Plasmalogens as endogenous antioxidants: somatic cell mutants reveal the importance of the vinyl ether

R A Zoeller, A C Lake, N Nagan, D P Gaposchkin, M A Legner, W Lieberthal, R A Zoeller, A C Lake, N Nagan, D P Gaposchkin, M A Legner, W Lieberthal

Abstract

Exposure of plasmalogen-deficient variants of the murine cell line RAW 264.7 to short-term (0-100 min) treatment with electron transport inhibitors antimycin A or cyanide (chemical hypoxia) resulted in a more rapid loss of viability than in the parent strain. Results suggested that plasmalogen-deficient cells were more sensitive to reactive oxygen species (ROS) generated during chemical hypoxia; the mutants could be rescued from chemical hypoxia by using the antioxidant Trolox, an alpha-tocopherol analogue, and they were more sensitive to ROS generation by plumbagin or by rose bengal treatment coupled with irradiation. In addition, the use of buffers containing 2H2O greatly enhanced the cytotoxic effect of chemical hypoxia, suggesting the involvement of singlet oxygen. We used the unique enzymic deficiencies displayed by the mutants to differentially restore either plasmenylethanolamine (the major plasmalogen species normally found in this cell line) or its biosynthetic precursor, plasmanylethanolamine. Restoration of plasmenylethanolamine, which contains the vinyl ether, resulted in wild-type-like resistance to chemical hypoxia and ROS generators, whereas increasing levels of its precursor, which bears the saturated ether, had no effect on cell survival. These findings identify the vinyl ether double bond as a crucial element in cellular protection under these conditions and support the hypothesis that plasmalogens, through the vinyl ether, act as antioxidants to protect cells against ROS. These phospholipids might protect cells from ROS-mediated damage during events such as chemical hypoxia.

References

    1. Can J Biochem Physiol. 1959 Aug;37(8):911-7
    1. Am J Physiol. 1993 Sep;265(3 Pt 2):F342-50
    1. J Biol Chem. 1994 Oct 21;269(42):26546-51
    1. Biochem Biophys Res Commun. 1994 Nov 15;204(3):1235-42
    1. Kidney Int. 1995 Apr;47(4):1087-94
    1. J Pediatr. 1995 Jul;127(1):13-22
    1. Chem Phys Lipids. 1995 Jun 19;76(2):259-67
    1. Biochem Mol Biol Int. 1995 May;36(1):227-32
    1. Cell Calcium. 1995 Apr;17(4):307-15
    1. Cytometry. 1995 Jun 1;20(2):181-4
    1. Chem Phys Lipids. 1995 Aug 1;77(1):25-31
    1. J Pharmacol Exp Ther. 1996 Aug;278(2):763-70
    1. Am J Physiol. 1996 Jul;271(1 Pt 2):F209-15
    1. Biochem J. 1997 May 1;323 ( Pt 3):807-14
    1. Free Radic Biol Med. 1997;23(1):148-54
    1. J Biol Chem. 1951 Nov;193(1):265-75
    1. J Biol Chem. 1971 Jun 10;246(11):3639-45
    1. Photochem Photobiol. 1973 Jan;17(1):65-8
    1. Cell. 1978 Sep;15(1):261-7
    1. J Biol Chem. 1981 Oct 25;256(20):10319-28
    1. Biochim Biophys Acta. 1982 Sep 14;712(3):515-22
    1. Biochemistry. 1984 Jan 3;23(1):158-65
    1. J Lipid Res. 1984 Apr;25(4):383-8
    1. Annu Rev Physiol. 1986;48:657-67
    1. Science. 1987 Apr 3;236(4797):68-9
    1. J Biol Chem. 1988 Aug 15;263(23):11590-6
    1. J Biol Chem. 1988 Aug 15;263(23):11597-606
    1. J Clin Invest. 1991 Jul;88(1):331-5
    1. Biochim Biophys Acta. 1991 Oct 14;1069(1):37-45
    1. Photochem Photobiol. 1992 Mar;55(3):461-3
    1. J Biol Chem. 1992 Apr 25;267(12):8299-306
    1. Methods Enzymol. 1992;209:211-5
    1. Methods Enzymol. 1992;209:34-51
    1. J Inherit Metab Dis. 1992;15(3):389-91
    1. Free Radic Biol Med. 1992 Dec;13(6):627-34
    1. Am J Physiol. 1993 Apr;264(4 Pt 1):C961-7
    1. J Clin Invest. 1994 Apr;93(4):1609-15

Source: PubMed

3
Subskrybuj