Impact of enterovirus and other enteric pathogens on oral polio and rotavirus vaccine performance in Bangladeshi infants

Mami Taniuchi, James A Platts-Mills, Sharmin Begum, Md Jashim Uddin, Shihab U Sobuz, Jie Liu, Beth D Kirkpatrick, E Ross Colgate, Marya P Carmolli, Dorothy M Dickson, Uma Nayak, Rashidul Haque, William A Petri Jr, Eric R Houpt, Mami Taniuchi, James A Platts-Mills, Sharmin Begum, Md Jashim Uddin, Shihab U Sobuz, Jie Liu, Beth D Kirkpatrick, E Ross Colgate, Marya P Carmolli, Dorothy M Dickson, Uma Nayak, Rashidul Haque, William A Petri Jr, Eric R Houpt

Abstract

Background: Oral polio vaccine (OPV) and rotavirus vaccine (RV) exhibit poorer performance in low-income settings compared to high-income settings. Prior studies have suggested an inhibitory effect of concurrent non-polio enterovirus (NPEV) infection, but the impact of other enteric infections has not been comprehensively evaluated.

Methods: In urban Bangladesh, we tested stools for a broad range of enteric viruses, bacteria, parasites, and fungi by quantitative PCR from infants at weeks 6 and 10 of life, coincident with the first OPV and RV administration respectively, and examined the association between enteropathogen quantity and subsequent OPV serum neutralizing titers, serum rotavirus IgA, and rotavirus diarrhea.

Results: Campylobacter and enterovirus (EV) quantity at the time of administration of the first dose of OPV was associated with lower OPV1-2 serum neutralizing titers, while enterovirus quantity was also associated with diminished rotavirus IgA (-0.08 change in log titer per tenfold increase in quantity; P=0.037), failure to seroconvert (OR 0.78, 95% CI: 0.64-0.96; P=0.022), and breakthrough rotavirus diarrhea (OR 1.34, 95% CI: 1.05-1.71; P=0.020) after adjusting for potential confounders. These associations were not observed for Sabin strain poliovirus quantity.

Conclusion: In this broad survey of enteropathogens and oral vaccine performance we find a particular association between EV carriage, particularly NPEV, and OPV immunogenicity and RV protection. Strategies to reduce EV infections may improve oral vaccine responses. ClinicalTrials.gov Identifier: NCT01375647.

Keywords: Enteric infections; Oral polio vaccine; PCR; Rotavirus vaccine; Vaccine efficacy; Vaccine immunogenicity.

Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

Figures

Supplementary Fig. 1
Supplementary Fig. 1
Association between EV burden and Rotarix efficacy. Density plots of fecal EV (A) and Sabin strain poliovirus (B) quantity at 10 weeks in children with (blue, n = 45) and without (red, n = 232) rotavirus-positive diarrhea between weeks 18 and 52. For each color, the area under the curve for any range of pathogen quantities represents the probability that the pathogen quantity falls in that range.
Fig. 1
Fig. 1
Prevalence of enteric infections detected by quantitative PCR in week 6 (n = 339) and 10 (n = 159) pre-vaccination stool specimens. Pre-vaccination stool specimens were collected at the time points indicated and assayed for enteropathogens by TAC. All tested helminths and M. tuberculosis were exceedingly rare (0–3%) and are not shown. All infections were tested by TAC except OPV; OPV prevalence is overlaid on enterovirus prevalence with light blue for week 6 and light red for week 10).
Fig. 2
Fig. 2
Association between EV quantity and serum neutralizing antibody titers to serotype P1, P2, and P3. Enterovirus-negative samples are jittered on the x-axis.

References

    1. Ogra P.L., Okayasu H., Czerkinsky C., Sutter R.W. Mucosal immunity to poliovirus. Expert Rev Vaccines. 2011;10(10):1389–1392.
    1. Serazin A.C., Shackelton L.A., Wilson C., Bhan M.K. Improving the performance of enteric vaccines in the developing world. Nat Immunol. 2010;11(9):769–773.
    1. Plotkin S.A., Lebrun A., Koprowski H. Vaccination with the CHAT strain of type 1 attenuated poliomyelitis virus in Leopoldville, Belgian Congo. 2. Studies of the safety and efficacy of vaccination. Bull World Health Organ. 1960;22:215–234.
    1. John T.J., Jayabal P. Oral polio vaccination of children in the tropics. I. The poor seroconversion rates and the absence of viral interference. Am J Epidemiol. 1972;96(4):263–269.
    1. Emperador D.M., Velasquez D.E., Estivariz C.F., Lopman B., Jiang B., Parashar U. Interference of monovalent, bivalent, and trivalent oral poliovirus vaccines on monovalent rotavirus vaccine immunogenicity in rural Bangladesh. Clin Infect Dis. 2015;62:150–156.
    1. Haque R., Snider C., Liu Y., Ma J.Z., Liu L., Nayak U. Oral polio vaccine response in breast fed infants with malnutrition and diarrhea. Vaccine. 2014;32(4):478–482.
    1. Maldonado Y.A., Pena-Cruz V., de la Luz Sanchez M., Logan L., Blandon S., Cantwell M.F. Host and viral factors affecting the decreased immunogenicity of Sabin type 3 vaccine after administration of trivalent oral polio vaccine to rural Mayan children. J Infect Dis. 1997;175(3):545–553.
    1. Patel M., Steele A.D., Parashar U.D. Influence of oral polio vaccines on performance of the monovalent and pentavalent rotavirus vaccines. Vaccine. 2012;30(Suppl. 1):A30–A35.
    1. Posey D.L., Linkins R.W., Oliveria M.J., Monteiro D., Patriarca P.A. The effect of diarrhea on oral poliovirus vaccine failure in Brazil. J Infect Dis. 1997;175(Suppl. 1):S258–S263.
    1. Triki H., Abdallah M.V., Ben Aissa R., Bouratbine A., Ben Ali Kacem M., Bouraoui S. Influence of host related factors on the antibody response to trivalent oral polio vaccine in Tunisian infants. Vaccine. 1997;15(10):1123–1129.
    1. Parker E.P., Kampmann B., Kang G., Grassly N.C. Influence of enteric infections on response to oral poliovirus vaccine: a systematic review and meta-analysis. J Infect Dis. 2014;210(6):853–864.
    1. Taniuchi M., Sobuz S.U., Begum S., Platts-Mills J.A., Liu J., Yang Z. Etiology of diarrhea in Bangladeshi infants in the first year of life analyzed using molecular methods. J Infect Dis. 2013;208(11):1794–1802.
    1. Liu J., Gratz J., Amour C., Kibiki G., Becker S., Janaki L. A laboratory-developed TaqMan Array Card for simultaneous detection of 19 enteropathogens. J Clin Microbiol. 2013;51(2):472–480.
    1. Liu J., Kabir F., Manneh J., Lertsethtakam P., Begum S., Gratz J. Development and assessment of molecular diagnostic tests for 15 enteropathogens causing childhood diarrhoea: a multicentre study. Lancet Infect Dis. 2014;14(8):716–724.
    1. Kirkpatrick B.D., Colgate E.R., Mychaleckyj J.C., Haque R., Dickson D.M., Carmolli M.P. The Performance of Rotavirus and Oral Polio Vaccines in Developing Countries (PROVIDE) study: description of methods of an interventional study designed to explore complex biologic problems. Am J Trop Med Hyg. 2015;92(4):744–751.
    1. WHO . 1997. Manual for the virological investigation of poliomyelitis.
    1. Azim T., Ahmad S.M., Sefat E.K., Sarkar M.S., Unicomb L.E., De S. Immune response of children who develop persistent diarrhea following rotavirus infection. Clin Diagn Lab Immunol. 1999;6(5):690–695.
    1. Liu J., Kibiki G., Maro V., Maro A., Kumburu H., Swai N. Multiplex reverse transcription PCR Luminex assay for detection and quantitation of viral agents of gastroenteritis. J Clin Virol. 2011;50(4):308–313.
    1. Taniuchi M., Verweij J.J., Noor Z., Sobuz S.U., van Lieshout L., Petri W.A., Jr High throughput multiplex PCR and probe-based detection with Luminex beads for seven intestinal parasites. Am J Trop Med Hyg. 2011;84(2):332–337.
    1. Jothikumar N., Cromeans T.L., Hill V.R., Lu X., Sobsey M.D., Erdman D.D. Quantitative real-time PCR assays for detection of human adenoviruses and identification of serotypes 40 and 41. Appl Environ Microbiol. 2005;71(6):3131–3136.
    1. Liu J., Gratz J., Maro A., Kumburu H., Kibiki G., Taniuchi M. Simultaneous detection of six diarrhea-causing bacterial pathogens with an in-house PCR-luminex assay. J Clin Microbiol. 2012;50(1):98–103.
    1. Basuni M., Muhi J., Othman N., Verweij J.J., Ahmad M., Miswan N. A pentaplex real-time polymerase chain reaction assay for detection of four species of soil-transmitted helminths. Am J Trop Med Hyg. 2011;84(2):338–343.
    1. Merino V.R., Nakano V., Liu C., Song Y., Finegold S.M., Avila-Campos M.J. Quantitative detection of enterotoxigenic Bacteroides fragilis subtypes isolated from children with and without diarrhea. J Clin Microbiol. 2011;49(1):416–418.
    1. Hill J.E., Paccagnella A., Law K., Melito P.L., Woodward D.L., Price L. Identification of Campylobacter spp. and discrimination from Helicobacter and Arcobacter spp. by direct sequencing of PCR-amplified cpn60 sequences and comparison to cpnDB, a chaperonin reference sequence database. J Med Microbiol. 2006;55(Pt 4):393–399.
    1. Hadfield S.J., Robinson G., Elwin K., Chalmers R.M. Detection and differentiation of Cryptosporidium spp. in human clinical samples by use of real-time PCR. J Clin Microbiol. 2011;49(3):918–924.
    1. Verweij J.J., Laeijendecker D., Brienen E.A., van Lieshout L., Polderman A.M. Detection of Cyclospora cayetanensis in travellers returning from the tropics and subtropics using microscopy and real-time PCR. Int J Med Microbiol. 2003;293(2–3):199–202.
    1. ten Hove R.J., van Lieshout L., Brienen E.A., Perez M.A., Verweij J.J. Real-time polymerase chain reaction for detection of Isospora belli in stool samples. Diagn Microbiol Infect Dis. 2008;61(3):280–283.
    1. Verweij J.J., Ten Hove R., Brienen E.A., van Lieshout L. Multiplex detection of Enterocytozoon bieneusi and Encephalitozoon spp. in fecal samples using real-time PCR. Diagn Microbiol Infect Dis. 2007;57(2):163–167.
    1. Oberste M.S., Penaranda S., Rogers S.L., Henderson E., Nix W.A. Comparative evaluation of Taqman real-time PCR and semi-nested VP1 PCR for detection of enteroviruses in clinical specimens. J Clin Virol. 2010;49(1):73–74.
    1. Halse T.A., Edwards J., Cunningham P.L., Wolfgang W.J., Dumas N.B., Escuyer V.E. Combined real-time PCR and rpoB gene pyrosequencing for rapid identification of Mycobacterium tuberculosis and determination of rifampin resistance directly in clinical specimens. J Clin Microbiol. 2010;48(4):1182–1188.
    1. Kageyama T., Kojima S., Shinohara M., Uchida K., Fukushi S., Hoshino F.B. Broadly reactive and highly sensitive assay for Norwalk-like viruses based on real-time quantitative reverse transcription-PCR. J Clin Microbiol. 2003;41(4):1548–1557.
    1. Verweij J.J., Canales M., Polman K., Ziem J., Brienen E.A., Polderman A.M. Molecular diagnosis of Strongyloides stercoralis in faecal samples using real-time PCR. Trans R Soc Trop Med Hyg. 2009;103(4):342–346.
    1. Taniuchi M., Begum S., Uddin M.J., Platts-Mills J.A., Liu J., Kirkpatrick B.D. Kinetics of poliovirus shedding following oral vaccination as measured by quantitative reverse transcription-PCR versus culture. J Clin Microbiol. 2015;53(1):206–211.
    1. Naylor C., Lu M., Haque R., Mondal D., Buonomo E., Nayak U. Environmental enteropathy: oral vaccine failure and growth faltering in infants in Bangladesh. EBioMedicine. 2015;2(11):1759–1766.
    1. Colgate E.R., Haque R., Dickson D.M., Caromolli M.P., Mychaleckyj J.C., Nayak U. 2016. A randomized controlled clinical trial in urban Bangladesh demonstrates a decrease in rotavirus gastroenteritis in the setting of delayed rotavirus vaccine dosing and an association with serum zinc independent of vaccination. [submitted for publication]
    1. Platts-Mills J.A., Liu J., Gratz J., Mduma E., Amour C., Swai N. Detection of Campylobacter in stool and determination of significance by culture: enzyme immunoassay, and PCR in developing countries. J Clin Microbiol. 2014;52(4):1074–1080.
    1. Zaman K., Sack D.A., Yunus M., Arifeen S.E., Podder G., Azim T. Successful co-administration of a human rotavirus and oral poliovirus vaccines in Bangladeshi infants in a 2-dose schedule at 12 and 16 weeks of age. Vaccine. 2009;27(9):1333–1339.
    1. Wang H., Moon S., Wang Y., Jiang B. Multiple virus infection alters rotavirus replication and expression of cytokines and Toll-like receptors in intestinal epithelial cells. Virus Res. 2012;167(1):48–55.
    1. Tregnaghi M.W., Abate H.J., Valencia A., Lopez P., Da Silveira T.R., Rivera L. Human rotavirus vaccine is highly efficacious when coadministered with routine expanded program of immunization vaccines including oral poliovirus vaccine in Latin America. Pediatr Infect Dis J. 2011;30(6):e103–e108.
    1. Ruan F., Yang T., Ma H., Jin Y., Song S., Fontaine R.E. Risk factors for hand: foot, and mouth disease and herpangina and the preventive effect of hand-washing. Pediatrics. 2011;127(4):e898–e904.

Source: PubMed

3
Subskrybuj