Cytokine storm in COVID-19: pathogenesis and overview of anti-inflammatory agents used in treatment

Mehmet Soy, Gökhan Keser, Pamir Atagündüz, Fehmi Tabak, Işık Atagündüz, Servet Kayhan, Mehmet Soy, Gökhan Keser, Pamir Atagündüz, Fehmi Tabak, Işık Atagündüz, Servet Kayhan

Abstract

COVID-19 infection has a heterogenous disease course; it may be asymptomatic or causes only mild symptoms in the majority of the cases, while immunologic complications such as macrophage activation syndrome also known as secondary hemophagocytic lymphohistiocytosis, resulting in cytokine storm syndrome and acute respiratory distress syndrome, may also occur in some patients. According to current literature, impairment of SARS-CoV-2 clearance due to genetic and viral features, lower levels of interferons, increased neutrophil extracellular traps, and increased pyroptosis and probable other unknown mechanisms create a background for severe disease course complicated by macrophage activation syndrome and cytokine storm. Various genetic mutations may also constitute a risk factor for severe disease course and occurrence of cytokine storm in COVID-19. Once, immunologic complications like cytokine storm occur, anti-viral treatment alone is not enough and should be combined with appropriate anti-inflammatory treatment. Anti-rheumatic drugs, which are tried for managing immunologic complications of COVID-19 infection, will also be discussed including chloroquine, hydroxychloroquine, JAK inhibitors, IL-6 inhibitors, IL-1 inhibitors, anti-TNF-α agents, corticosteroids, intravenous immunoglobulin (IVIG), and colchicine. Early recognition and appropriate treatment of immunologic complications will decrease the morbidity and mortality in COVID-19 infection, which requires the collaboration of infectious disease, lung, and intensive care unit specialists with other experts such as immunologists, rheumatologists, and hematologists.

Keywords: COVID-19; Cytokine storm syndrome; Hemophagocytic lymphohistiocytosis; Macrophage activation syndrome.

Figures

Fig. 1
Fig. 1
Generation of inflammasome and IL-1 activation pathway

References

    1. Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020;323(8):707–708. doi: 10.1001/jama.2020.0757.
    1. Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Crayne CB, Albeituni S, Nichols KE, Cron RQ. The immunology of macrophage activation syndrome. Front Immunol. 2019;10:119. doi: 10.3389/fimmu.2019.00119.
    1. Ding Y, He L, Zhang Q, Huang Z, Che X, Hou J, Wang H, Shen H, Qiu L, Li Z etal (2004) Organ distribution of severe acute respiratory syndrome (SARS) associated coronavirus (SARS-CoV) in SARS patients: implications for pathogenesis and virus transmission pathways. J Pathol; 203:622–630. 10.1002/path.1560
    1. Sarzi-Puttini P, Giorgi V, Sirotti S, Marotto D, Ardizzone S, Rizzardini G, Antinori S, Galli M. COVID-19, cytokines and immunosuppression: what can we learn from severe acute respiratory syndrome? Clin Exp Rheumatol. 2020;38(2):337–342.
    1. Li X, Geng M, Peng Y, Meng L, Lu S (2020) Molecular immune pathogenesis and diagnosis of COVID-19. J Pharm Anal. 10.1016/j.jpha.2020.03.001 Online ahead of print
    1. Read R (2020) Flawed methods in “COVID-19: attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism”. ChemRxiv Preprint. 10.26434/chemrxiv.12120912.v1
    1. Wenzhong L, Hualan L (2020) COVID-19:attacks the 1-beta chain of hemoglobin and captures the porphyrin to inhibit human heme metabolism. ChemRxiv Preprint. 10.26434/chemrxiv.11938173.v8
    1. Zhang W, Zhao Y, Zhang F, Wang Q, Li T, Liu Z, Wang J, Qin Y, Zhang X, Yan X (2020) The use of anti-inflammatory drugs in the treatment of people with severe coronavirus disease 2019 (COVID-19): the experience of clinical immunologists from China. Clin Immunol:108393
    1. Zhang B, Zhou X, Zhu C, Feng F, Qiu Y, Feng J, Jia Q, Song Q, Zhu B, Wang J (2020) Immune phenotyping based on neutrophil-to-lymphocyte ratio and IgG predicts disease severity and outcome for patients with COVID-19. medRxiv. 10.1101/2020.03.12.20035048
    1. Li L, Chen MX. Critical patients with coronavirus disease 2019: risk factors and outcome nomogram. J Inf Secur. 2020;80(6):e37–e38. doi: 10.1016/j.jinf.2020.03.025.
    1. Terpos E, Ntanasis-Stathopoulos I, Elalamy I, Kastritis E, Sergentanis TN, Politou M, Psaltopoulou T, Gerotziafas G, Dimopoulos MA (2020) Hematological findings and complications of COVID-19. Am J Hematol. 10.1002/ajh.25829 Online ahead of print
    1. Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection—a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect. 2020;9(1):727–732. doi: 10.1080/22221751.2020.1746199.
    1. Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, Liu S, Zhao P, Liu H, Zhu L. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Respir Med. 2020;8(4):420–422. doi: 10.1016/S2213-2600(20)30076-X.
    1. Yao X, Li T, He Z, Ping Y, Liu H, Yu S, Mou H, Wang L, Zhang H, Fu W. A pathological report of three COVID-19 cases by minimally invasive autopsies. Zhonghua bing li xue za zhi= Chin J Pathol. 2020;49(0):E009. doi: 10.3760/cma.j.cn112151-20200312-00193.
    1. Zhang Y, Xiao M, Zhang S, Xia P, Cao W, Jiang W, Chen H, Ding X, Zhao H, Zhang H Covid-19 cases: coagulopathy and antiphospholipid antibodies in patients with Covid-19. N Engl J Med 382(17):e38. 10.1056/NEJMc2007575
    1. Schnappauf O, Chae JJ, Kastner DL, Aksentijevich I. The Pyrin inflammasome in health and disease. Front Immunol. 2019;10:1745. doi: 10.3389/fimmu.2019.01745.
    1. Lucherini OM, Rigante D, Sota J, Fabiani C, Obici L, Cattalini M, Gattorno M, Cantarini L. Updated overview of molecular pathways involved in the most common monogenic autoinflammatory diseases. Clin Exp Rheumatol. 2018;36(Suppl 1):3–9.
    1. Barrat FJ, Elkon KB, Fitzgerald KA. Importance of nucleic acid recognition in inflammation and autoimmunity. Annu Rev Med. 2016;67:323–336. doi: 10.1146/annurev-med-052814-023338.
    1. Zalinger ZB, Elliott R, Rose KM, Weiss SR. MDA5 is critical to host defense during infection with murine coronavirus. J Virol. 2015;89(24):12330–12340. doi: 10.1128/JVI.01470-15.
    1. Crow MK, Ronnblom L. Type I interferons in host defence and inflammatory diseases. Lupus Sci Med. 2019;6(1):e000336. doi: 10.1136/lupus-2019-000336.
    1. Al-Samkari H, Berliner N (2018) Hemophagocytic lymphohistiocytosis. Annual review of pathology: mechanisms of disease. 13:27–49. 10.1146/annurev-pathol-020117-043625
    1. Mehta P, McAuley DF, Brown M, Sanchez E, Tattersall RS, Manson JJ. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395(10229):1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Min C-K, Cheon S, Ha N-Y, Sohn KM, Kim Y, Aigerim A, Shin HM, Choi J-Y, Inn K-S, Kim J-H. Comparative and kinetic analysis of viral shedding and immunological responses in MERS patients representing a broad spectrum of disease severity. Sci Rep. 2016;6:25359. doi: 10.1038/srep25359.
    1. Snijder EJ, Van Der Meer Y, Zevenhoven-Dobbe J, Onderwater JJ, van der Meulen J, Koerten HK, Mommaas AM. Ultrastructure and origin of membrane vesicles associated with the severe acute respiratory syndrome coronavirus replication complex. J Virol. 2006;80(12):5927–5940. doi: 10.1128/JVI.02501-05.
    1. Lamborn IT, Jing H, Zhang Y, Drutman SB, Abbott JK, Munir S, Bade S, Murdock HM, Santos CP, Brock LG. Recurrent rhinovirus infections in a child with inherited MDA5 deficiency. J Exp Med. 2017;214(7):1949–1972. doi: 10.1084/jem.20161759.
    1. Junior AGD, Sampaio NG, Rehwinkel J. A balancing act: MDA5 in antiviral immunity and autoinflammation. Trends Microbiol. 2019;27(1):75–85. doi: 10.1016/j.tim.2018.08.007.
    1. To KF, Chan PK, Chan KF, Lee WK, Lam WY, Wong KF, Tang NL, Tsang DN, Sung RY, Buckley TA. Pathology of fatal human infection associated with avian influenza A H5N1 virus. J Med Virol. 2001;63(3):242–246. doi: 10.1002/1096-9071(200103)63:3<242::AID-JMV1007>;2-N.
    1. Chan JF, Lau SK, To KK, Cheng VC, Woo PC, Yuen K-Y. Middle East respiratory syndrome coronavirus: another zoonotic betacoronavirus causing SARS-like disease. Clin Microbiol Rev. 2015;28(2):465–522. doi: 10.1128/CMR.00102-14.
    1. Kaplan MJ, Radic M. Neutrophil extracellular traps: double-edged swords of innate immunity. J Immunol. 2012;189(6):2689–2695. doi: 10.4049/jimmunol.1201719.
    1. Barnes BJ, Adrover JM, Baxter-Stoltzfus A, Borczuk A, Cools-Lartigue J, Crawford JM, Daßler-Plenker J, Guerci P, Huynh C, Knight JS (2020) Targeting potential drivers of COVID-19: neutrophil extracellular traps. J Exp Med 217(6)
    1. Golonka RM, Saha P, Yeoh BS, Chattopadhay S, Gewirtz AT, Joe B, Vijay-Kumar M. Harnessing innate immunity to eliminate SARS-CoV-2 and ameliorate COVID-19 disease. Physiol Genomics. 2020;52(5):217–221. doi: 10.1152/physiolgenomics.00033.2020.
    1. Yang M (2020) Cell pyroptosis, a potential pathogenic mechanism of 2019-nCoV infection. SSRN: or 10.2139/ssrn.3527420. Accessed 26 Apr 2020
    1. Bergsbaken T, Fink SL, Cookson BT. Pyroptosis: host cell death and inflammation. Nat Rev Microbiol. 2009;7(2):99–109. doi: 10.1038/nrmicro2070.
    1. Liu L, Wei Q, Lin Q, Fang J, Wang H, Kwok H, Tang H, Nishiura K, Peng J, Tan Z (2019) Anti–spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI insight 4(4)
    1. Miotto G, Rossetto M, Di Paolo ML, Orian L, Venerando R, Roveri A, Vučković A-M, Travain VB, Zaccarin M, Zennaro L. Insight into the mechanism of ferroptosis inhibition by ferrostatin-1. Redox Biol. 2020;28:101328. doi: 10.1016/j.redox.2019.101328.
    1. Rouse BT, Sehrawat S. Immunity and immunopathology to viruses: what decides the outcome? Nat Rev Immunol. 2010;10(7):514–526. doi: 10.1038/nri2802.
    1. Ramos-Casals M, Brito-Zerón P, López-Guillermo A, Khamashta MA, Bosch X. Adult haemophagocytic syndrome. Lancet. 2014;383(9927):1503–1516. doi: 10.1016/S0140-6736(13)61048-X.
    1. Rossi-Semerano L, Hermeziu B, Fabre M, Koné-Paut I. Macrophage activation syndrome revealing familial Mediterranean fever. Arthritis Care Res. 2011;63(5):780–783. doi: 10.1002/acr.20418.
    1. Stebbing J, Phelan A, Griffin I, Tucker C, Oechsle O, Smith D, Richardson P. COVID-19: combining antiviral and anti-inflammatory treatments. Lancet Infect Dis. 2020;20(4):400–402. doi: 10.1016/S1473-3099(20)30132-8.
    1. Ferro F, Elefante E, Baldini C, Bartoloni E, Puxeddu I, Talarico R, Mosca M, Bombardieri S. COVID-19: the new challenge for rheumatologists. Clin Exp Rheumatol. 2020;38(2):175–180.
    1. Day M (2020) Covid-19: ibuprofen should not be used for managing symptoms, say doctors and scientists. British Medical Journal Publishing Group
    1. Gao J, Tian Z, Yang X. Breakthrough: chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Biosci Trends. 2020;14(1):72–73. doi: 10.5582/bst.2020.01047.
    1. Wang L-F, Lin Y-S, Huang N-C, Yu C-Y, Tsai W-L, Chen J-J, Kubota T, Matsuoka M, Chen S-R, Yang C-S. Hydroxychloroquine-inhibited dengue virus is associated with host defense machinery. J Interf Cytokine Res. 2015;35(3):143–156. doi: 10.1089/jir.2014.0038.
    1. Akpovwa H. Chloroquine could be used for the treatment of filoviral infections and other viral infections that emerge or emerged from viruses requiring an acidic pH for infectivity. Cell Biochem Funct. 2016;34(4):191–196. doi: 10.1002/cbf.3182.
    1. Savarino A, Di Trani L, Donatelli I, Cauda R, Cassone A. New insights into the antiviral effects of chloroquine. Lancet Infect Dis. 2006;6(2):67–69. doi: 10.1016/S1473-3099(06)70361-9.
    1. Yan Y, Zou Z, Sun Y, Li X, Xu K-F, Wei Y, Jin N, Jiang C. Anti-malaria drug chloroquine is highly effective in treating avian influenza A H5N1 virus infection in an animal model. Cell Res. 2013;23(2):300–302. doi: 10.1038/cr.2012.165.
    1. Vincent MJ, Bergeron E, Benjannet S, Erickson BR, Rollin PE, Ksiazek TG, Seidah NG, Nichol ST. Chloroquine is a potent inhibitor of SARS coronavirus infection and spread. Virol J. 2005;2(1):69. doi: 10.1186/1743-422X-2-69.
    1. Qiu T, Liang S, Dabbous M, Wang Y, Han R, Toumi M (2020) Chinese guidelines related to novel coronavirus pneumonia. Preprints:2020040207. 10.20944/preprints202004.0207.v1
    1. Jamilloux Y, El Jammal T, Vuitton L, Gerfaud-Valentin M, Kerever S, Sève P (2019) JAK inhibitors for the treatment of autoimmune and inflammatory diseases. Autoimmun Rev:102390
    1. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, Phelan A, Stebbing J. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020;395(10223):e30. doi: 10.1016/S0140-6736(20)30304-4.
    1. Favalli EG, Biggioggero M, Maioli G, Caporali R (2020) Baricitinib for COVID-19: a suitable treatment? Lancet Infect Dis. 10.1016/S1473-3099(20)30262-0
    1. Dholaria BR, Bachmeier CA, Locke F. Mechanisms and management of chimeric antigen receptor T-cell therapy-related toxicities. BioDrugs. 2019;33(1):45–60. doi: 10.1007/s40259-018-0324-z.
    1. Ding C, Jones G. Anti-interleukin-6 receptor antibody treatment in inflammatory autoimmune diseases. Rev Recent Clin Trials. 2006;1(3):193–200. doi: 10.2174/157488706778250168.
    1. McIntosh K (2020) Coronavirus disease 2019 (COVID-19). Edited by Martin S Hirsch. UpToDate, https://www.uptodate com/contents/coronavirus-disease-2019-covid-19. Accessed 26 Apr 2020
    1. Bhimraj A, Morgan RL, Shumaker AH, Lavergne V, Baden L, Cheng V et al (2020) Infectious Diseases Society of America Guidelines on the Treatment and Management of Patients with COVID-19. Clin Infect Dis:ciaa478. 10.1093/cid/ciaa478
    1. Xu X, Han M, Li T, Sun W, Wang D, Fu B, Zhou Y, Zheng X, Yang Y, Li X (2020) Effective treatment of severe COVID-19 patients with tocilizumab. . Accesed Apr 26th, 2020
    1. Jones G, Ding C. Tocilizumab: a review of its safety and efficacy in rheumatoid arthritis. Clin Med Insights: Arthritis Musculoskelet Dis. 2010;2010(3):81–89. doi: 10.4137/CMAMD.S4864.
    1. Şahin A, Derin ME, Albayrak F, Karakaş B, Karagöz Y. Assessment of effectiveness of anakinra and canakinumab in patients with colchicine-resistant/unresponsive familial Mediterranean fever. Adv Rheumatol. 2020;60(1):12. doi: 10.1186/s42358-020-0117-1.
    1. Shakoory B, Carcillo JA, Chatham WW, Amdur RL, Zhao H, Dinarello CA, Cron RQ, Opal SM. Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of the macrophage activation syndrome: re-analysis of a prior phase III trial. Crit Care Med. 2016;44(2):275–281. doi: 10.1097/CCM.0000000000001402.
    1. Varan Ö, Kucuk H, Babaoglu H, Guven SC, Ozturk MA, Haznedaroglu S, Goker B, Tufan A. Efficacy and safety of interleukin-1 inhibitors in familial Mediterranean fever patients complicated with amyloidosis. Mod Rheumatol. 2019;29(2):363–366. doi: 10.1080/14397595.2018.1457469.
    1. Wang M, Zhou Y, Zong Z, Liang Z, Cao Y, Tang H, Song B, Huang Z, Kang Y, Feng P. A precision medicine approach to managing Wuhan coronavirus pneumonia. Precision Clin Med. 2020;3(1):14–21. doi: 10.1093/pcmedi/pbaa002.
    1. Cao W, Liu X, Bai T, Fan H, Hong K, Song H, Han Y, Lin L, Ruan L, Li T. Open forum infectious diseases. 2020. High-dose intravenous immunoglobulin as a therapeutic option for deteriorating patients with coronavirus disease 2019; p. ofaa102.
    1. Jawhara S. Could intravenous immunoglobulin collected from recovered coronavirus patients protect against COVID-19 and strengthen the immune system of new patients? Int J Mol Sci. 2020;21(7):2272. doi: 10.3390/ijms21072272.
    1. Marietta M, Ageno W, Artoni A, De Candia E, Gresele P, Marchetti M, Marcucci R, Tripodi A (2020) COVID-19 and haemostasis: a position paper from Italian Society on Thrombosis and Haemostasis (SISET). Blood Transfus. 10.2450/2020.0083-20
    1. Golchin A, Seyedjafari E, Ardeshirylajimi A (2020) Mesenchymal stem cell therapy for COVID-19: present or future. Stem Cell Rev Rep:1–7. 10.1007/s12015-020-09973-w
    1. Leng Z, Zhu R, Hou W, Feng Y, Yang Y, Han Q, Shan G, Meng F, Du D, Wang S. Transplantation of ACE2-mesenchymal stem cells improves the outcome of patients with COVID-19 pneumonia. Aging Dis. 2020;11(2):216–228. doi: 10.14336/AD.2020.0228.
    1. Zhang JS, Chen JT, Liu YX, Zhang ZS, Gao H, Liu Y, Wang X, Ning Y, Liu YF, Gao Q. A serological survey on neutralizing antibody titer of SARS convalescent sera. J Med Virol. 2005;77(2):147–150. doi: 10.1002/jmv.20431.
    1. de Alwis R, Chen S, Gan ES, Ooi EE (2020) Impact of immune enhancement on Covid-19 polyclonal hyperimmune globulin therapy and vaccine development. EBioMedicine:102768

Source: PubMed

3
Subskrybuj