A systematic review on antibacterial activity of zinc against Streptococcus mutans

Manal Mohamed Almoudi, Alaa Sabah Hussein, Mohamed Ibrahim Abu Hassan, Nurhayati Mohamad Zain, Manal Mohamed Almoudi, Alaa Sabah Hussein, Mohamed Ibrahim Abu Hassan, Nurhayati Mohamad Zain

Abstract

Objectives: The aim of this study was to systematically review the growth inhibition effectiveness of zinc against Streptococcus mutans. The main question was, "Does the zinc inhibit the growth of oral Streptococcus mutans in vitro?

Methods: Literature search on PubMed, Medline, and science direct databases was carried out for in vitro studies published in English from 1990 to 2016, and the reported outcomes of minimum inhibitory concentration (MIC), minimum bactericidal concentrations (MBC), zone of inhibition (ZOI) and bacterial count method using colony forming unit (CFU) were used to assess the antibacterial effectiveness of zinc.

Results: Seventeen studies were included in this review. Seven studies reported MIC and MBC. Four studies reported ZOI, and eight studies reported CFU. MIC values using zinc chloride and zinc oxide nanoparticles were ranged from 0.025 to 0.2 mM and 0.390 to 500 ± 306.18 µg/ml respectively. MBC values using zinc oxide nanoparticles have ranged from 3.125 to 500 µg/ml. ZOI ranged from no inhibition zone to 21 ± 1.4 mm using 23.1% zinc oxide. A considerable reduction in the bacterial count was reported after adding zinc. However, only two studies have reported no inhibitory effect of zinc.

Conclusion: This review indicated a significant growth inhibition effectiveness of zinc even at lower concentrations which indicate it's safely to be used in oral health products.

Keywords: Antibacterial; Antimicrobial; Growth inhibition; S. mutans; Zinc.

Figures

Fig. 1
Fig. 1
Studies selection.

References

    1. Ahrari F., Eslami N., Rajabi O., Ghazvini K., Barati S. The antimicrobial sensitivity of Streptococcus mutans and streptococcus sangius to colloidal solutions of different nanoparticles applied as mouthwashes. Dent. Res. J. 2015;12:44–49.
    1. Applerot G., Perkas N., Amirian G., Girshevitz O., Gedanken A. Coating of glass with ZnO via ultrasonic irradiation and a study of its antibacterial properties. Appl. Surf Sci. 2009:256.
    1. Balouiri M., Sadiki M., Ibnsouda S.K. Methods for in vitro evaluating antimicrobial activity: a review. J. Pharm. Anal. 2016;6:71–79.
    1. Bradshaw D., Marsh P., Watson G., Cummins D. The effects of triclosan and zinc citrate, alone and in combination, on a community of oral bacteria grown in vitro. J. Dent. Res. 1993;72:25–30.
    1. CLSI, 2012. Methods for Dilution Antimicrobial Susceptibility Tests f or Bacteria That Grow Aerobically; Approved St andard—Ninth Edition. CLSI document M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA.
    1. Dashper S.G., O’Brien-Simpson N.M., Cross K.J., Paolini R.A., Hoffmann B., Catmull D.V., Malkoski M., Reynolds E.C. Divalent metal cations increase the activity of the antimicrobial Peptide kappacin. Antimicrob. Agents Chemother. 2005;49:2322–2328.
    1. Daugela P., Oziunas R., Zekonis G. Antibacterial potential of contemporary dental luting cements. Stomatologija. 2008;10:16–21.
    1. Eisenberg A.D., Young D.A., Fan-Hsu J., Spitz L.M. Interactions of sanguinarine and zinc on oral streptococci and Actinomyces species. Caries Res. 1991;25:185–190.
    1. Eshed M., Lellouche J., Matalon S., Gedanken A., Banin E. Sonochemical coatings of ZnO and CuO nanoparticles inhibit Streptococcus mutans biofilm formation on teeth model. Langmuir. 2012;28:12288–12295.
    1. Hackenberg S., Zimmermann F., Scherzed A., Friehs G., Froelich K., Ginzkey C., Koehler C., Burghartz M., Hagen R., Kleinsasser N. Repetitive exposure to zinc oxide nanoparticles induces DNA damage in human nasal mucosa mini organ cultures. Environ. Mol. Mutagen. 2011;52:582–589.
    1. Hernández-Sierra J.F., Ruiz F., Cruz Pena D.C., Martínez-Gutiérrez F., Martínez A.E., de Jesús Pozos Guillén A., Tapia-Pérez H., Martínez Castañón G. The antimicrobial sensitivity of Streptococcus mutans to nanoparticles of silver, zinc oxide, and gold. Nanomed. Nanotechnol. Biol. Med. 2008;4:237–240.
    1. Hojati T.S., Alaghemand H., Hamze F., Babaki A.F., Rajab-Nia R., Rezvani M.B., Kaviani M., Atai M. Antibacterial, physical and mechanical properties of flowable resin composites containing zinc oxide nanoparticles. Dent. Mater. 2013;29:495–505.
    1. Hoshino T., Kawaguchi M., Shimizu N., Hoshino N., Ooshima T., Fujiwara T. PCR detection and identification of oral streptococci in saliva samples using GTF genes. Diagn. Microbiol. Infect. Dis. 2004;48:195–199.
    1. Jatania A., Shivalinga B.M. An in vitro study to evaluate the effects of addition of zinc oxide to an orthodontic bonding agent. Eur. J. Dent. 2014;8:112–117.
    1. Kasraei S., Sami L., Hendi S., Alikhani M.-Y., Rezaei-Soufi L., Khamverdi Z. Antibacterial properties of composite resins incorporating silver and zinc oxide nanoparticles on Streptococcus mutans and Lactobacillus. Restor. Dent. Endod. 2014;39:109–114.
    1. Koo H., Sheng J., Nguyen P.T.M., Marquis R.E. Co-operative inhibition by fluoride and zinc of glucosyl transferase production and polysaccharide synthesis by mutans streptococci in suspension cultures and biofilms. FEMS Microbiol. Lett. 2006;254:134–140.
    1. Li C.-H., Shen C.-C., Cheng Y.-W., Huang S.-H., Wu C.-C., Kao C.-C., Liao J.-W., Kang J.-J. Organ biodistribution, clearance, and genotoxicity of orally administered zinc oxide nanoparticles in mice. Nanotoxicology. 2012;6:746–756.
    1. Liu L., Pushalkar S., Saxena D., LeGeros R.Z., Zhang Y. Antibacterial property expressed by a novel calcium phosphate glass. J. Biomed. Mater. Res. 2014;102:423–429.
    1. Liu W., Su P., Chen S., Wang N., Ma Y., Liu Y., Wang J., Zhang Z., Li H., Webster T.J. Synthesis of TiO2 nanotubes with ZnO nanoparticles to achieve antibacterial properties and stem cell compatibility. Nanoscale. 2014;6:9050–9062.
    1. Lynch R.J.M. Zinc in the mouth, its interactions with dental enamel and possible effects on caries; a review of the literature. Int. Dent. J. 2011;61:46–54.
    1. Magnusson K., Petersson L.G., Birkhed D. Effect of dentifrices with antimicrobial agents on mutans streptococci in saliva and approximal dental plaque in orthodontic patients. Oral Health Prev. Dent. 2007;5:223–227.
    1. Metwalli K.H., Khan S.A., Krom B.P., Jabra-Rizk M.A. Streptococcus mutans, Candida albicans, and the human mouth: a sticky situation. PLoS Pathog. 2013;9
    1. Meyer K., Rajanahalli P., Ahamed M., Rowe J.J., Hong Y. ZnO nanoparticles induce apoptosis in human dermal fibroblasts via p53 and p38 pathways. Toxicol. Vitr. 2011;25:1721–1726.
    1. Moher D., Liberati A., Tetzlaff Jennifer, Altman D.G., the PRISMA group Preferred reporting items for systematic reviews and meta-analysis : the PRISMA statement. Ann. Intern. Med. 2009;151:264–269.
    1. Osinaga P.W.R., Grande R.H.M., Ballester R.Y., Simionato M.R.L., Delgado Rodrigues C.R.M., Muench A. Zinc sulfate addition to glass-ionomer-based cements: influence on physical and antibacterial properties, zinc and fluoride release. Dent. Mater. 2003;19:212–217.
    1. Phan T.-N., Buckner T., Sheng J., Baldeck J.D., Marquis R.E. Physiologic actions of zinc related to inhibition of acid and alkali production by oral streptococci in suspensions and biofilms. Oral Microbiol. Immunol. 2004;19:31–38.
    1. Pizzey R.L., Marquis R.E., Bradshaw D.J. Antimicrobial effects of o-cymen-5-ol and zinc, alone & in combination in simple solutions and toothpaste formulations. Int. Dent. J. 2011;61:33–40.
    1. Ramazanzadeh B., Jahanbin A., Yaghoubi M., Shahtahmassbi N., Ghazvini K., Shakeri M., Shafaee H. Comparison of antibacterial effects of ZnO and CuO nanoparticles coated brackets against Streptococcus mutans. J. Dent. 2015;16:200–205.
    1. Seki M., Yamashita Y., Shibata Y., Torigoe H., Tsuda H., Maeno M. Effect of mixed mutans streptococci colonization on caries development. Oral Microbiol. Immunol. 2006;21:47–52.
    1. Sevinç B.A., Hanley L. Antibacterial activity of dental composites containing zinc oxide nanoparticles. J. Biomed. Mater. Res. B Appl. Biomater. 2010;94:22–31.
    1. Sharma V., Singh P., Pandey A.K., Dhawan A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat. Res. Toxicol. Environ. Mutagen. 2012;745:84–91.
    1. Sirelkhatim A., Mahmud S., Seeni A., Kaus N.H.M., Ann L.C., Bakhori S.K.M., Hasan H., Mohamad D. Review on zinc oxide nanoparticles: antibacterial activity and toxicity mechanism. Nano-Micro Lett. 2015;7:219–242.
    1. Spencer C.G., Campbell P.M., Buschang P.H., Cai J., Honeyman A.L. Antimicrobial effects of zinc oxide in an orthodontic bonding agent. Angle Orthod. 2009;79:317–322.
    1. Uzar N., Abudayyak M., Akcay N., Algun G., Özhan G. Zinc oxide nanoparticles induced cyto- and genotoxicity in kidney epithelial cells. Toxicol. Mech. Methods. 2015;4:334–339.
    1. Weiss E.I., Shalhav M., Fuss Z. Assessment of antibacterial activity of endodontic sealers by a direct contact test. Endod. Dent. Traumatol. 1996;12:179–184.
    1. Xu J., Ding G., Li J., Yang S., Fang B., Sun H., Zhou Y. Zinc-ion implanted and deposited titanium surfaces reduce adhesion of Streptococccus mutans. Appl. Surf. Sci. 2010;256:7540–7544.
    1. Yu J., Zhang W., Li Y., Wang G., Yang L., Jin J., Chen Q., Huang M. Synthesis, characterization, antimicrobial activity and mechanism of a novel hydroxyapatite whisker/nano zinc oxide biomaterial. Biomed. Mater. 2014;10:15001.
    1. Zhao B.H., Zhang W., Wang D.N., Feng W., Liu Y., Lin Z., Du K.Q., Deng C.F. Effect of Zn content on cytoactivity and bacteriostasis of micro-arc oxidation coatings on pure titanium. Surf. Coatings Technol. 2013;228:S428–S432.

Source: PubMed

3
Subskrybuj