Towards Real-Time Prediction of Freezing of Gait in Patients With Parkinson's Disease: Addressing the Class Imbalance Problem

Nader Naghavi, Aaron Miller, Eric Wade, Nader Naghavi, Aaron Miller, Eric Wade

Abstract

Freezing of gait (FoG) is a common motor symptom in patients with Parkinson's disease (PD). FoG impairs gait initiation and walking and increases fall risk. Intelligent external cueing systems implementing FoG detection algorithms have been developed to help patients recover gait after freezing. However, predicting FoG before its occurrence enables preemptive cueing and may prevent FoG. Such prediction remains challenging given the relative infrequency of freezing compared to non-freezing events. In this study, we investigated the ability of individual and ensemble classifiers to predict FoG. We also studied the effect of the ADAptive SYNthetic (ADASYN) sampling algorithm and classification cost on classifier performance. Eighteen PD patients performed a series of daily walking tasks wearing accelerometers on their ankles, with nine experiencing FoG. The ensemble classifier formed by Support Vector Machines, K-Nearest Neighbors, and Multi-Layer Perceptron using bagging techniques demonstrated highest performance (F1 = 90.7) when synthetic FoG samples were added to the training set and class cost was set as twice that of normal gait. The model identified 97.4% of the events, with 66.7% being predicted. This study demonstrates our algorithm's potential for accurate prediction of gait events and the provision of preventive cueing in spite of limited event frequency.

Keywords: ADASYN; Parkinson’s disease; cost of classification; data synthesis; ensemble classifier; freezing of gait; wearable sensors.

Conflict of interest statement

The authors declare no conflict of interest. The funding agency had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Figures

Figure 1
Figure 1
Experiment layout. Number of obstacles in the object area varied between 0, 1 and 2. The width of walking path in the object area (w) varied between 150% and 100% of shoulder width of participants.
Figure 2
Figure 2
The process of creating samples from acceleration signals. (a) Extracting features from six successive windows at time t = T (left) and the next time step, t = T+1 (right). Red highlighted area shows FoG labeled period using recorded videos, green boxes show length of windows used to extract features from acceleration signal; (b) Combining arrays of features from different combinations of sensor-axis.
Figure 3
Figure 3
Performance measures of classifiers for patient-dependent models using synthetic data and cost of misclassification.
Figure 4
Figure 4
Performance measures of classifiers for patient-independent models using synthetic data and cost of misclassification.
Figure 5
Figure 5
Acceleration signal collected from the right ankle sensor and the corresponding labeled and detected events using of ClsfBagging with β=0.2 and CFoG=2.
Figure 6
Figure 6
Average FoG detection latency of ClsfBagging in patient-dependent models with β=0.2 and CFoG=2. Negative values of time represent duration before FoG onset.

References

    1. Boonstra T.A., Van Der Kooij H., Munneke M., Bloem B.R. Gait disorders and balance disturbances in Parkinson’s disease: clinical update and pathophysiology. Curr. Opin. Neurol. 2008;21:461–471. doi: 10.1097/WCO.0b013e328305bdaf.
    1. Muslimović D., Post B., Speelman J.D., Schmand B., de Haan R.J. Determinants of disability and quality of life in mild to moderate Parkinson disease. Neurology. 2008;70:2241–2247. doi: 10.1212/01.wnl.0000313835.33830.80.
    1. DeMaagd G., Philip A. Parkinson’s Disease and Its Management: Part 1: Disease Entity, Risk Factors, Pathophysiology, Clinical Presentation, and Diagnosis. Pharm. Ther. 2015;40:504–532.
    1. Nazifi M.M., Yoon H.U., Beschorner K., Hur P. Shared and task-specific muscle synergies during normal walking and slipping. Front. Hum. Neurosci. 2017;11:40. doi: 10.3389/fnhum.2017.00040.
    1. Nevisipour M., Grabiner M.D., Honeycutt C.F. A single session of trip-specific training modifies trunk control following treadmill induced balance perturbations in stroke survivors. Gait Posture. 2019;70:222–228. doi: 10.1016/j.gaitpost.2019.03.002.
    1. Elkouzi A., Bit-Ivan E.N., Elble R.J. Pure akinesia with gait freezing: A clinicopathologic study. J. Clin. Mov. Disord. 2017;4:15. doi: 10.1186/s40734-017-0063-1.
    1. Nutt J.G., Bloem B.R., Giladi N., Hallett M., Horak F.B., Nieuwboer A. Freezing of gait: Moving forward on a mysterious clinical phenomenon. Lancet Neurol. 2011;10:734–744. doi: 10.1016/S1474-4422(11)70143-0.
    1. Ehgoetz Martens K.A., Ellard C.G., Almeida Q.J. Does Anxiety Cause Freezing of Gait in Parkinson’s Disease. PLoS ONE. 2014;9:e106561. doi: 10.1371/journal.pone.0106561.
    1. Spildooren J., Vercruysse S., Desloovere K., Vandenberghe W., Kerckhofs E., Nieuwboer A. Freezing of gait in Parkinson’s disease: The impact of dual-tasking and turning. Mov. Disord. 2010;25:2563–2570. doi: 10.1002/mds.23327.
    1. Mancini M., Bloem B.R., Horak F.B., Lewis S.J., Nieuwboer A., Nonnekes J. Clinical and methodological challenges for assessing freezing of gait: Future perspectives. Mov. Disord. 2019;34:783–790. doi: 10.1002/mds.27709.
    1. Peterson D.S., King L.A., Cohen R.G., Horak F.B. Cognitive contributions to freezing of gait in Parkinson disease: implications for physical rehabilitation. Phys. Ther. 2016;96:659–670. doi: 10.2522/ptj.20140603.
    1. Nieuwboer A., de Weerdt W., Dom R., Lesaffre E. A frequency and correlation analysis of motor deficits in Parkinson patients. Disabil. Rehabil. 1998;20:142–150. doi: 10.3109/09638289809166074.
    1. Ehgoetz Martens K.A., Pieruccini-Faria F., Almeida Q.J. Could Sensory Mechanisms Be a Core Factor That Underlies Freezing of Gait in Parkinson’s Disease? PLoS ONE. 2013;8:e62602. doi: 10.1371/journal.pone.0062602.
    1. Ahn S., Chen Y., Bredow T., Cheung C., Yu F. Effects of Non-Pharmacological Treatments on Quality of Life in Parkinson’s Disease: A Review. J. Park. Dis. Alzheimer Dis. 2017;4 doi: 10.1093/geroni/igx004.1184.
    1. Giladi N. Medical treatment of freezing of gait. Mov. Disord. 2008;23:S482–S488. doi: 10.1002/mds.21914.
    1. Huang C., Chu H., Zhang Y., Wang X. Deep Brain Stimulation to Alleviate Freezing of Gait and Cognitive Dysfunction in Parkinson’s Disease: Update on Current Research and Future Perspectives. Front. Neurosci. 2018;12:29. doi: 10.3389/fnins.2018.00029.
    1. Xie T., Vigil J., MacCracken E., Gasparaitis A., Young J., Kang W., Bernard J., Warnke P., Kang U.J. Low-frequency stimulation of STN-DBS reduces aspiration and freezing of gait in patients with PD. Neurology. 2015;84:415–420. doi: 10.1212/WNL.0000000000001184.
    1. Fitts P.M., Posner M.I. Learning and Skilled Performance in Human Performance. Brock-Cole; Belmont, CA, USA: 1967.
    1. Ginis P., Nackaerts E., Nieuwboer A., Heremans E. Cueing for people with Parkinson’s disease with freezing of gait: A narrative review of the state-of-the-art and novel perspectives. Ann. Phys. Rehabil. Med. 2018;61:407–413. doi: 10.1016/j.rehab.2017.08.002.
    1. Peterson D.S., Smulders K. Cues and Attention in Parkinsonian Gait: Potential Mechanisms and Future Directions. Front. Neurol. 2015;6:255. doi: 10.3389/fneur.2015.00255.
    1. Ghai S., Ghai I., Schmitz G., Effenberg A.O. Effect of rhythmic auditory cueing on parkinsonian gait: A systematic review and meta-analysis. Aging Dis. 2017;9:901–923. doi: 10.14336/AD.2017.1031.
    1. Lim I., van Wegen E., de Goede C., Deutekom M., Nieuwboer A., Willems A., Jones D., Rochester L., Kwakkel G. Effects of external rhythmical cueing on gait in patients with Parkinson’s disease: A systematic review. Clin. Rehabil. 2005;19:695–713. doi: 10.1191/0269215505cr906oa.
    1. Frazzitta G., Maestri R., Uccellini D., Bertotti G., Abelli P. Rehabilitation treatment of gait in patients with Parkinson’s disease with freezing: A comparison between two physical therapy protocols using visual and auditory cues with or without treadmill training. Mov. Disord. 2009;24:1139–1143. doi: 10.1002/mds.22491.
    1. Nieuwboer A., Kwakkel G., Rochester L., Jones D., Van Wegen E., Willems A.M., Chavret F., Hetherington V., Baker K., Lim I. Cueing training in the home improves gait-related mobility in Parkinson’s disease: The RESCUE trial. J. Neurol. Neurosurg. Psychiatry. 2007;78:134–140. doi: 10.1136/jnnp.200X.097923.
    1. Kadivar Z., Corcos D.M., Foto J., Hondzinski J.M. Effect of Step Training and Rhythmic Auditory Stimulation on Functional Performance in Parkinson Patients. Neurorehabilit. Neural Repair. 2011;25:626–635. doi: 10.1177/1545968311401627.
    1. Cubo E., Leurgans S., Goetz C.G. Short-term and practice effects of metronome pacing in Parkinson’s disease patients with gait freezing while in the ‘on’ state: randomized single blind evaluation. Park. Relat. Disord. 2004;10:507–510. doi: 10.1016/j.parkreldis.2004.05.001.
    1. Mazilu S., Calatroni A., Gazit E., Mirelman A., Hausdorff J.M., Tröster G. Prediction of Freezing of Gait in Parkinson’s From Physiological Wearables: An Exploratory Study. IEEE J. Biomed. Health Inf. 2015;19:1843–1854. doi: 10.1109/JBHI.2015.2465134.
    1. Nieuwboer A., Dom R., De Weerdt W., Desloovere K., Janssens L., Stijn V. Electromyographic profiles of gait prior to onset of freezing episodes in patients with Parkinson’s disease. Brain. 2004;127:1650–1660. doi: 10.1093/brain/awh189.
    1. Cole B.T., Roy S.H., Nawab S.H. Detecting freezing-of-gait during unscripted and unconstrained activity; Proceedings of the 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society; Boston, MA, USA. 30 August–3 September 2011; pp. 5649–5652.
    1. Koh S.B., Park K.W., Lee D.H., Kim S.J., Yoon J.S. Gait Analysis in Patients With Parkinson’s Disease: Relationship to Clinical Features and Freezing. J. Mov. Disord. 2008;1:59–64. doi: 10.14802/jmd.08011.
    1. Delval A., Snijders A.H., Weerdesteyn V., Duysens J.E., Defebvre L., Giladi N., Bloem B.R. Objective detection of subtle freezing of gait episodes in Parkinson’s disease. Mov. Disord. 2010;25:1684–1693. doi: 10.1002/mds.23159.
    1. Plotnik M., Giladi N., Balash Y., Peretz C., Hausdorff J.M. Is freezing of gait in Parkinson’s disease related to asymmetric motor function? Ann. Neurol. 2005;57:656–663. doi: 10.1002/ana.20452.
    1. Hausdorff J.M., Schaafsma J.D., Balash Y., Bartels A.L., Gurevich T., Giladi N. Impaired regulation of stride variability in Parkinson’s disease subjects with freezing of gait. Exp. Brain Res. 2003;149:187–194. doi: 10.1007/s00221-002-1354-8.
    1. Moore S.T., MacDougall H.G., Ondo W.G. Ambulatory monitoring of freezing of gait in Parkinson’s disease. J. Neurosci. Methods. 2008;167:340–348. doi: 10.1016/j.jneumeth.2007.08.023.
    1. Tripoliti E.E., Tzallas A.T., Tsipouras M.G., Rigas G., Bougia P., Leontiou M., Konitsiotis S., Chondrogiorgi M., Tsouli S., Fotiadis D.I. Automatic detection of freezing of gait events in patients with Parkinson’s disease. Comput. Methods Programs Biomed. 2013;110:12–26. doi: 10.1016/j.cmpb.2012.10.016.
    1. Tahafchi P., Molina R., Roper J.A., Sowalsky K., Hass C.J., Gunduz A., Okun M.S., Judy J.W. Freezing-of-Gait detection using temporal, spatial, and physiological features with a support-vector-machine classifier; Proceedings of the 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC); Jeju Island, Korea. 11–15 July 2017; pp. 2867–2870.
    1. Mazilu S., Hardegger M., Zhu Z., Roggen D., Troester G., Plotnik M., Hausdorff J. Online Detection of Freezing of Gait with Smartphones and Machine Learning Techniques; Proceedings of the 6th International Conference on Pervasive Computing Technologies for Healthcare; San Diego, CA, USA. 21–24 May 2012;
    1. Camps J., Samà A., Martín M., Rodríguez-Martín D., Pérez-López C., Arostegui J.M.M., Cabestany J., Català A., Alcaine S., Mestre B., et al. Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit. Knowl.-Based Syst. 2018;139:119–131. doi: 10.1016/j.knosys.2017.10.017.
    1. Xia Y., Zhang J., Ye Q., Cheng N., Lu Y., Zhang D. Evaluation of deep convolutional neural networks for detection of freezing of gait in Parkinson’s disease patients. Biomed. Signal Process. Control. 2018;46:221–230. doi: 10.1016/j.bspc.2018.07.015.
    1. Palmerini L., Rocchi L., Mazilu S., Gazit E., Hausdorff J.M., Chiari L. Identification of characteristic motor patterns preceding freezing of gait in Parkinson’s disease using wearable sensors. Front. Neurol. 2017;8:394. doi: 10.3389/fneur.2017.00394.
    1. Torvi V.G., Bhattacharya A., Chakraborty S. Deep Domain Adaptation to Predict Freezing of Gait in Patients with Parkinson’s Disease; Proceedings of the 2018 17th IEEE International Conference on Machine Learning and Applications (ICMLA); Orlando, FL, USA. 17–20 December 2018; pp. 1001–1006.
    1. Galar M., Fernandez A., Barrenechea E., Bustince H., Herrera F. A Review on Ensembles for the Class Imbalance Problem: Bagging-, Boosting-, and Hybrid-Based Approaches. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 2012;42:463–484. doi: 10.1109/TSMCC.2011.2161285.
    1. He H., Bai Y., Garcia E.A., Li S. ADASYN: Adaptive synthetic sampling approach for imbalanced learning; Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IEEEWorld Congress on Computational Intelligence); Hong Kong, China. 1–8 June 2008; pp. 1322–1328.
    1. Kotsiantis S., Kanellopoulos D., Pintelas P. Handling imbalanced datasets: A review. Gests Int. Trans. Comput. Sci. Eng. 2006;30:25–36.
    1. Schaafsma J.D., Balash Y., Gurevich T., Bartels A.L., Hausdorff J.M., Giladi N. Characterization of freezing of gait subtypes and the response of each to levodopa in Parkinson’s disease. Eur. J. Neurol. 2003;10:391–398. doi: 10.1046/j.1468-1331.2003.00611.x.
    1. Naghavi N., Wade E. Prediction of Freezing of Gait in Parkinson’s Disease Using Statistical Inference and Lower–Limb Acceleration Data. IEEE Trans. Neural Syst. Rehabil. Eng. 2019;27:947–955. doi: 10.1109/TNSRE.2019.2910165.
    1. Tochigi Y., Segal N.A., Vaseenon T., Brown T.D. Entropy analysis of tri-axial leg acceleration signal waveforms for measurement of decrease of physiological variability in human gait. J. Orthop. Res. 2012;30:897–904. doi: 10.1002/jor.22022.
    1. Chawla N.V., Bowyer K.W., Hall L.O., Kegelmeyer W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002;16:321–357. doi: 10.1613/jair.953.
    1. He H., Garcia E.A. Learning from Imbalanced Data. IEEE Trans. Knowl. Data Eng. 2009;21:1263–1284. doi: 10.1109/TKDE.2008.239.
    1. Dietterich T.G. Multiple Classifier Systems. Springer; Berlin/Heidelberg, Germany: 2000. Ensemble Methods in Machine Learning; pp. 1–15.
    1. Topchy A., Jain A.K., Punch W. Clustering ensembles: models of consensus and weak partitions. IEEE Trans. Pattern Anal. Mach. Intell. 2005;27:1866–1881. doi: 10.1109/TPAMI.2005.237.
    1. Sarvari H., Domeniconi C., Stilo G. Graph-based Selective Outlier Ensembles; Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing; Limassol, Cyprus. 8–12 April 2019; pp. 518–525.
    1. Borhani S., Abiri R., Zhao X., Jiang Y. A Transfer Learning Approach towards Zero-Training BCI for EEG-Based Two Dimensional Cursor Control. Society for Neuroscience; Washington, DC, USA: 2017.

Source: PubMed

3
Subskrybuj