A Phase 2a randomized, single-center, double-blind, placebo-controlled study to evaluate the safety and preliminary efficacy of oral iOWH032 against cholera diarrhea in a controlled human infection model

Rahsan Erdem, Gwen Ambler, Mohamed Al-Ibrahim, Katarzyna Fraczek, Steven D Dong, Christopher Gast, Laina D Mercer, Michael Raine, Sharon M Tennant, Wilbur H Chen, Eugenio L de Hostos, Robert K M Choy, Rahsan Erdem, Gwen Ambler, Mohamed Al-Ibrahim, Katarzyna Fraczek, Steven D Dong, Christopher Gast, Laina D Mercer, Michael Raine, Sharon M Tennant, Wilbur H Chen, Eugenio L de Hostos, Robert K M Choy

Abstract

Cholera remains a major cause of infectious diarrhea globally. Despite the increased availability of cholera vaccines, there is still an urgent need for other effective interventions to reduce morbidity and mortality. Furthermore, increased prevalence of antibiotic-resistant Vibrio cholerae threatens the use of many drugs commonly used to treat cholera. We developed iOWH032, a synthetic small molecule inhibitor of the cystic fibrosis transmembrane conductance regulator chloride channel, as an antisecretory, host-directed therapeutic for cholera. In the study reported here, we tested iOWH032 in a Phase 2a cholera controlled human infection model. Forty-seven subjects were experimentally infected with V. cholerae El Tor Inaba strain N16961 in an inpatient setting and randomized to receive 500 mg iOWH032 or placebo by mouth every 8 hours for 3 days to determine the safety and efficacy of the compound as a potential treatment for cholera. We found that iOWH032 was generally safe and achieved a mean (± standard deviation) plasma level of 4,270 ng/mL (±2,170) after 3 days of oral dosing. However, the median (95% confidence interval) diarrheal stool output rate for the iOWH032 group was 25.4 mL/hour (8.9, 58.3), compared to 32.6 mL/hour (15.8, 48.2) for the placebo group, a reduction of 23%, which was not statistically significant. There was also no significant decrease in diarrhea severity and number or frequency of stools associated with iOWH032 treatment. We conclude that iOWH032 does not merit future development for treatment of cholera and offer lessons learned for others developing antisecretory therapeutic candidates that seek to demonstrate proof of principle in a cholera controlled human infection model study. Trial registration: This study is registered with ClinicalTrials.gov as NCT04150250.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Fig 1. Consolidated Standards for Reporting of…
Fig 1. Consolidated Standards for Reporting of Trials flow diagram.
Fig 2. Reverse cumulative distribution plot for…
Fig 2. Reverse cumulative distribution plot for diarrheal stool output rate overall in the modified intent-to-treat population.
The curve for the iOWH032 is shifted to the left of the placebo group, indicating a lower diarrheal stool output rate; however, this difference was not statistically significant (Van Elteren test: p = 0.2254).
Fig 3. Scatterplot of iOWH032 plasma concentrations…
Fig 3. Scatterplot of iOWH032 plasma concentrations versus diarrheal stool output rate.
Blue dots: plasma levels at 7 hours after dose 1; orange dots: plasma levels at 7 hours after dose 9. Dotted lines: linear regression plots. The Pearson correlation coefficients for these lines are –0.2997 for post dose 1 data and –0.3937 for post dose 9 data.

References

    1. Ali M, Nelson AR, Lopez AL, Sack DA. Updated global burden of cholera in endemic countries. PLOS Negl Trop Dis. 2015;9(6): e0003832. doi: 10.1371/journal.pntd.0003832
    1. Global Task Force on Cholera Control. Ending cholera: A global roadmap to 2030. Geneva: World Health Organization; 2017. Available from .
    1. Wierzba TF. Oral cholera vaccines and their impact on the global burden of disease. Hum Vaccine Immunother. 2019;15(6): 1294–1301. doi: 10.1080/21645515.2018.1504155
    1. Lee EC, Chao DL, Lemaitre JC, Matrajt L, Pasetto D, Perez-Saez J, et al.. Achieving coordinated national immunity and cholera elimination in Haiti through vaccination: a modelling study. Lancet Glob Health. 2020;8(8): e1081–e1089. doi: 10.1016/S2214-109X(20)30310-7
    1. Spiegel P, Ratnayake R, Hellman N, Veervers M, Ngwa M, Wise PH, et al.. Responding to epidemics in large-scale humanitarian crises: a case study of the cholera response in Yemen, 2016–2018. BMJ Glob Health. 2019;4(4): e001709. doi: 10.1136/bmjgh-2019-001709
    1. Khan AI, Rashid M, Islam T, Afrad MH, Salimuzzaman M, Hegde ST, et al.. Epidemiology of cholera in Bangladesh: findings from nationwide hospital-based surveillance, 2014–2018. Clin Infect Dis. 2020;71(7): 1635–1642. doi: 10.1093/cid/ciz1075
    1. Ingelbeen B, Hendrickx D, Miwanda B, van der Sande MAB, Mossoko M, Vochten H, et al.. Recurrent cholera outbreaks, Democratic Republic of the Congo, 2008–2017. Emerg Infect Dis. 2019;25(5): 856–864. doi: 10.3201/eid2505.181141
    1. Mwaba J, Debes AK, Shea P, Mukonka V, Chewe O, Chisenga C, et al.. Identification of cholera hotspots in Zambia: a spatiotemporal analysis of cholera data from 2008 to 2017. PLOS Negl Trop Dis. 2020;14(4): e0008227. doi: 10.1371/journal.pntd.0008227
    1. Barrett KE, Keely SJ. Chloride secretion by the intestinal epithelium: molecular basis and regulatory aspects. Annu Rev Physiol. 2000;62: 535–572. doi: 10.1146/annurev.physiol.62.1.535
    1. Sack DA, Balakrish Nair G, Siddique AK. Cholera. Lancet. 2004;363(9404): 223–233. doi: 10.1016/s0140-6736(03)15328-7
    1. Pietroni MAC. Case management of cholera. Vaccine. 2020;38(1): A105–A109. doi: 10.1016/j.vaccine.2019.09.098
    1. Leibovici-Weissman Y, Neuberger A, Bitterman R, Sinclair D, Salam MA, Paul M. Antimicrobial drugs for treating cholera. Cochrane Database Syst Rev. 2014; Issue 6. Article No. CD008625. doi: 10.1002/14651858.CD008625.pub2
    1. Kumar P, Yadav P, Ingole KV, Jaiswa RK, Khalid NS, Deshmukh DG, et al.. Emergence of Haitian variant genotype and altered drug susceptibility in Vibrio cholerae O1 El Tor-associated cholera outbreaks in Solapur, India. Int J Antimicrob Agents. 2020;55(3): 105853. doi: 10.1016/j.ijantimicag.2019.11.010
    1. Garbern SC, Chu T-C, Gainey M, Kanekar SS, Nasrin S, Qu K, et al.. Multidrug-resistant enteric pathogens in older children and adults with diarrhea in Bangladesh: epidemiology and risk factors. Trop Med Health. 2021;49(1): 34. doi: 10.1186/s41182-021-00327-x
    1. Eichenberger EM, Thaden JT. Epidemiology and mechanisms of resistance of extensively drug resistant Gram-negative bacteria. Antibiotics (Basel). 2019;8(2): 37. doi: 10.3390/antibiotics8020037
    1. Islam MR, Sack DA, Holmgren J, Bardhan PK, Rabbani GH. The use of chlorpromazine in the treatment of cholera and other severe acute watery diarrheal diseases. Gastroenterol. 1982;82(6): 1335–1340. doi: 10.1016/0016-5085(82)90066-X
    1. Rabbani GH, Greenough WB 3rd, Holmgren J, Kirkwood B. Controlled trial of chlorpromazine as antisecretory agent in patients with cholera hydrated intravenously. Br Med J (Clin Res Ed). 1982;284(6326): 1361–1364. doi: 10.1136/bmj.284.6326.1361
    1. Rabbani GH, Butler T, Knight J, Sanyal SC, Alam K. Randomized controlled trial of berberine sulfate therapy for diarrhea due to enterotoxigenic Escherichia coli and Vibrio cholerae. J Infect Dis. 1987;155(5): 979–984. doi: 10.1093/infdis/155.5.979
    1. Khin-Maung-U, Myo-Khin, Nyunt-Nyunt-Wai, Aye-Kyaw, Tin-U. Clinical trial of berberine in acute watery diarrhoea. Br Med J (Clin Res Ed). 1985;291(6509): 1601–1605. doi: 10.1136/bmj.291.6509.1601
    1. Alam NH, Ashraf H, Khan WA, Karim MM, Fuchs GJ. Efficacy and tolerability of racecadotril in the treatment of cholera in adults: a double blind, randomised, controlled clinical trial. Gut. 2003;52(10): 1419–1423. doi: 10.1136/gut.52.10.1419
    1. Bardhan PK, Khan WA, Salam A, Saha D, Golman D, Harris MS, Chaturvedi P. Safety and efficacy of a novel anti-secretory anti-diarrheal agent crofelemer (NP-303), in the treatment of adult acute infectious diarrhea and cholera, with or without the use of antibiotics. Proceedings of the US–Japan Cooperative Medical Sciences Program: 13th International Conference on Emerging Infectious Diseases (EID) in the Pacific Rim–Focused on Enteric Diseases, April 6–9, 2009; Kolkata, India.
    1. Su-Ting TL, Grossman DC, Cummings P. Loperamide therapy for acute diarrhea in children: systematic review and meta-analysis. PLOS Med. 2007;4(3): e98. doi: 10.1371/journal.pmed.0040098
    1. de Hostos EL, Choy RKM, Nguyen T. Developing novel antisecretory drugs to treat infectious diarrhea. Fut Med Chem. 2011;3(10): 1317–1325. doi: 10.4155/fmc.11.87
    1. Schwertschlag U, Kumar A, Kochhar S, Ings R, Ji Y, de Hostos EL, et al.. Pharmacokinetics and tolerability of iOWH032, an inhibitor of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, in normal volunteers and cholera patients. Gastroenterol. 2014;146(5): S-633. doi: 10.1016/S0016-5085(14)62292-7
    1. Shirley D-A, McArthur MA. The utility of human challenge studies in vaccine development: lessons learned from cholera. Vaccine (Auckl). 2011;2011(1): 3–13. doi: 10.2147/VDT.S23634
    1. Chen WH, Cohen MB, Kirkpatrick BD, Bracy RC, Galloway D, Gurwith M, et al.. Single-dose live oral cholera vaccine CVD 103-HgR protects against human experimental infection with Vibrio cholerae O1 El Tor. Clin Infect Dis. 2016;62(11): 1329–1335. doi: 10.1093/cid/ciw145
    1. Levine MM, Nalin DR, Craig JP, Hoover D, Bergquist EJ, Waterman D, et al.. Immunity of cholera in man: relative role of antibacterial versus antitoxic immunity. Trans R Soc Trop Med Hyg. 1979;73(1): 3–9. doi: 10.1016/0035-9203(79)90119-6
    1. Molla A, Molla AM, Sarker SA, Khatun M. Whole-gut transit time and its relationship to absorption of macronutrients during diarrhoea and after recovery. Scand J Gastroenterol. 1983;18(4): 537–543. doi: 10.3109/00365528309181634
    1. Jin BJ, Thiagarajah JR, Verkman AS. Convective washout reduces the antidiarrheal efficacy of enterocyte surface-targeted antisecretory drugs. J Gen Physiol. 2013;141(2): 261–272. doi: 10.1085/jgp.201210885
    1. Maponga BA, Chirundu D, Gombe NT, Tshimanga M, Bangure D, Takundwa L. Cholera: a comparison of the 2008–9 and 2010 outbreaks in Kadoma City, Zimbabwe. Pan Afr Med J. 2015;20: 221. doi: 10.11604/pamj.2015.20.221.5197
    1. Yakum MN, Ateudjieu J, Guenou E, Walter EA, Ram M, Debes AK, et al.. Health seeking behaviour among suspected cases of cholera in Cameroonian health districts in Lake Chad Basin. BMC Res Notes. 2017; 10. Article No. 433. doi: 10.1186/s13104-017-2756-9
    1. Eberlin M, Chen M, Mueck T, Däbritz J. Racecadotril in the treatment of acute diarrhea in children: a systematic, comprehensive review and meta-analysis of randomized controlled trials. BMC Pediatr. 2018;18. Article No. 124. doi: 10.1186/s12887-018-1095-x
    1. Cui G, Khazanov N, Stauffer BB, Infield DT, Imhoff BR, Senderowitz H, McCarty NA. Potentiators exert distinct effects on human, murine, and Xenopus CFTR. Am J Physiol Lung Cell Mol Physiol. 2016;311(2): L192–L20. doi: 10.1152/ajplung.00056.2016
    1. Lopes-Pacheco M, Pedemonte N, Veit G. Discovery of CFTR modulators for the treatment of cystic fibrosis. Expert Opin Drug Discov. 2021. doi: 10.1080/17460441.2021.1912732
    1. Brand JD, Lazrak A, Trombley JE, Shei R-J, Adewale AT, Tipper JL, et al.. Influenza-mediated reduction of lung epithelial ion channel activity leads to dysregulated pulmonary fluid homeostasis. JCI Insight. 2018;3(20): e123467. doi: 10.1172/jci.insight.123467
    1. Lidington D, Bolz S-S. A scientific rationale for using cystic fibrosis transmembrane conductance regulator therapeutics in COVID-19 patients. Front Physiol. 2020;11: 583862. doi: 10.3389/fphys.2020.583862

Source: PubMed

3
Subskrybuj