regions. Eur. J. Heart Fail. 2016;18:613–625. doi: 10.1002/ejhf.566.
    1. Hao G., Wang X., Chen Z., Zhang L., Zhang Y., Wei B., Zheng C., Kang Y., Jiang L., Zhu Z., et al. Prevalence of heart failure and left ventricular dysfunction in China: The China Hypertension Survey, 2012–2015. Eur. J. Heart Fail. 2019;21:1329–1337. doi: 10.1002/ejhf.1629.
    1. Liao L., Allen L.A., Whellan D.J. Economic burden of heart failure in the elderly. Pharmacoeconomics. 2008;26:447–462. doi: 10.2165/00019053-200826060-00001.
    1. Aziz W., Claridge S., Ntalas I., Gould J., de Vecchi A., Razeghi O., Toth D., Mountney P., Preston R., Rinaldi C.A., et al. Emerging role of cardiac computed tomography in heart failure. ESC Heart Fail. 2019;6:909–920. doi: 10.1002/ehf2.12479.
    1. Lavall D., Hagendorff A., Schirmer S.H., Böhm M., Borger M.A., Laufs U. Mitral valve interventions in heart failure. ESC Heart Fail. 2018;5:552–561. doi: 10.1002/ehf2.12287.
    1. Mullens W., Damman K. Response to letters on “The use of diuretics in heart failure with congestion—A position statement from the Heart Failure Association of the European Society of Cardiology”. Eur. J. Heart Fail. 2019;21:949–950. doi: 10.1002/ejhf.1477.
    1. Kaye D.M., Petrie M.C., McKenzie S., Hasenfuβ G., Malek F., Post M., Doughty R.N., Trochu J.N., Gustafsson F., Lang I., et al. Impact of an interatrial shunt device on survival and heart failure hospitalization in patients with preserved ejection fraction. ESC Heart Fail. 2019;6:62–69. doi: 10.1002/ehf2.12350.
    1. Crespo-Leiro M.G., Metra M., Lund L.H., Milicic D., Costanzo M.R., Filippatos G., Gustafsson F., Tsui S., Barge-Caballero E., De Jonge N., et al. Advanced heart failure: A position statement of the Heart Failure Association of the European Society of Cardiology. Eur. J. Heart Fail. 2018;20:1505–1535. doi: 10.1002/ejhf.1236.
    1. Vitale C., Jankowska E., Hill L., Piepoli M., Doehner W., Anker S.D., Lainscak M., Jaarsma T., Ponikowski P., Rosano G.M.C., et al. Heart Failure Association/European Society of Cardiology position paper on frailty in patients with heart failure. Eur. J. Heart Fail. 2019;21:1299–1305. doi: 10.1002/ejhf.1611.
    1. Benjamin E.J., Blaha M.J., Chiuve S.E., Cushman M., Das S.R., Deo R., de Ferranti S.D., Floyd J., Fornage M. American Heart Association Statistics Committee and Stroke Statistics Subcommittee; et al Heart Disease and Stroke Statistics-2017 Update: A Report from the American Heart Association. Circulation. 2017;135:e146–e603. doi: 10.1161/CIR.0000000000000485.
    1. Iorio A., Senni M., Barbati G., Greene S.J., Poli S., Zambon E., Di Nora C., Cioffi G., Tarantini L., Gavazzi A., et al. Prevalence and prognostic impact of non-cardiac co-morbidities in heart failure outpatients with preserved and reduced ejection fraction: A community-based study. Eur. J. Heart Fail. 2018;20:1257–1266. doi: 10.1002/ejhf.1202.
    1. Tomasoni D., Adamo M., Lombardi C.M., Metra M. Highlights in heart failure. ESC Heart Fail. 2019;6:1105–1127. doi: 10.1002/ehf2.12555.
    1. Löfström U., Hage C., Savarese G., Donal E., Daubert J.C., Lund L.H., Linde C. Prognostic impact of Framingham heart failure criteria in heart failure with preserved ejection fraction. ESC Heart Fail. 2019;6:830–839. doi: 10.1002/ehf2.12458.
    1. Suzuki T., Palus S., Springer J. Skeletal muscle wasting in chronic heart failure. ESC Heart Fail. 2018;5:1099–1107. doi: 10.1002/ehf2.12387.
    1. Tsuji M., Amiya E., Hatano M., Nitta D., Maki H., Bujo C., Saito A., Hosoya Y., Minatsuki S., Hara T., et al. Abdominal skeletal muscle mass as a predictor of mortality in Japanese patients undergoing left ventricular assist device implantation. ESC Heart Fail. 2019;6:526–535. doi: 10.1002/ehf2.12429.
    1. Martone A.M., Bianchi L., Abete P., Bellelli G., Bo M., Cherubini A., Corica F., Di Bari M., Maggio M., Manca G.M., et al. The incidence of sarcopenia among hospitalized older patients: Results from the Glisten study. J. Cachexia Sarcopenia Muscle. 2017;8:907–914. doi: 10.1002/jcsm.12224.
    1. Platz E., Jhund P.S., Claggett B.L., Pfeffer M.A., Swedberg K., Granger C.B., Yusuf S., Solomon S.D., McMurray J.J. Prevalence and prognostic importance of precipitating factors leading to heart failure hospitalization: Recurrent hospitalizations and mortality. Eur. J. Heart Fail. 2018;20:295–303. doi: 10.1002/ejhf.901.
    1. von Haehling S. Muscle wasting and sarcopenia in heart failure: A brief overview of the current literature. ESC Heart Fail. 2018;5:1074–1082. doi: 10.1002/ehf2.12388.
    1. Emami A., Saitoh M., Valentova M., Sandek A., Evertz R., Ebner N., Loncar G., Springer J., Doehner W., Lainscak M., et al. Comparison of sarcopenia and cachexia in men with chronic heart failure: Results from the Studies Investigating Co-morbidities Aggravating Heart Failure (SICA-HF) Eur. J. Heart Fail. 2018;20:1580–1587. doi: 10.1002/ejhf.1304.
    1. Streng K.W., Nauta J.F., Hillege H.L., Anker S.D., Cleland J.G., Dickstein K., Filippatos G., Lang C.C., Metra M., Ng L.L., et al. Non-cardiac comorbidities in heart failure with reduced, mid-range and preserved ejection fraction. Int. J. Cardiol. 2018;271:132–139. doi: 10.1016/j.ijcard.2018.04.001.
    1. Bekfani T., Pellicori P., Morris D.A., Ebner N., Valentova M., Steinbeck L., Wachter R., Elsner S., Sliziuk V., Schefold J.C., et al. Sarcopenia in patients with heart failure with preserved ejection fraction: Impact on muscle strength, exercise capacity and quality of life. Int. J. Cardiol. 2016;222:41–46. doi: 10.1016/j.ijcard.2016.07.135.
    1. Tucker W.J., Haykowsky M.J., Seo Y., Stehling E., Forman D.E. Impaired Exercise Tolerance in Heart Failure: Role of Skeletal Muscle Morphology and Function. Curr. Heart Fail Rep. 2018;15:323–331. doi: 10.1007/s11897-018-0408-6.
    1. Yin J., Lu X., Qian Z., Xu W., Zhou X. New insights into the pathogenesis and treatment of sarcopenia in chronic heart failure. Theranostics. 2019;9:4019–4029. doi: 10.7150/thno.33000.
    1. Jeng C., Zhao L.J., Wu K., Zhou Y., Chen T., Deng H.W. Race and socioeconomic effect on sarcopenia and sarcopenic obesity in the Louisiana Osteoporosis Study (LOS) JCSM Clin. Rep. 2018;3:e00027. doi: 10.17987/jcsm-cr.v3i2.27.
    1. Tyrovolas S., Koyanagi A., Olaya B., Ayuso-Mateos J.L., Miret M., Chatterji S., Tobiasz-Adamczyk B., Koskinen S., Leonardi M., Haro J.M. Factors associated with skeletal muscle mass, sarcopenia, and sarcopenic obesity in older adults: A multi-continent study. J. Cachexia Sarcopenia Muscle. 2016;7:312–321. doi: 10.1002/jcsm.12076.
    1. Carbone S., Billingsley H.E., Rodriguez-Miguelez P., Kirkman D.L., Garten R., Franco R.L., Lee D.C., Lavie C.J. Lean Mass Abnormalities in Heart Failure: The Role of Sarcopenia, Sarcopenic Obesity, and Cachexia. Curr. Probl. Cardiol. 2019:100417. doi: 10.1016/j.cpcardiol.2019.03.006.
    1. Markousis-Mavrogenis G., Tromp J., Ouwerkerk W., Devalaraja M., Anker S.D., Cleland J.G., Dickstein K., Filippatos G.S., van der Harst P., Lang C.C., et al. The clinical significance of interleukin-6 in heart failure: Results from the BIOSTAT-CHF study. Eur. J. Heart Fail. 2019;21:965–973. doi: 10.1002/ejhf.1482.
    1. Berry C., Clark A.L. Catabolism in chronic heart failure. Eur. Heart J. 2000;21:521–532. doi: 10.1053/euhj.1999.1882.
    1. von Haehling S., Ebner N., Dos Santos M.R., Springer J., Anker S.D. Muscle wasting and cachexia in heart failure: Mechanisms and therapies. Nat. Rev. Cardiol. 2017;14:323–341. doi: 10.1038/nrcardio.2017.51.
    1. Bossone E., Arcopinto M., Iacoviello M., Triggiani V., Cacciatore F., Maiello C., Limongelli G., Masarone D., Perticone F., Sciacqua A., et al. Multiple hormonal and metabolic deficiency syndrome in chronic heart failure: Rationale, design, and demographic characteristics of the . Registry. Int. Emerg. Med. 2018;13:661–671. doi: 10.1007/s11739-018-1844-8.
    1. D’Assante R., Napoli R., Salzano A., Pozza C., Marra A.M., Arcopinto M., Perruolo G., Milano S., Formisano P., Saldamarco L., et al. Human heart shifts from IGF-1 production to utilization with chronic heart failure. Endocrine. 2019;65:714–716. doi: 10.1007/s12020-019-01993-y.
    1. Boxer R.S., Dauser D.A., Walsh S.J., Hager W.D., Kenny A.M. The association between vitamin D and inflammation with the 6-minute walk and frailty in patients with heart failure. J. Am. Geriatr. Soc. 2008;56:454–461. doi: 10.1111/j.1532-5415.2007.01601.x.
    1. Jankowska E.A., Biel B., Majda J., Szklarska A., Lopuszanska M., Medras M., Anker S.D., Banasiak W., Poole-Wilson P.A., Ponikowski P. Anabolic deficiency in men with chronic heart failure: Prevalence and detrimental impact on survival. Circulation. 2006;114:1829–1837. doi: 10.1161/CIRCULATIONAHA.106.649426.
    1. Marra A.M., Bobbio E., D’Assante R., Salzano A., Arcopinto M., Bossone E., Cittadini A. Growth Hormone as Biomarker in Heart Failure. Heart Fail. Clin. 2018;14:65–74. doi: 10.1016/j.hfc.2017.08.008.
    1. Bian A., Ma Y., Zhou X., Guo Y., Wang W., Zhang Y., Wang X. Association between sarcopenia and levels of growth hormone and insulin-like growth factor-1 in the elderly. BMC Musculoskelet Disord. 2020;21:214. doi: 10.1186/s12891-020-03236-y.
    1. Morley J.E. Pharmacologic Options for the Treatment of Sarcopenia. Calcif. Tissue Int. 2016;98:319–333. doi: 10.1007/s00223-015-0022-5.
    1. Giovannini S., Marzetti E., Borst S.E., Leeuwenburgh C. Modulation of GH/IGF-1 axis: Potential strategies to counteract sarcopenia in older adults. Mech. Ageing Dev. 2008;129:593–601. doi: 10.1016/j.mad.2008.08.001.
    1. Islam T., Peiris P., Copeland R.J., El Zoghby M., Peiris A.N. Vitamin D: Lessons from the veterans population. J. Am. Med. Dir. Assoc. 2011;12:257–262. doi: 10.1016/j.jamda.2010.08.004.
    1. Muir S.W., Montero-Odasso M. Effect of vitamin D supplementation on muscle strength, gait and balance in older adults: A systematic review and meta-analysis. J. Am. Geriatr. Soc. 2011;59:2291–2300. doi: 10.1111/j.1532-5415.2011.03733.x.
    1. Porto C.M., Silva V.L., da Luz J.S.B., Filho B.M., da Silveira V.M. Association between vitamin D deficiency and heart failure risk in the elderly. ESC Heart Fail. 2018;5:63–74. doi: 10.1002/ehf2.12198.
    1. de Boer R.A., Meems L.M.G., van Veldhuisen D.J. Vitamin D supplementation in heart failure: Case closed? Eur. Heart J. 2017;38:2287–2289. doi: 10.1093/eurheartj/ehx341.
    1. Zittermann A., Ernst J.B., Prokop S., Fuchs U., Gruszka A., Dreier J., Kuhn J., Knabbe C., Berthold H.K., Gouni-Berthold I., et al. Vitamin D supplementation of 4000 IU daily and cardiac function in patients with advanced heart failure: The EVITA trial. Int. J. Cardiol. 2019;280:117–123. doi: 10.1016/j.ijcard.2019.01.027.
    1. Yoshihisa A., Suzuki S., Sato Y., Kanno Y., Abe S., Miyata M., Sato T., Oikawa M., Kobayashi A., Yamaki T., et al. Relation of Testosterone Levels to Mortality in Men with Heart Failure. Am. J. Cardiol. 2018;121:1321–1327. doi: 10.1016/j.amjcard.2018.01.052.
    1. Pugh P.J., Jones R.D., West J.N., Jones T.H., Channer K.S. Testosterone treatment for men with chronic heart failure. Heart. 2004;90:446–447. doi: 10.1136/hrt.2003.014639.
    1. Caminiti G., Volterrani M., Iellamo F., Marazzi G., Massaro R., Miceli M., Mammi C., Piepoli M., Fini M., Rosano G.M. Effect of long-acting testosterone treatment on functional exercise capacity, skeletal muscle performance, insulin resistance, and baroreflex sensitivity in elderly patients with chronic heart failure a double-blind, placebo-controlled, randomized study. J. Am. Coll. Cardiol. 2009;54:919–927. doi: 10.1016/j.jacc.2009.04.078.
    1. Gagliano-Jucá T., Basaria S. Testosterone replacement therapy and cardiovascular risk. Nat. Rev. Cardiol. 2019;16:555–574. doi: 10.1038/s41569-019-0211-4.
    1. Borst S.E., Shuster J.J., Zou B., Ye F., Jia H., Wokhlu A., Yarrow J.F. Cardiovascular risks and elevation of serum DHT vary by route of testosterone administration: A systematic review and meta-analysis. BMC Med. 2014;12:211. doi: 10.1186/s12916-014-0211-5.
    1. Pu C.T., Johnson M.T., Forman D.E., Hausdorff J.M., Roubenoff R., Foldvari M., Fielding R.A., Singh M.A. Randomized trial of progressive resistance training to counteract the myopathy of chronic heart failure. J. Appl. Physiol. 2001;90:2341–2350. doi: 10.1152/jappl.2001.90.6.2341.
    1. Bacurau A.V., Jannig P.R., de Moraes W.M., Cunha T.F., Medeiros A., Barberi L., Coelho M.A., Bacurau R.F., Ugrinowitsch C., Musarò A., et al. Akt/mTOR pathway contributes to skeletal muscle anti-atrophic effect of aerobic exercise training in heart failure mice. Int. J. Cardiol. 2016;214:137–147. doi: 10.1016/j.ijcard.2016.03.071.
    1. Pearson M.J., Mungovan S.F., Smart N.A. Effect of aerobic and resistance training on inflammatory markers in heart failure patients: Systematic review and meta-analysis. Heart Fail. Rev. 2018;23:209–223. doi: 10.1007/s10741-018-9677-0.
    1. Saitoh M., Ebner N., von Haehling S., Anker S.D., Springer J. Therapeutic considerations of sarcopenia in heart failure patients. Expert Rev. Cardiovasc. Ther. 2018;16:133–142. doi: 10.1080/14779072.2018.1424542.
    1. Ventura H.O., Carbone S., Lavie C.J. Muscling up to improve heart failure prognosis. Eur. J. Heart Fail. 2018;20:1588–1590. doi: 10.1002/ejhf.1314.
    1. Piepoli M.F., Conraads V., Corrà U., Dickstein K., Francis D.P., Jaarsma T., McMurray J., Pieske B., Piotrowicz E.M., Schmid J.P., et al. Exercise training in heart failure: From theory to practice. A consensus document of the Heart Failure Association and the European Association for Cardiovascular Prevention and Rehabilitation. Eur. J. Heart Fail. 2011;13:347–357. doi: 10.1093/eurjhf/hfr017.
    1. Aquilani R., Opasich C., Gualco A., Verri M., Testa A., Pasini E., Viglio S., Iadarola P., Pastoris O., Dossena M., et al. Adequate energy-protein intake is not enough to improve nutritional and metabolic status in muscle-depleted patients with chronic heart failure. Eur. J. Heart Fail. 2008;10:1127–1135. doi: 10.1016/j.ejheart.2008.09.002.
    1. Sumukadas D., Witham M.D., Struthers A.D., McMurdo M.E. Ace inhibitors as a therapy for sarcopenia—Evidence and possible mechanisms. J. Nutr. Health Aging. 2008;12:480–485. doi: 10.1007/BF02982709.
    1. Vescovo G., Dalla Libera L., Serafini F., Leprotti C., Facchin L., Volterrani M., Ceconi C., Ambrosio G.B. Improved exercise tolerance after losartan and enalapril in heart failure: Correlation with changes in skeletal muscle myosin heavy chain composition. Circulation. 1998;98:1742–1749. doi: 10.1161/01.CIR.98.17.1742.
    1. Anker S.D., Negassa A., Coats A.J., Afzal R., Poole-Wilson P.A., Cohn J.N., Yusuf S. Prognostic importance of weight loss in chronic heart failure and the effect of treatment with angiotensin-converting-enzyme inhibitors: An observational study. Lancet. 2003;361:1077–1083. doi: 10.1016/S0140-6736(03)12892-9.
    1. Spira D., Walston J., Buchmann N., Nikolov J., Demuth I., Steinhagen-Thiessen E., Eckardt R., Norman K. Angiotensin-Converting Enzyme Inhibitors and Parameters of Sarcopenia: Relation to Muscle Mass, Strength and Function: Data from the Berlin Aging Study-II (BASE-II) Drugs Aging. 2016;33:829–837. doi: 10.1007/s40266-016-0396-8.
    1. Sumukadas D., Witham M.D., Struthers A.D., McMurdo M.E. Effect of perindopril on physical function in elderly people with functional impairment: A randomized controlled trial. CMAJ. 2007;177:867–874. doi: 10.1503/cmaj.061339.
    1. Song Y.H., Li Y., Du J., Mitch W.E., Rosenthal N., Delafontaine P. Muscle-specific expression of IGF-1 blocks angiotensin II-induced skeletal muscle wasting. J. Clin. Investig. 2005;115:451–458. doi: 10.1172/JCI22324.
    1. Echeverría-Rodríguez O., Del Valle-Mondragón L., Hong E. Angiotensin 1–7 improves insulin sensitivity by increasing skeletal muscle glucose uptake in vivo. Peptides. 2014;51:26–30. doi: 10.1016/j.peptides.2013.10.022.
    1. Burton L.A., McMurdo M.E., Struthers A.D. Mineralocorticoid antagonism: A novel way to treat sarcopenia and physical impairment in older people? Clin. Endocrinol. 2011;75:725–729. doi: 10.1111/j.1365-2265.2011.04148.x.
    1. Hernández N., Torres S.H., Finol H.J., Sosa A., Cierco M. Capillary and muscle fiber type changes in DOCA-salt hypertensive rats. Anat. Rec. 1996;246:208–216. doi: 10.1002/(SICI)1097-0185(199610)246:2<208::AID-AR7>;2-X.
    1. Edelmann F., Wachter R., Schmidt A.G., Kraigher-Krainer E., Colantonio C., Kamke W., Duvinage A., Stahrenberg R., Durstewitz K., Löffler M., et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: The Aldo-DHF randomized controlled trial. JAMA. 2013;309:781–791. doi: 10.1001/jama.2013.905.
    1. Burton L.A., Sumukadas D., Witham M.D., Struthers A.D., McMurdo M.E. Effect of spironolactone on physical performance in older people with self-reported physical disability. Am. J. Med. 2013;126:590–597. doi: 10.1016/j.amjmed.2012.11.032.
    1. Clark A.L., Coats A.J.S., Krum H., Katus H.A., Mohacsi P., Salekin D., Schultz M.K., Packer M., Anker S.D. Effect of beta-adrenergic blockade with carvedilol on cachexia in severe chronic heart failure: Results from the COPERNICUS trial. J. Cachexia Sarcopenia Muscle. 2017;8:549–556. doi: 10.1002/jcsm.12191.
    1. Stewart Coats A.J., Ho G.F., Prabhash K., von Haehling S., Tilson J., Brown R., Beadle J., Anker S.D. Espindolol for the treatment and prevention of cachexia in patients with stage III/IV non-small cell lung cancer or colorectal cancer: A randomized, double-blind, placebo-controlled, international multicentre phase II study (the ACT-ONE trial) J. Cachexia Sarcopenia Muscle. 2016;7:355–365. doi: 10.1002/jcsm.12126.
    1. Pötsch M.S., Ishida J., Palus S., Tschirner A., von Haehling S., Doehner W., Anker S.D., Springer J. MT-102 prevents tissue wasting and improves survival in a rat model of severe cancer cachexia. J. Cachexia Sarcopenia Muscle. 2020;11:594–605. doi: 10.1002/jcsm.12537.
    1. Pötsch M.S., Tschirner A., Palus S., von Haehling S., Doehner W., Beadle J., Coats A.J., Anker S.D., Springer J. The anabolic catabolic transforming agent (ACTA) espindolol increases muscle mass and decreases fat mass in old rats. J. Cachexia Sarcopenia Muscle. 2014;5:149–158. doi: 10.1007/s13539-013-0125-7.
    1. Lena A., Ebner N., Coats A.J.S., Anker M.S. Cardiac cachexia: The mandate to increase clinician awareness. Curr. Opin. Support Palliat Care. 2019;13:298–304. doi: 10.1097/SPC.0000000000000456.
    1. Barazzoni R., Gortan Cappellari G., Palus S., Vinci P., Ruozi G., Zanetti M., Semolic A., Ebner N., von Haehling S., Sinagra G., et al. Acylated ghrelin treatment normalizes skeletal muscle mitochondrial oxidative capacity and AKT phosphorylation in rat chronic heart failure. J. Cachexia Sarcopenia Muscle. 2017;8:991–998. doi: 10.1002/jcsm.12254.
    1. Palus S., Schur R., Akashi Y.J., Bockmeyer B., Datta R., Halem H., Dong J., Culler M.D., Adams V., Anker S.D., et al. Ghrelin and its analogues, BIM-28131 and BIM-28125, improve body weight and regulate the expression of MuRF-1 and MAFbx in a rat heart failure model. PLoS ONE. 2011;6:e26865. doi: 10.1371/journal.pone.0026865.
    1. Nagaya N., Moriya J., Yasumura Y., Uematsu M., Ono F., Shimizu W., Ueno K., Kitakaze M., Miyatake K., Kangawa K. Effects of ghrelin administration on left ventricular function, exercise capacity, and muscle wasting in patients with chronic heart failure. Circulation. 2004;110:3674–3679. doi: 10.1161/.
    1. Blum R.A., Mair S., Duus E.M. Appetite and food intake results from phase I studies of anamorelin. J. Cachexia Sarcopenia Muscle. 2019;10:1027–1035. doi: 10.1002/jcsm.12439.
    1. Currow D.C., Maddocks M., Cella D., Muscaritoli M. Efficacy of Anamorelin, a Novel Non-Peptide Ghrelin Analogue, in Patients with Advanced Non-Small Cell Lung Cancer (NSCLC) and Cachexia-Review and Expert Opinion. Int. J. Mol. Sci. 2018;19:3471. doi: 10.3390/ijms19113471.
    1. Bowen T.S., Adams V., Werner S., Fischer T., Vinke P., Brogger M.N., Mangner N., Linke A., Sehr P., Lewis J., et al. Small-molecule inhibition of MuRF1 attenuates skeletal muscle atrophy and dysfunction in cardiac cachexia. J. Cachexia Sarcopenia Muscle. 2017;8:939–953. doi: 10.1002/jcsm.12233.
    1. Welle S., Cardillo A., Zanche M., Tawil R. Skeletal muscle gene expression after myostatin knockout in mature mice. Physiol. Genom. 2009;38:342–350. doi: 10.1152/physiolgenomics.00054.2009.
    1. Elkina Y., von Haehling S., Anker S.D., Springer J. The role of myostatin in muscle wasting: An overview. J. Cachexia Sarcopenia Muscle. 2011;2:143–151. doi: 10.1007/s13539-011-0035-5.
    1. Ishida J., Konishi M., Saitoh M., Anker M., Anker S.D., Springer J. Myostatin signaling is up-regulated in female patients with advanced heart failure. Int. J. Cardiol. 2017;238:37–42. doi: 10.1016/j.ijcard.2017.03.153.
    1. Heineke J., Auger-Messier M., Xu J., Sargent M., York A., Welle S., Molkentin J.D. Genetic deletion of myostatin from the heart prevents skeletal muscle atrophy in heart failure. Circulation. 2010;121:419–425. doi: 10.1161/CIRCULATIONAHA.109.882068.
    1. Ding H., Zhang G., Sin K.W., Liu Z., Lin R.K., Li M., Li Y.P. Activin A induces skeletal muscle catabolism via p38beta mitogen-activated protein kinase. J. Cachexia Sarcopenia Muscle. 2017;8:202–212. doi: 10.1002/jcsm.12145.
    1. Loumaye A., de Barsy M., Nachit M., Lause P., van Maanen A., Trefois P., Gruson D., Thissen J.P. Circulating Activin A predicts survival in cancer patients. J. Cachexia Sarcopenia Muscle. 2017;8:768–777. doi: 10.1002/jcsm.12209.
    1. Hulmi J.J., Nissinen T.A., Räsänen M., Degerman J., Lautaoja J.H., Hemanthakumar K.A., Backman J.T., Ritvos O., Silvennoinen M., Kivelä R. Prevention of chemotherapy-induced cachexia by ACVR2B ligand blocking has different effects on heart and skeletal muscle. J. Cachexia Sarcopenia Muscle. 2018;9:417–432. doi: 10.1002/jcsm.12265.
    1. Solomon Z.J., Mirabal J.R., Mazur D.J., Kohn T.P., Lipshultz L.I., Pastuszak A.W. Selective Androgen Receptor Modulators: Current Knowledge and Clinical Applications. Sex Med. Rev. 2019;7:84–94. doi: 10.1016/j.sxmr.2018.09.006.
    1. Dobs A.S., Boccia R.V., Croot C.C., Gabrail N.Y., Dalton J.T., Hancock M.L., Johnston M.A., Steiner M.S. Effects of enobosarm on muscle wasting and physical function in patients with cancer: A double-blind, randomised controlled phase 2 trial. Lancet Oncol. 2013;14:335–345. doi: 10.1016/S1470-2045(13)70055-X.
    1. Neil D., Clark R.V., Magee M., Billiard J., Chan A., Xue Z., Russell A. GSK2881078, a SARM, Produces Dose-Dependent Increases in Lean Mass in Healthy Older Men and Women. J. Clin. Endocrinol. Metab. 2018;103:3215–3224. doi: 10.1210/jc.2017-02644.
    1. Chisamore M.J., Gentile M.A., Dillon G.M., Baran M., Gambone C., Riley S., Schmidt A., Flores O., Wilkinson H., Alves S.E. A novel selective androgen receptor modulator (SARM) MK-4541 exerts anti-androgenic activity in the prostate cancer xenograft R-3327G and anabolic activity on skeletal muscle mass & function in castrated mice. J. Steroid Biochem. Mol. Biol. 2016;163:88–97.
    1. Kiyuna L.A., Albuquerque R.P.E., Chen C.H., Mochly-Rosen D., Ferreira J.C.B. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities. Free Radic. Biol. Med. 2018;129:155–168. doi: 10.1016/j.freeradbiomed.2018.09.019.
    1. Cunha T.F., Bacurau A.V., Moreira J.B., Paixão N.A., Campos J.C., Ferreira J.C., Leal M.L., Negrão C.E., Moriscot A.S., Wisløff U. Exercise training prevents oxidative stress and ubiquitin-proteasome system overactivity and reverse skeletal muscle atrophy in heart failure. PLoS ONE. 2012;7:e41701. doi: 10.1371/journal.pone.0041701.
    1. von Haehling S. The wasting continuum in heart failure: From sarcopenia to cachexia. Proc. Nutr. Soc. 2015;74:367–377. doi: 10.1017/S0029665115002438.
    1. Niedziela J.T., Hudzik B., Strojek K., Poloński L., Gąsior M., Rozentryt P. Weight loss in heart failure is associated with increased mortality only in non-obese patients without diabetes. J. Cachexia Sarcopenia Muscle. 2019;10:1307–1315. doi: 10.1002/jcsm.12471.
    1. Christensen H.M., Kistorp C., Schou M., Keller N., Zerahn B., Frystyk J., Schwarz P., Faber J. Prevalence of cachexia in chronic heart failure and characteristics of body composition and metabolic status. Endocrine. 2013;43:626–634. doi: 10.1007/s12020-012-9836-3.
    1. Morishita T., Uzui H., Ishida K., Kaseno K., Miyazaki S., Fukuoka Y., Ikeda H., Tama N., Shiomi Y., Yamaguchi J., et al. P4730 Associations of cachexia and prognosis in patients with heart failure. Eur. Heart J. 2018;39:ehy563. doi: 10.1093/eurheartj/ehy563.P4730.
    1. Santarpia L., Contaldo F., Pasanisi F. Dietary protein content for an optimal diet: A clinical view. J. Cachexia Sarcopenia Muscle. 2017;8:345–348. doi: 10.1002/jcsm.12176.
    1. Refsgaard Holm M., Christensen H., Rasmussen J.M., Johansen M.L., Schou M., Faber J., Kistorp C. Fibroblast growth factor 21 in patients with cardiac cachexia: A possible role of chronic inflammation. ESC Heart Fail. 2019;6:983–991. doi: 10.1002/ehf2.12502.
    1. Scherbakov N., Doehner W. Cachexia as a common characteristic in multiple chronic disease. J. Cachexia Sarcopenia Muscle. 2018;9:1189–1191. doi: 10.1002/jcsm.12388.
    1. Kwan H.Y., Maddocks M., Nolan C.M., Jones S.E., Patel S., Barker R.E., Kon S., Polkey M.I., Cullinan P., Man W.D. The prognostic significance of weight loss in chronic obstructive pulmonary disease-related cachexia: A prospective cohort study. J. Cachexia Sarcopenia Muscle. 2019;10:1330–1338. doi: 10.1002/jcsm.12463.
    1. Ziolkowski S.L., Long J., Baker J.F., Chertow G.M., Leonard M.B. Relative sarcopenia and mortality and the modifying effects of chronic kidney disease and adiposity. J. Cachexia Sarcopenia Muscle. 2019;10:338–346. doi: 10.1002/jcsm.12396.
    1. Wu J., Dong J., Verzola D., Hruska K., Garibotto G., Hu Z., Mitch W.E., Thomas S.S. Signal regulatory protein alpha initiates cachexia through muscle to adipose tissue crosstalk. J. Cachexia Sarcopenia Muscle. 2019;10:1210–1227. doi: 10.1002/jcsm.12459.
    1. Lena A., Coats A.J.S., Anker M.S. Metabolic disorders in heart failure and cancer. ESC Heart Fail. 2018;5:1092–1098. doi: 10.1002/ehf2.12389.
    1. Valentova M., von Haehling S., Bauditz J., Doehner W., Ebner N., Bekfani T., Elsner S., Sliziuk V., Scherbakov N., Murín J., et al. Intestinal congestion and right ventricular dysfunction: A link with appetite loss, inflammation, and cachexia in chronic heart failure. Eur. Heart J. 2016;37:1684–1691. doi: 10.1093/eurheartj/ehw008.
    1. Kitamura M., Izawa K.P., Yaekura M., Mimura Y., Nagashima H., Oka K. Differences in nutritional status and activities of daily living and mobility in elderly hospitalized patients with heart failure. ESC Heart Fail. 2019;6:344–350. doi: 10.1002/ehf2.12393.
    1. Saitoh M., Dos Santos M.R., Ebner N., Emami A., Konishi M., Ishida J., Valentova M., Sandek A., Doehner W., Anker S.D., et al. Nutritional status and its effects on muscle wasting in patients with chronic heart failure: Insights from Studies Investigating Co-morbidities Aggravating Heart Failure. Wien Klin Wochenschr. 2016;128:497–504. doi: 10.1007/s00508-016-1112-8.
    1. Sente T., Van Berendoncks A.M., Hoymans V.Y., Vrints C.J. Adiponectin resistance in skeletal muscle: Pathophysiological implications in chronic heart failure. J. Cachexia Sarcopenia Muscle. 2016;7:261–274. doi: 10.1002/jcsm.12086.
    1. Araújo J.P., Lourenço P., Rocha-Gonçalves F., Ferreira A., Bettencourt P. Adiponectin is increased in cardiac cachexia irrespective of body mass index. Eur. J. Heart Fail. 2009;11:567–572. doi: 10.1093/eurjhf/hfp046.
    1. McEntegart M.B., Awede B., Petrie M.C., Sattar N., Dunn F.G., MacFarlane N.G., McMurray J.J. Increase in serum adiponectin concentration in patients with heart failure and cachexia: Relationship with leptin, other cytokines, and B-type natriuretic peptide. Eur. Heart J. 2007;28:829–835. doi: 10.1093/eurheartj/ehm033.
    1. Celik T., Yaman H. Elevated adiponectin levels in patients with chronic heart failure: An independent predictor of mortality or a marker of cardiac cachexia? Int. J. Cardiol. 2010;144:319–320. doi: 10.1016/j.ijcard.2009.03.006.
    1. Szabó T., Scherbakov N., Sandek A., Kung T., von Haehling S., Lainscak M., Jankowska E.A., Rudovich N., Anker S.D., Frystyk J., et al. Plasma adiponectin in heart failure with and without cachexia: Catabolic signal linking catabolism, symptomatic status, and prognosis. Nutr. Metab. Cardiovasc. Dis. 2014;24:50–56. doi: 10.1016/j.numecd.2013.04.015.
    1. Loncar G., Bozic B., von Haehling S., Düngen H.D., Prodanovic N., Lainscak M., Arandjelovic A., Dimkovic S., Radojicic Z., Popovic V. Association of adiponectin with peripheral muscle status in elderly patients with heart failure. Eur. J. Intern. Med. 2013;24:818–823. doi: 10.1016/j.ejim.2013.09.011.
    1. Willis M.S., Parry T.L., Brown D.I., Mota R.I., Huang W., Beak J.Y., Sola M., Zhou C., Hicks S.T., Caughey M.C., et al. Doxorubicin Exposure Causes Subacute Cardiac Atrophy Dependent on the Striated Muscle-Specific Ubiquitin Ligase MuRF1. Circulation. Heart Fail. 2019;12:e005234. doi: 10.1161/CIRCHEARTFAILURE.118.005234.
    1. Springer J., Tschirner A., Haghikia A., von Haehling S., Lal H., Grzesiak A., Kaschina E., Palus S., Pötsch M., von Websky K., et al. Prevention of liver cancer cachexia-induced cardiac wasting and heart failure. Eur. Heart J. 2014;35:932–941. doi: 10.1093/eurheartj/eht302.
    1. Cruz-Jentoft A.J., Baeyens J.P., Bauer J.M., Boirie Y., Cederholm T., Landi F., Martin F.C., Michel J.P., Rolland Y., European Working Group on Sarcopenia in Older People et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age and Ageing. 2010;39:412–423. doi: 10.1093/ageing/afq034.
    1. Patel S.M., Duchowny K.A., Cummings S.R., Orwoll E.S., Hoffman A.R., Enusrud K.E., Cauley J.A., Evans W.J., Cawthon P.M. Sarcopenia Definition & Outcomes Consortium Defined Low Grip Strength in Two Cross-Sectional, Population-Based Cohorts. J. Am. Geriatr. Soc. 2020;68:1438–1444.

Source: PubMed

3
Subskrybuj