The role of adenosinergic pathway in human autoimmune diseases

Ke Dong, Zhao-Wei Gao, Hui-Zhong Zhang, Ke Dong, Zhao-Wei Gao, Hui-Zhong Zhang

Abstract

Autoimmune diseases are characterized by the abnormal immune response against self-tissue, which are caused by the failure of nature immune homeostasis. Nature immune homeostasis represents the normal state of appropriate immune response to nonself-antigen and unresponsiveness to self-antigens. In normal situation, immune homeostasis is regulated by immunosuppressive signal and immunostimulating signal together. Accumulating data have demonstrated that the adenosinergic pathway played key roles in immune suppression and shield body from an excessive inflammatory response. The deficiency of adenosinergic pathway results in the imbalance between the pro- and anti-inflammatory activities. Thus, researchers pay much attention to the role of adenosinergic pathway in autoimmune diseases development. To date, accumulating data have suggested an important role of adenosinergic pathway-related molecules (i.e., CD39, CD73, ADA, adenosine receptors, etc.) in many types of human autoimmune diseases. More importantly, these findings have presented potential value of adenosinergic pathway analysis to be used for autoimmune diseases diagnosis, monitoring and treatment. In this review, we will provide a comprehensive description of the role of adenosinergic pathway in human autoimmune diseases.

Keywords: Adenosine receptor; Adenosinergic pathway; Autoimmune diseases; Immunosuppression.

Conflict of interest statement

Compliance with ethical standard Conflict of Interests The authors declare that there is no conflict of interests regarding the publication of this paper.

Figures

Fig. 1
Fig. 1
Adenosine pathway mediates immune suppression. A scheme illustrates the generation of adenosine and the adenosine receptor signaling pathway that mediates immune suppression. Adenosine is generated from degradation of ATP by CD39 & CD73. The adenosine pathway mediates the immune suppression by regulating the function of immune cells, such as T cells, dendritic cells and macrophages

References

    1. Margo CE, Harman LE. Autoimmune disease: conceptual history and contributions of ocular immunology. Surv Ophthalmol. 2016
    1. Liebman HA. Immune modulation for autoimmune disorders: evolution of therapeutics. Semin Hematol. 2016;53(Suppl 1):S23–S26. doi: 10.1053/j.seminhematol.2016.04.008.
    1. Hasko G, Linden J, Cronstein B, Pacher P. Adenosine receptors: therapeutic aspects for inflammatory and immune diseases. Nat Rev Drug Discovery. 2008;7(9):759–770. doi: 10.1038/nrd2638.
    1. Hasko G, Cronstein BN. Adenosine: an endogenous regulator of innate immunity. Trends Immunol. 2004;25(1):33–39. doi: 10.1016/j.it.2003.11.003.
    1. Wang D, Huang S, Yuan X, Liang J, Xu R, Yao G, et al. The regulation of the Treg/Th17 balance by mesenchymal stem cells in human systemic lupus erythematosus. Cell Mol Immunol. 2015
    1. Ohl K, Tenbrock K. Regulatory T cells in systemic lupus erythematosus. Eur J Immunol. 2015;45(2):344–355. doi: 10.1002/eji.201344280.
    1. Alunno A, Bartoloni E, Bistoni O, Nocentini G, Ronchetti S, Caterbi S, et al. Balance between regulatory T and Th17 cells in systemic lupus erythematosus: the old and the new. Clin Dev Immunol. 2012;2012:823085. doi: 10.1155/2012/823085.
    1. Yang J, Yang X, Zou H, Chu Y, Li M. Recovery of the immune balance between Th17 and regulatory T cells as a treatment for systemic lupus erythematosus. Rheumatology (Oxford, England) 2011;50(8):1366–1372. doi: 10.1093/rheumatology/ker116.
    1. Yang J, Chu Y, Yang X, Gao D, Zhu L, Yang X, et al. Th17 and natural Treg cell population dynamics in systemic lupus erythematosus. Arthritis Rheum. 2009;60(5):1472–1483. doi: 10.1002/art.24499.
    1. Martin JC, Baeten DL, Josien R. Emerging role of IL-17 and Th17 cells in systemic lupus erythematosus. Clin Immunol (Orlando, Fla) 2014;154(1):1–12. doi: 10.1016/j.clim.2014.05.004.
    1. Valencia X, Yarboro C, Illei G, Lipsky PE. Deficient CD4 + CD25high T regulatory cell function in patients with active systemic lupus erythematosus. J Immunol (Baltimore, Md: 1950) 2007;178(4):2579–2588. doi: 10.4049/jimmunol.178.4.2579.
    1. Vincent FB, Northcott M, Hoi A, Mackay F, Morand EF. Clinical associations of serum interleukin-17 in systemic lupus erythematosus. Arthritis Res Ther. 2013;15(4):R97. doi: 10.1186/ar4277.
    1. Roeleveld DM, Koenders MI. The role of the Th17 cytokines IL-17 and IL-22 in Rheumatoid Arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine. 2015;74(1):101–107. doi: 10.1016/j.cyto.2014.10.006.
    1. Gaffen SL. The role of interleukin-17 in the pathogenesis of rheumatoid arthritis. Curr Rheumatol Rep. 2009;11(5):365–370. doi: 10.1007/s11926-009-0052-y.
    1. Chen R, Tao Y, Qiu K, Huang W, Huang C, Li J. [Association of circulating Treg cells with disease activity in patients with rheumatoid arthritis] Nan fang yi ke da xue xue bao = J South Med Univ. 2012;32(6):886–889.
    1. Cabrera SM, Rigby MR, Mirmira RG. Targeting regulatory T cells in the treatment of type 1 diabetes mellitus. Curr Mol Med. 2012;12(10):1261–1272. doi: 10.2174/156652412803833634.
    1. Antonioli L, Pacher P, Vizi ES, Hasko G. CD39 and CD73 in immunity and inflammation. Trends Mol Med. 2013;19(6):355–367. doi: 10.1016/j.molmed.2013.03.005.
    1. Nguyen MD, Ross AE, Ryals M, Lee ST, Venton BJ. Clearance of rapid adenosine release is regulated by nucleoside transporters and metabolism. Pharmacol Res Perspect. 2015;3(6):e00189. doi: 10.1002/prp2.189.
    1. Antonioli L, Fornai M, Colucci R, Ghisu N, Tuccori M, Del Tacca M, et al. Regulation of enteric functions by adenosine: pathophysiological and pharmacological implications. Pharmacol Ther. 2008;120(3):233–253. doi: 10.1016/j.pharmthera.2008.08.010.
    1. Romio M, Reinbeck B, Bongardt S, Huls S, Burghoff S, Schrader J. Extracellular purine metabolism and signaling of CD73-derived adenosine in murine Treg and Teff cells. Am J Physiol Cell Physiol. 2011;301(2):C530–C539. doi: 10.1152/ajpcell.00385.2010.
    1. Smyth LA, Ratnasothy K, Tsang JY, Boardman D, Warley A, Lechler R, et al. CD73 expression on extracellular vesicles derived from CD4 + CD25 + Foxp3 + T cells contributes to their regulatory function. Eur J Immunol. 2013;43(9):2430–2440. doi: 10.1002/eji.201242909.
    1. Ohta A, Kini R, Ohta A, Subramanian M, Madasu M, Sitkovsky M. The development and immunosuppressive functions of CD4(+) CD25(+) FoxP3(+) regulatory T cells are under influence of the adenosine-A2A adenosine receptor pathway. Front Immunol. 2012;3:190. doi: 10.3389/fimmu.2012.00190.
    1. Hasko G, Pacher P. Regulation of macrophage function by adenosine. Arterioscler Thromb Vasc Biol. 2012;32(4):865–869. doi: 10.1161/ATVBAHA.111.226852.
    1. Liu C, Shang Q, Bai Y, Guo C, Zhu F, Zhang L, et al. Adenosine A2A receptor, a potential valuable target for controlling reoxygenated DCs-triggered inflammation. Mol Immunol. 2015;63(2):559–565. doi: 10.1016/j.molimm.2014.10.012.
    1. Chrobak P, Charlebois R, Rejtar P, El Bikai R, Allard B, Stagg J. CD73 plays a protective role in collagen-induced arthritis. J Immunol (Baltimore, Md: 1950) 2015;194(6):2487–2492. doi: 10.4049/jimmunol.1401416.
    1. Peres RS, Liew FY, Talbot J, Carregaro V, Oliveira RD, Almeida SL, et al. Low expression of CD39 on regulatory T cells as a biomarker for resistance to methotrexate therapy in rheumatoid arthritis. Proc Natl Acad Sci USA. 2015;112(8):2509–2514. doi: 10.1073/pnas.1424792112.
    1. Vinapamula KS, Pemmaraju SV, Bhattaram SK, Bitla AR, Manohar SM. Serum adenosine deaminase as inflammatory marker in rheumatoid arthritis. J Clin Diagn Res JCDR. 2015;9(9):Bc08–10.
    1. Dolff S, Bijl M, Huitema MG, Limburg PC, Kallenberg CG, Abdulahad WH. Disturbed Th1, Th2, Th17 and T(reg) balance in patients with systemic lupus erythematosus. Clin Immunol (Orlando, Fla) 2011;141(2):197–204. doi: 10.1016/j.clim.2011.08.005.
    1. Li DM, Li XP, Li XM, Wang GS, Ma Y, Zhao SS, et al. Expression of FOXP3 in CD4 + CD39 + T cells of patients with systemic lupus erythematosus and dynamic observation of treatment with glucocorticoid. Zhonghua yi xue za zhi. 2009;89(23):1636–1638.
    1. Li DM, Li XP, Zhang JH, Hu SR, Xiao B, Chen W, et al. The expression of CD73 in CD4 + regulatory T cells in patients with new-onset systemic lupus erythematosus. Zhonghua nei ke za zhi. 2010;49(9):772–775.
    1. Saghiri R, Ghashghai N, Movaseghi S, Poursharifi P, Jalilfar S, Bidhendi MA, et al. Serum adenosine deaminase activity in patients with systemic lupus erythematosus: a study based on ADA1 and ADA2 isoenzymes pattern. Rheumatol Int. 2012;32(6):1633–1638. doi: 10.1007/s00296-011-1836-8.
    1. Zhang L, Yang N, Wang S, Huang B, Li F, Tan H, et al. Adenosine 2A receptor is protective against renal injury in MRL/lpr mice. Lupus. 2011;20(7):667–677. doi: 10.1177/0961203310393262.
    1. Antonioli L, Blandizzi C, Csoka B, Pacher P, Hasko G. Adenosine signalling in diabetes mellitus–pathophysiology and therapeutic considerations. Nat Rev Endocrinol. 2015;11(4):228–241. doi: 10.1038/nrendo.2015.10.
    1. Andersson O. Role of adenosine signalling and metabolism in beta-cell regeneration. Exp Cell Res. 2014;321(1):3–10. doi: 10.1016/j.yexcr.2013.11.019.
    1. Nemeth ZH, Bleich D, Csoka B, Pacher P, Mabley JG, Himer L, et al. Adenosine receptor activation ameliorates type 1 diabetes. FASEB J. 2007;21(10):2379–2388. doi: 10.1096/fj.07-8213com.
    1. Ohtani M, Oka T, Ohura K. Possible involvement of A(2)A and A(3) receptors in modulation of insulin secretion and beta-cell survival in mouse pancreatic islets. Gen Comp Endocrinol. 2013;187:86–94. doi: 10.1016/j.ygcen.2013.02.011.
    1. Tai N, Wong FS, Wen L. TLR9 deficiency promotes CD73 expression in T cells and diabetes protection in nonobese diabetic mice. J Immunol (Baltimore, Md: 1950) 2013;191(6):2926–2937. doi: 10.4049/jimmunol.1300547.
    1. Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, et al. CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 2008;105(27):9325–9330. doi: 10.1073/pnas.0711175105.
    1. Wei W, Du C, Lv J, Zhao G, Li Z, Wu Z, et al. Blocking A2B adenosine receptor alleviates pathogenesis of experimental autoimmune encephalomyelitis via inhibition of IL-6 production and Th17 differentiation. J Immunol (Baltimore, Md: 1950) 2013;190(1):138–146. doi: 10.4049/jimmunol.1103721.
    1. Johnston JB, Silva C, Gonzalez G, Holden J, Warren KG, Metz LM, et al. Diminished adenosine A1 receptor expression on macrophages in brain and blood of patients with multiple sclerosis. Ann neurol. 2001;49(5):650–658. doi: 10.1002/ana.1007.
    1. Tsutsui S, Schnermann J, Noorbakhsh F, Henry S, Yong VW, Winston BW, et al. A1 adenosine receptor upregulation and activation attenuates neuroinflammation and demyelination in a model of multiple sclerosis. J Neuro sci off J Soc Neurosci. 2004;24(6):1521–1529. doi: 10.1523/JNEUROSCI.4271-03.2004.
    1. Link H, Xiao BG. Rat models as tool to develop new immunotherapies. Immunol Rev. 2001;184:117–128. doi: 10.1034/j.1600-065x.2001.1840111.x.
    1. Chiba S, Matsumoto H, Motoi Y, Miyano N, Kashiwagi M. High serum adenosine deaminase activity and its correlation with lymphocyte subsets in myasthenia gravis. J Neurol Sci. 1990;100(1–2):174–177. doi: 10.1016/0022-510X(90)90030-Q.
    1. Oliveira L, Correia A. Deficits in endogenous adenosine formation by ecto-5′-nucleotidase/CD73 impair neuromuscular transmission and immune competence in experimental autoimmune myasthenia gravis. Mediators Inflamm. 2015;2015:460610. doi:10.1155/2015/460610.
    1. Li N, Mu L, Wang J, Zhang J, Xie X, Kong Q, et al. Activation of the adenosine A2A receptor attenuates experimental autoimmune myasthenia gravis severity. Eur J Immunol. 2012;42(5):1140–1151. doi: 10.1002/eji.201142088.
    1. Li N, Wang G, Yao X, Kong Q, Shang X, Xie X, et al. Adenosine receptor expression in a rat model of experimental autoimmune myasthenia gravis. Cell Immunol. 2014;290(2):217–225. doi: 10.1016/j.cellimm.2014.07.005.
    1. Grant CR, Liberal R, Holder BS, Cardone J, Ma Y, Robson SC, et al. Dysfunctional CD39(POS) regulatory T cells and aberrant control of T-helper type 17 cells in autoimmune hepatitis. Hepatology (Baltimore, MD) 2014;59(3):1007–1015. doi: 10.1002/hep.26583.
    1. Liberal R, Grant CR, Ma Y, Csizmadia E, Jiang ZG, Heneghan MA, et al. CD39 mediated regulation of Th17-cell effector function is impaired in juvenile autoimmune liver disease. J Autoimmun. 2016
    1. Botta Gordon-Smith S, Ursu S, Eaton S, Moncrieffe H, Wedderburn LR. Correlation of low CD73 expression on synovial lymphocytes with reduced adenosine generation and higher disease severity in juvenile idiopathic arthritis. Arthritis Rheumatol (Hoboken, NJ) 2015;67(2):545–554. doi: 10.1002/art.38959.
    1. Liang D, Zuo A, Zhao R, Shao H, Born WK, O’Brien RL, et al. CD73 expressed on gammadelta T cells shapes their regulatory effect in experimental autoimmune uveitis. PLoS ONE. 2016;11(2):e0150078. doi: 10.1371/journal.pone.0150078.
    1. Bar-Yehuda S, Luger D, Ochaion A, Cohen S, Patokaa R, Zozulya G, et al. Inhibition of experimental auto-immune uveitis by the A3 adenosine receptor agonist CF101. Int J Mol Med. 2011;28(5):727–731.
    1. Chen M, Liang D, Zuo A, Shao H, Kaplan HJ, Sun D. An A2B adenosine receptor agonist promotes Th17 autoimmune responses in experimental autoimmune uveitis (EAU) via dendritic cell activation. PLoS ONE. 2015;10(7):e0132348. doi: 10.1371/journal.pone.0132348.
    1. Yip L, Taylor C, Whiting CC, Fathman CG. Diminished adenosine A1 receptor expression in pancreatic alpha-cells may contribute to the pathology of type 1 diabetes. Diabetes. 2013;62(12):4208–4219. doi: 10.2337/db13-0614.
    1. Chiba S, Saitoh M, Kashiwagi M, Kobayashi N, Matsumoto H. Isozyme analysis of the high serum adenosine deaminase activity in patients with myasthenia gravis. Intern Med (Tokyo, Japan) 1995;34(2):81–84. doi: 10.2169/internalmedicine.34.81.
    1. Chouker A, Thiel M, Lukashev D, Ward JM, Kaufmann I, Apasov S, et al. Critical role of hypoxia and A2A adenosine receptors in liver tissue-protecting physiological anti-inflammatory pathway. Mol Med (Cambridge, Mass) 2008;14(3–4):116–123.
    1. Fishman P, Cohen S. The A3 adenosine receptor (A3AR): therapeutic target and predictive biological marker in rheumatoid arthritis. Clin Rheumatol. 2016;35(9):2359–2362. doi: 10.1007/s10067-016-3202-4.
    1. Silverman MH, Strand V, Markovits D, Nahir M, Reitblat T, Molad Y, et al. Clinical evidence for utilization of the A3 adenosine receptor as a target to treat rheumatoid arthritis: data from a phase II clinical trial. J Rheumatol. 2008;35(1):41–48.

Source: PubMed

3
Subskrybuj