Influence of Atg5 mutation in SLE depends on functional IL-10 genotype

Patricia López, Elisa Alonso-Pérez, Javier Rodríguez-Carrio, Ana Suárez, Patricia López, Elisa Alonso-Pérez, Javier Rodríguez-Carrio, Ana Suárez

Abstract

Increasing evidence supports the involvement of autophagy in the etiopathology of autoimmune diseases. Despite the identification of autophagy-related protein (Atg)-5 as one of the susceptibility loci in systemic Lupus erythematosus (SLE), the consequences of the carriage of these mutations for patients remain unclear. The present work analyzed the association of Atg5 rs573775 single nucleotide polymorphism (SNP) with SLE susceptibility, IFNα, TNFα and IL-10 serum levels, and clinical features, in 115 patients and 170 healthy individuals. Patients who where carriers of the rs573775 T* minor allele presented lower IFNα levels than those with the wild genotype, whereas the opposite result was detected for IL-10. Thus, since IL-10 production was regulated by rs1800896 polymorphisms, we evaluated the effect of this Atg5 mutation in genetically high and low IL-10 producers. Interestingly, we found that the rs573775 T* allele was a risk factor for SLE in carriers of the high IL-10 producer genotype, but not among genetically low producers. Moreover, IL-10 genotype influences SLE features in patients presenting the Atg5 mutated allele. Specifically, carriage of the rs573775 T* allele led to IL-10 upregulation, reduced IFNα and TNFα production and a low frequency of cytopenia in patients with the high IL-10 producer genotype, whereas patients with the same Atg5 allele that were low IL-10 producers presented reduced amounts of all these cytokines, had a lower prevalence of anti-dsDNA antibodies and the latest onset age. In conclusion, the Atg5 rs573775 T* allele seems to influence SLE susceptibility, cytokine production and disease features depending on other factors such as functional IL-10 genotype.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Atg5 rs573775 SNP influences cytokine…
Figure 1. Atg5 rs573775 SNP influences cytokine levels in SLE patients.
IFNα, TNFα and IL-10 serum levels were quantified by ELISA techniques in individuals previously genotyped for rs573775 SNP. A) IFNα serum levels in SLE patients and controls are shown on the basis of the Atg5 rs573775 alleles. B) IL-10 and TNFα serum levels depending on Atg5 alleles in SLE patients. Data are shown as box plots, where the lines in the boxes represent the median, the boxes represent the 25th to 75th centiles, and the lines outside the boxes represent the 10th and 90th centiles. Differences in cytokine serum concentration among genotypes were analyzed by the Kruskal-Wallis test (K-W test). Significant differences between one group and the rest were evaluated by Mann-Whitney U test (*p<0.05).
Figure 2. Effects of Atg5 and IL-10…
Figure 2. Effects of Atg5 and IL-10 SNPs on SLE risk, cytokine levels and clinical features.
The diagram represents a model of the effects of Atg5 rs573775 and the functional IL-10 polymorphisms (low/high genetic producers) on SLE, which were supported by our results. A significant influence of both SNPs was detected, however, Atg5 rs573775 showed a dominant role.

References

    1. Rahman A, Isenberg DA (2008) Systemic Lupus Erythematosus. N Engl J Med 358: 929–939. doi:10.1056/NEJMra071297. PubMed: .
    1. Gualtierotti R, Biggioggero M, Penatti AE, Meroni PL (2010) Updating on the pathogenesis of systemic lupus erythematosus. Autoimmun Rev 10: 3–7. doi:10.1016/j.autrev.2010.09.007. PubMed: .
    1. Rönnblom L, Alm GV, Eloranta M-L (2011) The type I interferon system in the development of lupus. Semin Immunol 23: 113–121. doi:10.1016/j.smim.2011.01.009. PubMed: .
    1. Gaipl US, Munoz LE, Grossmayer G, Lauber K, Franz S et al. (2007) Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun 28: 114–121. doi:10.1016/j.jaut.2007.02.005. PubMed: .
    1. Bijl M, Reefman E, Horst G, Limburg PC, Kallenberg CGM (2006) Reduced uptake of apoptotic cells by macrophages in systemic lupus erythematosus: correlates with decreased serum levels of complement. Ann Rheum Dis 65: 57–63. doi:10.1136/ard.2005.035733. PubMed: .
    1. Nagata S, Hanayama R, Kawane K (2010) Autoimmunity and the Clearance of Dead Cells. Cell 140: 619–630. doi:10.1016/j.cell.2010.02.014. PubMed: .
    1. Qu X, Zou Z, Sun Q, Luby-Phelps K, Cheng P et al. (2007) Autophagy Gene-Dependent Clearance of Apoptotic Cells during Embryonic Development. Cell 128: 931–946. doi:10.1016/j.cell.2006.12.044. PubMed: .
    1. Levine B, Kroemer G (2008) Autophagy in the Pathogenesis of Disease. Cell 132: 27–42. doi:10.1016/j.cell.2007.12.018. PubMed: .
    1. Klionsky DJ (2007) Autophagy: from phenomenology to molecular understanding in less than a decade. Nat Rev Mol Cell Biol 8: 931–937. doi:10.1038/nrm2245. PubMed: .
    1. Levine B, Mizushima N, Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469: 323–335. doi:10.1038/nature09782. PubMed: .
    1. Deretic V (2011) Autophagy in immunity and cell-autonomous defense against intracellular microbes. Immunol Rev 240: 92–104. doi:10.1111/j.1600-065X.2010.00995.x. PubMed: .
    1. Münz C (2010) Antigen processing via autophagy--not only for MHC class II presentation anymore? Curr Opin Immunol 22: 89–93. doi:10.1016/j.coi.2010.01.016. PubMed: .
    1. Lee HK, Mattei LM, Steinberg BE, Alberts P, Lee YH et al. (2010) In vivo requirement for Atg5 in antigen presentation by dendritic cells. Immunity 32: 227–239. doi:10.1016/j.immuni.2009.12.006. PubMed: .
    1. Tal MC, Sasai M, Lee HK, Yordy B, Shadel GS et al. (2009) Absence of autophagy results in reactive oxygen species-dependent amplification of RLR signaling. Proc Natl Acad Sci U S A 106: 2770–2775. doi:10.1073/pnas.0807694106. PubMed: .
    1. Jounai N, Takeshita F, Kobiyama K, Sawano A, Miyawaki A et al. (2007) The Atg5–Atg12 conjugate associates with innate antiviral immune responses. Proc Natl Acad Sci U S A 104: 14050–14055. doi:10.1073/pnas.0704014104. PubMed: .
    1. Weissmann G (1964) LYSOSOMES, AUTOIMMUNE PHENOMENA, AND DISEASES OF CONNECTIVE TISSUE. Lancet 284: 1373–1375. doi:10.1016/S0140-6736(64)91163-8. PubMed: .
    1. Lleo A, Invernizzi P, Selmi C, Coppel RL, Alpini G et al. (2007) Autophagy: highlighting a novel player in the autoimmunity scenario. J Autoimmun 29: 61–68. doi:10.1016/j.jaut.2007.06.003. PubMed: .
    1. Gros F, Arnold J, Page N, Décossas M, Korganow A-S et al. (2012) Macroautophagy is deregulated in murine and human lupus T lymphocytes. Autophagy 8: 1113–1123. doi:10.4161/auto.20275. PubMed: .
    1. Towns R, Kabeya Y, Yoshimori T, Guo C, Shangguan Y et al. (2005) Sera from patients with type 2 Diabetes and Neuropathy Induce Autophagy and Colocalization with Mitochondria in SY5Y cells. Autophagy 1: 163–171. doi:10.4161/auto.1.3.2068. PubMed: .
    1. Yang W, Tang H, Zhang Y, Tang X, Zhang J et al. (2013) Meta-analysis Followed by Replication Identifies Loci in or near CDKN1B. Tetrahedron 3, CD80, DRAM1, and ARID5B as Associated with Systemic Lupus Erythematosus in Asians. Am J Hum Genet 92: 41–51 doi:10.1016/j.ajhg.2012.11.018.
    1. Harley JB, Alarcón-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP et al. (2008) Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet 40: 204–210. doi:10.1038/ng.81. PubMed: .
    1. Han J-W, Zheng H-F, Cui Y, Sun L-D, Ye D-Q et al. (2009) Genome-wide association study in a Chinese Han population identifies nine new susceptibility loci for systemic lupus erythematosus. Nat Genet 41: 1234–1237. doi:10.1038/ng.472. PubMed: .
    1. Zhou XJ, Lu XL, Lv JC, Yang HZ, Qin LX et al. (2011) Genetic association of PRDM1-ATG5 intergenic region and autophagy with systemic lupus erythematosus in a Chinese population. Ann Rheum Dis 70: 1330–1337. doi:10.1136/ard.2010.140111. PubMed: .
    1. Gateva V, Sandling JK, Hom G, Taylor KE, Chung SA et al. (2009) A large-scale replication study identifies TNIP1, PRDM1, JAZF1, UHRF1BP1 and IL10 as risk loci for systemic lupus erythematosus. Nat Genet 41: 1228–1233. doi:10.1038/ng.468. PubMed: .
    1. Nedjic J, Aichinger M, Emmerich J, Mizushima N, Klein L (2008) Autophagy in thymic epithelium shapes the T-cell repertoire and is essential for tolerance. Nature 455: 396–400. doi:10.1038/nature07208. PubMed: .
    1. Alonso-Perez E, Suarez-Gestal M, Calaza M, Sebastiani GD, Pullmann R et al. (2012) Bias in effect size of systemic lupus erythematosus susceptibility loci across Europe: a case-control study. Arthritis Res Ther 14: R94. doi:10.1186/ar3818. PubMed: .
    1. Gómez J, Suárez A, López P, Mozo L, Díaz JB et al. (2006) Systemic lupus erythematosus in Asturias, Spain: clinical and serologic features. Medicine (Baltimore) 85: 157–168. doi:10.1097/01.md.0000224711.54886.b1. PubMed: .
    1. López P, Mozo L, Gutiérrez C, Suárez A (2003) Epidemiology of systemic lupus erythematosus in a northern Spanish population: gender and age influence on immunological features. Lupus 12: 860–865. doi:10.1191/0961203303lu469xx. PubMed: .
    1. Tan EM, Cohen AS, Fries JF, Masi AT, McShane DJ et al. (1982) The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 25: 1271–1277. doi:10.1002/art.1780251101. PubMed: .
    1. Gröndal G, Gunnarsson I, Rönnelid J, Rogberg S, Klareskog L et al. (2000) Cytokine production, serum levels and disease activity in systemic lupus erythematosus. Clin Exp Rheumatol 18: 565–570. doi:10.1007/s100510070003. PubMed: .
    1. López P, Gómez J, Mozo L, Gutiérrez C, Suárez A (2006) Cytokine polymorphisms influence treatment outcomes in SLE patients treated with antimalarial drugs. Arthritis Res Ther 8: R42. doi:10.1186/ar1897. PubMed: .
    1. López P, Gómez J, Prado C, Gutiérrez C, Suárez A (2008) Influence of functional interleukin 10/tumor necrosis factor-alpha polymorphisms on interferon-alpha, IL-10, and regulatory T cell population in patients with systemic lupus erythematosus receiving antimalarial treatment. J Rheumatol 35: 1559–1566. PubMed: .
    1. López P, Gutiérrez C, Suárez A (2010) IL-10 and TNFalpha genotypes in SLE. J Biomed Biotechnol, 2010: 2010: 838390 doi:10.1155/2010/838390. PubMed: .
    1. Suárez A, Castro P, Alonso R, Mozo L, Gutiérrez C (2003) Interindividual variations in constitutive interleukin-10 messenger RNA and protein levels and their association with genetic polymorphisms. Transplantation 75: 711–717. doi:10.1097/01.TP.0000055216.19866.9A. PubMed: .
    1. Lee HK, Lund JM, Ramanathan B, Mizushima N, Iwasaki A (2007) Autophagy-dependent viral recognition by plasmacytoid dendritic cells. Science 315: 1398–1401. doi:10.1126/science.1136880. PubMed: .
    1. Crişan TO, Plantinga TS, van de Veerdonk FL, Farcaş MF, Stoffels M et al. (2011) Inflammasome-Independent Modulation of Cytokine Response by Autophagy in Human Cells. PLOS ONE 6 Available: . Accessed 19 February 2013.
    1. Henault J, Martinez J, Riggs JM, Tian J, Mehta P et al. (2012) Noncanonical autophagy is required for type I interferon secretion in response to DNA-immune complexes. Immunity 37: 986–997. doi:10.1016/j.immuni.2012.09.014. PubMed: .
    1. Takeshita F, Kobiyama K, Miyawaki A, Jounai N, Okuda K (2008) The non-canonical role of Atg family members as suppressors of innate antiviral immune signaling. Autophagy 4: 67–69. PubMed: .
    1. Houssiau FA, Lefebvre C, Vanden Berghe M, Lambert M, Devogelaer JP et al. (1995) Serum interleukin 10 titers in systemic lupus erythematosus reflect disease activity. Lupus 4: 393–395. doi:10.1177/096120339500400510. PubMed: .
    1. Harris J (2011) Autophagy and cytokines. Cytokine 56: 140–144. doi:10.1016/j.cyto.2011.08.022. PubMed: .
    1. Park H-J, Lee SJ, Kim S-H, Han J, Bae J et al. (2011) IL-10 inhibits the starvation induced autophagy in macrophages via class I phosphatidylinositol 3-kinase (PI3K) pathway. Mol Immunol 48: 720–727. doi:10.1016/j.molimm.2010.10.020. PubMed: .
    1. Pua HH, Dzhagalov I, Chuck M, Mizushima N, He Y-W (2007) A critical role for the autophagy gene Atg5 in T cell survival and proliferation. J Exp Med 204: 25–31. doi:10.1084/jem.20061303. PubMed: .
    1. Kovacs JR, Li C, Yang Q, Li G, Garcia IG et al. (2012) Autophagy promotes T-cell survival through degradation of proteins of the cell death machinery. Cell Death Differ 19: 144–152. doi:10.1038/cdd.2011.78. PubMed: .

Source: PubMed

3
Subskrybuj