New Insights into the Intrinsic and Extrinsic Factors That Shape the Human Skin Microbiome

Pedro A Dimitriu, Brandon Iker, Kausar Malik, Hilary Leung, W W Mohn, Greg G Hillebrand, Pedro A Dimitriu, Brandon Iker, Kausar Malik, Hilary Leung, W W Mohn, Greg G Hillebrand

Abstract

Despite recognition that biogeography and individuality shape the function and composition of the human skin microbiome, we know little about how extrinsic and intrinsic host factors influence its composition. To explore the contributions of these factors to skin microbiome variation, we profiled the bacterial microbiomes of 495 North American subjects (ages, 9 to 78 years) at four skin surfaces plus the oral epithelium using 16S rRNA gene amplicon sequencing. We collected subject metadata, including host physiological parameters, through standardized questionnaires and noninvasive biophysical methods. Using a combination of statistical modeling tools, we found that demographic, lifestyle, and physiological factors collectively explained 12 to 20% of the variability in microbiome composition. The influence of health factors was strongest on the oral microbiome. Associations between host factors and the skin microbiome were generally dominated by operational taxonomic units (OTUs) affiliated with the Clostridiales and Prevotella A subset of the correlations between microbial features and host attributes were site specific. To further explore the relationship between age and the skin microbiome of the forehead, we trained a Random Forest regression model to predict chronological age from microbial features. Age was associated mostly with two mutually coexcluding Corynebacterium OTUs. Furthermore, skin aging variables (wrinkles and hyperpigmented spots) were independently correlated to these taxa.IMPORTANCE Many studies have highlighted the importance of body site and individuality in shaping the composition of the human skin microbiome, but we still have a poor understanding of how extrinsic (e.g., lifestyle) and intrinsic (e.g., age) factors influence its composition. We characterized the bacterial microbiomes of North American volunteers at four skin sites and the mouth. We also collected extensive subject metadata and measured several host physiological parameters. Integration of host and microbial features showed that the skin microbiome was predominantly associated with demographic, lifestyle, and physiological factors. Furthermore, we uncovered reproducible associations between chronological age, skin aging, and members of the genus Corynebacterium Our work provides new understanding of the role of host selection and lifestyle in shaping skin microbiome composition. It also contributes to a more comprehensive appreciation of the factors that drive interindividual skin microbiome variation.

Keywords: Corynebacterium; age; demographic; forehead; host lifestyle; host physiology; metadata; scalp; skin microbiome.

Copyright © 2019 Dimitriu et al.

Figures

FIG 1
FIG 1
Microbiome diversity. (A) Bacterial alpha diversity at each site. (B) NMDS ordination displaying bacterial composition similarity (Bray-Curtis dissimilarities) among samples, color-coded according to site. (C) Stacked bar plot showing the relative abundance of the top ten most abundant bacterial families in each of the five sampled body sites. The “Others” category represents less-abundant taxa.
FIG 2
FIG 2
Effect sizes of variables on microbiome composition. Variables found to be significantly correlated with overall forehead (A) and oral (B) microbiome variation, sorted by their relative importance (% of R2) within predefined categories. R2 values represent the fractions of microbial composition variation explained by the variables in each category. Variables are additionally described in Table S1B.
FIG 3
FIG 3
(A) Mean relative importance of variable categories. (B) Aggregate relative importance of categories stratified by site.
FIG 4
FIG 4
Associations between bacterial taxa and subject variable categories. Networks displaying the top associations between OTUs and variable categories on the forehead (A) and in the mouth (B). Edges are color-coded according to the log-transformed permutation test q-values (see HAllA methods for additional details); yellow hues indicate stronger associations. Node size is proportional to the number of associations between OTUs and variables. Variable codes are explained in Table S1B and the main text.
FIG 5
FIG 5
Forehead microbiome and age. (A) Relative importance of OTUs explaining age as a function of their contribution to the Random Forest model mean square error (MSE). (B) Subject age in relation to the relative abundance of Corynebacterium OTUs deemed most important in the Random Forest age model. (C) Relative abundance-based coexclusion of the age-predictive corynebacterial OTUs. (D) Spearman correlations between forehead OTUs (those present in at least 25% of the samples) and the skin aging variables Wrinkles (VAWAF) and PigmentedSpots (VASAF). The color bar represents correlation values, and the crosses represent significant associations (FDR < 0.05).
FIG 6
FIG 6
Oligotyping analysis. (A) Distribution of Corynebacterium oligotypes, sorted by overall median relative abundance. (B) Relative abundance among age classes of oligotypes tentatively assigned to corynebacterial OTU3 and OTU10.

References

    1. Gallo RL. 2017. Human skin is the largest epithelial surface for interaction with microbes. J Invest Dermatol 137:1213–1214. doi:10.1016/j.jid.2016.11.045.
    1. Grice EA, Segre JA. 2011. The skin microbiome. Nat Rev Microbiol 9:244–253. doi:10.1038/nrmicro2537.
    1. Oh J, Byrd AL, Deming C, Conlan S, NISC Comparative Sequencing Program, Kong HH, Segre JA. 2014. Biogeography and individuality shape function in the human skin metagenome. Nature 514:59–64. doi:10.1038/nature13786.
    1. Grice EA. 2015. The intersection of microbiome and host at the skin interface: genomic- and metagenomic-based insights. Genome Res 25:1514–1520. doi:10.1101/gr.191320.115.
    1. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R. 2009. Bacterial community variation in human body habitats across space and time. Science 326:1694–1697. doi:10.1126/science.1177486.
    1. Findley K, Oh J, Yang J, Conlan S, Deming C, Meyer JA, Schoenfeld D, Nomicos E, Park M, NIH Intramural Sequencing Center Comparative Sequencing Program, Kong HH, Segre JA. 2013. Topographic diversity of fungal and bacterial communities in human skin. Nature 498:367–370. doi:10.1038/nature12171.
    1. Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, Program NCS, Bouffard GG, Blakesley RW, Murray PR, Green ED, Turner ML, Segre JA. 2009. Topographical and temporal diversity of the human skin microbiome. Science 324:1190–1192. doi:10.1126/science.1171700.
    1. Oh J, Byrd AL, Park M, Kong HH, Segre JA. 2016. Temporal stability of the human skin microbiome. Cell 165:854–866. doi:10.1016/j.cell.2016.04.008.
    1. Kim HO, Kim H-S, Youn J-C, Shin E-C, Park S. 2011. Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays. J Transl Med 9:113. doi:10.1186/1479-5876-9-113.
    1. Bouslimani A, Porto C, Rath CM, Wang M, Guo Y, Gonzalez A, Berg-Lyon D, Ackermann G, Christensen GJM, Nakatsuji T, Zhang L, Borkowski AW, Meehan MJ, Dorrestein K, Gallo RL, Bandeira N, Knight R, Alexandrov T, Dorrestein PC. 2015. Molecular cartography of the human skin surface in 3D. Proc Natl Acad Sci U S A 112:E2120–E2129. doi:10.1073/pnas.1424409112.
    1. Callewaert C, Hutapea P, Van de Wiele T, Boon N. 2014. Deodorants and antiperspirants affect the axillary bacterial community. Arch Dermatol Res 306:701–710. doi:10.1007/s00403-014-1487-1.
    1. Garza DR, Verk MCV, Huynen MA, Dutilh BE. 2018. Towards predicting the environmental metabolome from metagenomics with a mechanistic model. Nat Microbiol 3:456–460.
    1. Averbeck M, Gebhardt CA, Voigt S, Beilharz S, Anderegg U, Termeer CC, Sleeman JP, Simon JC. 2007. Differential regulation of hyaluronan metabolism in the epidermal and dermal compartments of human skin by UVB irradiation. J Invest Dermatol 127:687–697. doi:10.1038/sj.jid.5700614.
    1. Flores GE, Caporaso JG, Henley JB, Rideout JR, Domogala D, Chase J, Leff JW, Vázquez-Baeza Y, Gonzalez A, Knight R, Dunn RR, Fierer N. 2014. Temporal variability is a personalized feature of the human microbiome. Genome Biol 15:531. doi:10.1186/s13059-014-0531-y.
    1. Lehtimäki J, Karkman A, Laatikainen T, Paalanen L, von Hertzen L, Haahtela T, Hanski I, Ruokolainen L. 2017. Patterns in the skin microbiota differ in children and teenagers between rural and urban environments. Sci Rep 7:45651. doi:10.1038/srep45651.
    1. Leung MHY, Wilkins D, Lee PKH. 2015. Insights into the pan-microbiome: skin microbial communities of Chinese individuals differ from other racial groups. Sci Rep 5:11845. doi:10.1038/srep11845.
    1. Kong HH. 2016. Details matter: designing skin microbiome studies. J Invest Dermatol 136:900–902. doi:10.1016/j.jid.2016.03.004.
    1. Zeeuwen P, Boekhorst J, Ederveen THA, Kleerebezem M, Schalkwijk J, van Hijum S, Timmerman HM. 2017. Reply to Meisel et al. J Invest Dermatol 137:961–962. doi:10.1016/j.jid.2016.11.013.
    1. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. 2013. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120. doi:10.1128/AEM.01043-13.
    1. Eren AM, Maignien L, Sul WJ, Murphy LG, Grim SL, Morrison HG, Sogin ML. 2013. Oligotyping: differentiating between closely related microbial taxa using 16S rRNA gene data. Methods Ecol Evol 4:1111–1119. doi:10.1111/2041-210X.12114.
    1. Falony G, Joossens M, Vieira-Silva S, Wang J, Darzi Y, Faust K, Kurilshikov A, Bonder MJ, Valles-Colomer M, Vandeputte D, Tito RY, Chaffron S, Rymenans L, Verspecht C, Sutter LD, Lima-Mendez G, D’hoe K, Jonckheere K, Homola D, Garcia R, Tigchelaar EF, Eeckhaudt L, Fu J, Henckaerts L, Zhernakova A, Wijmenga C, Raes J. 2016. Population-level analysis of gut microbiome variation. Science 352:560–564. doi:10.1126/science.aad3503.
    1. Levin AM, Sitarik AR, Havstad SL, Fujimura KE, Wegienka G, Cassidy-Bushrow AE, Kim H, Zoratti EM, Lukacs NW, Boushey HA, Ownby DR, Lynch SV, Johnson CC. 2016. Joint effects of pregnancy, sociocultural, and environmental factors on early life gut microbiome structure and diversity. Sci Rep 6:31775. doi:10.1038/srep31775.
    1. Hannigan GD, Duhaime MB, Koutra D, Schloss PD. 2018. Biogeography and environmental conditions shape bacteriophage-bacteria networks across the human microbiome. PLoS Comput Biol 14:e1006099. doi:10.1371/journal.pcbi.1006099.
    1. Kang D, Shi B, Erfe MC, Craft N, Li H. 2015. Vitamin B12 modulates the transcriptome of the skin microbiota in acne pathogenesis. Sci Transl Med 7:293ra103. doi:10.1126/scitranslmed.aab2009.
    1. Shu M, Kuo S, Wang Y, Jiang Y, Liu Y-T, Gallo RL, Huang C-M. 2013. Porphyrin metabolisms in human skin commensal propionibacterium acnes bacteria: potential application to monitor human radiation risk. Curr Med Chem 20:562–568.
    1. Oh J, Freeman AF, Park M, Sokolic R, Candotti F, Holland SM, Segre JA, Kong HH. 2013. The altered landscape of the human skin microbiome in patients with primary immunodeficiencies. Genome Res 23:2103–2114. doi:10.1101/gr.159467.113.
    1. Murphy EC, Mörgelin M, Reinhardt DP, Olin AI, Björck L, Frick I-M. 2014. Identification of molecular mechanisms used by Finegoldia magna to penetrate and colonize human skin. Mol Microbiol 94:403–417. doi:10.1111/mmi.12773.
    1. Goodrich JK, Davenport ER, Clark AG, Ley RE. 2017. The relationship between the human genome and microbiome comes into view. Annu Rev Genet 51:413–433. doi:10.1146/annurev-genet-110711-155532.
    1. Feller L, Masilana A, Khammissa RA, Altini M, Jadwat Y, Lemmer J. 2014. Melanin: the biophysiology of oral melanocytes and physiological oral pigmentation. Head Face Med 10:8. doi:10.1186/1746-160X-10-8.
    1. Leung MHY, Lee P. 2016. The roles of the outdoors and occupants in contributing to a potential pan-microbiome of the built environment: a review. Microbiome 4:21. doi:10.1186/s40168-016-0165-2.
    1. Shibagaki N, Suda W, Clavaud C, Bastien P, Takayasu L, Iioka E, Kurokawa R, Yamashita N, Hattori Y, Shindo C, Breton L, Hattori M. 2017. Aging-related changes in the diversity of women’s skin microbiomes associated with oral bacteria. Sci Rep 7:10567. doi:10.1038/s41598-017-10834-9.
    1. McCune B, Root HT. 2015. Origin of the dust bunny distribution in ecological community data. Plant Ecol 216:645–656. doi:10.1007/s11258-014-0404-1.
    1. Tauch A, Schneider J, Szczepanowski R, Tilker A, Viehoever P, Gartemann K-H, Arnold W, Blom J, Brinkrolf K, Brune I, Götker S, Weisshaar B, Goesmann A, Dröge M, Pühler A. 2008. Ultrafast pyrosequencing of Corynebacterium kroppenstedtii DSM44385 revealed insights into the physiology of a lipophilic corynebacterium that lacks mycolic acids. J Biotechnol 136:22–30. doi:10.1016/j.jbiotec.2008.03.004.
    1. Tauch A, Fernández-Natal I, Soriano F. 2016. A microbiological and clinical review on Corynebacterium kroppenstedtii. Int J Infect Dis 48:33–39. doi:10.1016/j.ijid.2016.04.023.
    1. Walter S, Rademacher F, Kobinger N, Simanski M, Gläser R, Harder J. 2017. RNase 7 participates in cutaneous innate control of Corynebacterium amycolatum. Sci Rep 7:13862. doi:10.1038/s41598-017-14383-z.
    1. Farage MA, Miller KW, Elsner P, Maibach HI. 2008. Intrinsic and extrinsic factors in skin ageing: a review. Int J Cosmet Sci 30:87–95. doi:10.1111/j.1468-2494.2007.00415.x.
    1. Lax S, Sangwan N, Smith D, Larsen P, Handley KM, Richardson M, Guyton K, Krezalek M, Shogan BD, Defazio J, Flemming I, Shakhsheer B, Weber S, Landon E, Garcia-Houchins S, Siegel J, Alverdy J, Knight R, Stephens B, Gilbert JA. 2017. Bacterial colonization and succession in a newly opened hospital. Sci Transl Med 9:eaah6500. doi:10.1126/scitranslmed.aah6500.
    1. Dethlefsen L, Relman DA. 2011. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A 108(Suppl 1):4554–4561. doi:10.1073/pnas.1000087107.
    1. Rojo D, Méndez-García C, Raczkowska BA, Bargiela R, Moya A, Ferrer M, Barbas C. 2017. Exploring the human microbiome from multiple perspectives: factors altering its composition and function. FEMS Microbiol Rev 41:453–478. doi:10.1093/femsre/fuw046.
    1. Wu J, Peters BA, Dominianni C, Zhang Y, Pei Z, Yang L, Ma Y, Purdue MP, Jacobs EJ, Gapstur SM, Li H, Alekseyenko AV, Hayes RB, Ahn J. 2016. Cigarette smoking and the oral microbiome in a large study of American adults. ISME J 10:2435–2446. doi:10.1038/ismej.2016.37.
    1. Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, Gibbons SM, Larsen P, Shogan BD, Weiss S, Metcalf JL, Ursell LK, Vázquez-Baeza Y, Treuren WV, Hasan NA, Gibson MK, Colwell R, Dantas G, Knight R, Gilbert JA. 2014. Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052. doi:10.1126/science.1254529.
    1. He Y, Wu W, Zheng H-M, Li P, McDonald D, Sheng H-F, Chen M-X, Chen Z-H, Ji G-Y, Zheng Z-D-X, Mujagond P, Chen X-J, Rong Z-H, Chen P, Lyu L-Y, Wang X, Wu C-B, Yu N, Xu Y-J, Yin J, Raes J, Knight R, Ma W-J, Zhou H-W. 2018. Regional variation limits applications of healthy gut microbiome reference ranges and disease models. Nat Med 24:1532–1535. doi:10.1038/s41591-018-0164-x.
    1. Meisel JS, Hannigan GD, Tyldsley AS, SanMiguel AJ, Hodkinson BP, Zheng Q, Grice EA. 2016. Skin microbiome surveys are strongly influenced by experimental design. J Invest Dermatol 136:947–956. doi:10.1016/j.jid.2016.01.016.
    1. Lee HJ, Jeong SE, Lee S, Kim S, Han H, Jeon CO. 2018. Effects of cosmetics on the skin microbiome of facial cheeks with different hydration levels. Microbiologyopen 7:e00557. doi:10.1002/mbo3.557.
    1. Aagaard K, Petrosino J, Keitel W, Watson M, Katancik J, Garcia N, Patel S, Cutting M, Madden T, Hamilton H, Harris E, Gevers D, Simone G, McInnes P, Versalovic J. 2013. The Human Microbiome Project strategy for comprehensive sampling of the human microbiome and why it matters. FASEB J 27:1012–1022. doi:10.1096/fj.12-220806.
    1. Parra JL, Paye M, EEMCO Group. 2003. EEMCO guidance for the in vivo assessment of skin surface pH. Skin Pharmacol Appl Skin Physiol 16:188–202. doi:10.1159/000069756.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi:10.1128/AEM.01541-09.
    1. Pruesse E, Quast C, Knittel K, Fuchs BM, Ludwig W, Peplies J, Glöckner FO. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res 35:7188–7196. doi:10.1093/nar/gkm864.
    1. Schloss PD. 2009. A high-throughput DNA sequence aligner for microbial ecology studies. PLoS ONE 4:e8230. doi:10.1371/journal.pone.0008230.
    1. Huse SM, Welch DM, Morrison HG, Sogin ML. 2010. Ironing out the wrinkles in the rare biosphere through improved OTU clustering. Environ Microbiol 12:1889–1898. doi:10.1111/j.1462-2920.2010.02193.x.
    1. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. doi:10.1093/bioinformatics/btr381.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. doi:10.1128/AEM.00062-07.
    1. Liaw A, Wiener M. 2002. Classification and regression by randomForest. R News 2:6.
    1. Breiman L. 2001. Random Forests. Mach Learn 45:5–32. doi:10.1023/A:1010933404324.

Source: PubMed

3
Subskrybuj