Safety and efficacy of direct Cardiac Shockwave Therapy in patients with ischemic cardiomyopathy undergoing coronary artery bypass grafting (the CAST-HF trial): study protocol for a randomized controlled trial

Leo Pölzl, Felix Nägele, Michael Graber, Jakob Hirsch, Daniela Lobenwein, Martina Mitrovic, Agnes Mayr, Markus Theurl, Michael Schreinlechner, Matthias Pamminger, Christian Dorfmüller, Michael Grimm, Can Gollmann-Tepeköylü, Johannes Holfeld, Leo Pölzl, Felix Nägele, Michael Graber, Jakob Hirsch, Daniela Lobenwein, Martina Mitrovic, Agnes Mayr, Markus Theurl, Michael Schreinlechner, Matthias Pamminger, Christian Dorfmüller, Michael Grimm, Can Gollmann-Tepeköylü, Johannes Holfeld

Abstract

Background: Coronary artery diseases (CAD) remains a severe socio-economic burden in the Western world. Coronary obstruction and subsequent myocardial ischemia result in progressive replacement of contractile myocardium with dysfunctional, fibrotic scar tissue. Post-infarctional remodeling is causal for the concomitant decline of left-ventricular function and the fatal syndrome of heart failure. Available neurohumoral treatment strategies aim at the improvement of symptoms. Despite extensive research, therapeutic options for myocardial regeneration, including (stem)-cell therapy, gene therapy, cellular reprogramming or tissue engineering, remain purely experimental. Thus, there is an urgent clinical need for novel treatment options for inducing myocardial regeneration and improving left-ventricular function in ischemic cardiomyopathy. Shockwave Therapy (SWT) is a well-established regenerative tool that is effective for the treatment of chronic tendonitis, long-bone non-union and wound-healing disorders. In preclinical trials, SWT regenerated ischemic myocardium via the induction of angiogenesis and the reduction of fibrotic scar tissue, resulting in improved left-ventricular function.

Methods/design: In this prospective, randomized controlled, single-blind, monocentric study, 80 patients with reduced left-ventricular ejection fraction (LVEF≤ 40%) are subjected to coronary-artery bypass-graft surgery (CABG) surgery and randomized in a 1:1 ratio to receive additional cardiac SWT (intervention group; 40 patients) or CABG surgery with sham treatment (control group; 40 patients). This study aims to evaluate (1) the safety and (2) the efficacy of cardiac SWT as adjunctive treatment during CABG surgery for the regeneration of ischemic myocardium. The primary endpoints of the study represent (1) major cardiac events and (2) changes in left-ventricular function 12 months after treatment. Secondary endpoints include 6-min Walk Test distance, improvement of symptoms and assessment of quality of life.

Discussion: This study aims to investigate the safety and efficacy of cardiac SWT during CABG surgery for myocardial regeneration. The induction of angiogenesis, decrease of fibrotic scar tissue formation and, thus, improvement of left-ventricular function could lead to improved quality of life and prognosis for patients with ischemic heart failure. Thus, it could become the first clinically available treatment strategy for the regeneration of ischemic myocardium alleviating the socio-economic burden of heart failure.

Trial registration: ClinicalTrials.gov, ID: NCT03859466. Registered on 1 March 2019.

Keywords: CABG; Clinical trial; Heart failure; Ischemic heart disease; Shockwave.

Conflict of interest statement

JH, CD and MG are shareholders of Heart Regeneration Technologies GmbH, an Innsbruck Medical University spin-off aiming to promote Cardiac Shockwave Therapy (www.heart-regeneration.com). All other authors have nothing to disclose.

Figures

Fig. 1
Fig. 1
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) Figure
Fig. 2
Fig. 2
Cardiac shockwave applicator

References

    1. Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 2012;380(9859):2224–2260. doi: 10.1016/S0140-6736(12)61766-8.
    1. Pagidipati N, Gaziano T. Estimating deaths from cardiovascular disease: a review of global methodologies of mortality measurement. Circulation. 2013;127(6):749–756. doi: 10.1161/CIRCULATIONAHA.112.128413.
    1. Jessup M, Brozena S. Heart failure. N Engl J Med. 2003;348(20):2007–2018. doi: 10.1056/NEJMra021498.
    1. Marwick TH, et al. Functional status and quality of life in patients with heart failure undergoing coronary bypass surgery after assessment of myocardial viability. J Am Coll Cardiol. 1999;33(3):750–758. doi: 10.1016/S0735-1097(98)00642-1.
    1. Roger VL, Go AS, Lloyd-jones DM, Adams RJ, Berry JD, Brown TM, et al. Heart disease and stroke statistics—2011 update: a report from the American Heart Association. Circulation. 2011;123(4):e18–e209. doi: 10.1161/CIR.0b013e3182009701.
    1. Ponikowski P, Voors A, Anker S, Bueno H, Cleland JGF, Coats A, et al. 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) Eur Heart J. 2016;37:2129–2220. doi: 10.1093/eurheartj/ehw128.
    1. Neumann FJ, Sousa-Uva M, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J. 2019;40:87–165. doi: 10.1093/eurheartj/ehy394.
    1. Velazquez EJ, Lee KL, Deja MA, Jain A, Sopko G, Marchenko A, et al. Coronary-artery bypass surgery in patients with left ventricular dysfunction. N Engl J Med. 2011;364(17):1607–1616. doi: 10.1056/NEJMoa1100356.
    1. Stone GW, Sabik JF, Serruys PW, Simonton CA, Généreux P, Puskas J, et al. Everolimus-eluting stents or bypass surgery for left main coronary artery disease. N Engl J Med. 2016;375(23):2223–2235. doi: 10.1056/NEJMoa1610227.
    1. Farkouh ME, Domanski M, Sleeper LA, Siami FS, Dangas G, Mack M, et al. Strategies for multivessel revascularization in patients with diabetes: The Freedom Trial. N Engl J Med. 2012;367(25):2375–2384. doi: 10.1056/NEJMoa1211585.
    1. Mohr FW, Morice M, Kappetein AP, Feldman TE, Ståhle E, Colombo A, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet. 2013;381(9867):629–638. doi: 10.1016/S0140-6736(13)60141-5.
    1. Sanganalmath SK, Bolli R. Cell therapy for heart failure: a comprehensive overview of experimental and clinical studies, current challenges, and future directions. Circ Res. 2013;113(6):810–834. doi: 10.1161/CIRCRESAHA.113.300219.
    1. Chaussy C, Brendel W, Schmiedt E. Extracorporeally induced destruction of kidney stones by shock waves. Lancet. 1980;2(8207):1265–1268. doi: 10.1016/S0140-6736(80)92335-1.
    1. Valchanou VD, Michailov P. High energy shock waves in the treatment of delayed and nonunion of fractures. Int Orthop. 1991;15(3):181–184. doi: 10.1007/BF00192289.
    1. Stojadinovic A, Elster EA, Anam K, Tadaki D, Amare M, Zins S, et al. Angiogenic response to extracorporeal shock wave treatment in murine skin isografts. Angiogenesis. 2008;11(4):369–380. doi: 10.1007/s10456-008-9120-6.
    1. Holfeld J, Tepeköylü C, Kozaryn R, Urbschat A, Zacharowski K, Grimm M, et al. Shockwave therapy differentially stimulates endothelial cells: implications on the control of inflammation via Toll-like receptor 3. Inflammation. 2014;37(1):65–70. doi: 10.1007/s10753-013-9712-1.
    1. Romeo P, Lavanga V, Pagani D, Sansone V. Extracorporeal shock wave therapy in musculoskeletal disorders: a review. Med Princ Pract. 2014;23(1):7–13. doi: 10.1159/000355472.
    1. Holfeld J, Zimpfer D, Albrecht-Schgoer K, Stojadinovic A, Paulus P, Dumfarth J, et al. Epicardial shock-wave therapy improves ventricular function in a porcine model of ischaemic heart disease. J Tissue Eng Regen Med. 2016;10(12):1057–1064. doi: 10.1002/term.1890.
    1. Tepeköylü C, Primessnig U, Pölzl L, Graber M, Lobenwein D, Nägele F, et al. Shockwaves prevent from heart failure after acute myocardial ischaemia via RNA/protein complexes. J Cell Mol Med. 2017;21(4):791–801. doi: 10.1111/jcmm.13021.
    1. Holfeld J, Tepeköylü C, Blunder S, Lobenwein D, Kirchmair E, Dietl M, et al. Low energy shock wave therapy induces angiogenesis in acute hind-limb ischemia via VEGF receptor 2 phosphorylation. PLoS One. 2014;9(8):1–7. doi: 10.1371/journal.pone.0103982.
    1. Tepeköylü C, Lobenwein D, Urbschat A, Graber M, Pechriggl EJ, Fritsch H, et al. Shock wave treatment after hindlimb ischaemia results in increased perfusion and M2 macrophage presence. J Tissue Eng Regen Med. 2018;12(1):e486–e494. doi: 10.1002/term.2317.
    1. Holfeld J, Tepeköylü C, Reissig C, Lobenwein D, Scheller B, Kirchmair E, et al. Toll-like receptor 3 signalling mediates angiogenic response upon shock wave treatment of ischaemic muscle. Cardiovasc Res. 2016;109(2):331–343. doi: 10.1093/cvr/cvv272.
    1. Sousa-Uva M, Neumann FJ, Ahlsson A, Alfonso F, Banning AP, Benedetto U, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur J Cardiothorac Surg. 2019;55(1):4–90. doi: 10.1093/ejcts/ezy289.
    1. Tepekoeylue C, Wang F, Kozaryn R, Albrecht-Schgoer K, Theurl M, Schaden W, et al. Shock wave treatment induces angiogenesis and mobilizes endogenous CD31 / CD34-positive endothelial cells in a hindlimb ischemia model : Implications for angiogenesis and vasculogenesis. J Thorac Cardiovasc Surg. 2013;146(85):971–978. doi: 10.1016/j.jtcvs.2013.01.017.
    1. Holfeld J, Lobenwein D, Tepeköylü C, Grimm M. Shockwave therapy of the heart. Int J Surg. 2015;24:218–222. doi: 10.1016/j.ijsu.2015.09.070.
    1. Nowbar AN, Mielewczik M, Karavassilis M, Dehbi HM, Shun-Shin MJ, Jones S, et al. Discrepancies in autologous bone marrow stem cell trials and enhancement of ejection fraction (DAMASCENE): weighted regression and meta-analysis OPEN ACCESS. BMJ. 2014;348(April):1–9.
    1. Sadahiro T, Yamanaka S, Ieda M. Direct cardiac reprogramming. Progress and challenges in basic biology and clinical applications. Circ Res. 2015;116:1378–1391. doi: 10.1161/CIRCRESAHA.116.305374.
    1. Chen Y, Yang Z, Zhao Z, Shen Z. Direct reprogramming of fibroblasts into cardiomyocytes. Stem Cell Res Ther. 2017;8:118. doi: 10.1186/s13287-017-0569-3.
    1. Yang P, Guo T, Wang W, Peng YZ, Wang Y, Zhou P, et al. Randomized and double-blind controlled clinical trial of extracorporeal cardiac shock wave therapy for coronary heart disease. Heart Vessel. 2013;295:284–291. doi: 10.1007/s00380-012-0244-7.
    1. Khattab AA, Brodersen B, Schuermann-Kuchenbrandt D, Beurich H, Tölg R, Geist V, et al. Extracorporeal cardiac shock wave therapy: first experience in the everyday practice for treatment of chronic refractory angina pectoris. Int J Cardiol. 2007;121:84–85. doi: 10.1016/j.ijcard.2006.08.030.

Source: PubMed

3
Subskrybuj