The anticipation and outcome phases of reward and loss processing: A neuroimaging meta-analysis of the monetary incentive delay task

Stuart Oldham, Carsten Murawski, Alex Fornito, George Youssef, Murat Yücel, Valentina Lorenzetti, Stuart Oldham, Carsten Murawski, Alex Fornito, George Youssef, Murat Yücel, Valentina Lorenzetti

Abstract

The processing of rewards and losses are crucial to everyday functioning. Considerable interest has been attached to investigating the anticipation and outcome phases of reward and loss processing, but results to date have been inconsistent. It is unclear if anticipation and outcome of a reward or loss recruit similar or distinct brain regions. In particular, while the striatum has widely been found to be active when anticipating a reward, whether it activates in response to the anticipation of losses as well remains ambiguous. Furthermore, concerning the orbitofrontal/ventromedial prefrontal regions, activation is often observed during reward receipt. However, it is unclear if this area is active during reward anticipation as well. We ran an Activation Likelihood Estimation meta-analysis of 50 fMRI studies, which used the Monetary Incentive Delay Task (MIDT), to identify which brain regions are implicated in the anticipation of rewards, anticipation of losses, and the receipt of reward. Anticipating rewards and losses recruits overlapping areas including the striatum, insula, amygdala and thalamus, suggesting that a generalised neural system initiates motivational processes independent of valence. The orbitofrontal/ventromedial prefrontal regions were recruited only during the reward outcome, likely representing the value of the reward received. Our findings help to clarify the neural substrates of the different phases of reward and loss processing, and advance neurobiological models of these processes.

Keywords: anticipation; loss; monetary incentive delay task; outcome; reward.

Conflict of interest statement

All authors report no conflict of interest.

© 2018 The Authors Human Brain Mapping Published by Wiley Periodicals, Inc.

Figures

Figure 1
Figure 1
The structure of the MIDT. (a) Examples of cues signifying trial type (e.g. a square with two lines indicates a punishment trial where $5 can potentially be lost, a circle with a single line indicates a reward trial where $1 can potentially be obtained). (b) Time course of a trial on the MIDT. In the cue stage (first screen), corresponding to the anticipation phase of reward/loss processing, a symbol appears indicating the trial type (reward, loss or neutral). After a delay (second screen) a target appears (third screen), and participants are instructed to press a button as quickly as possible when the target appears. If participants press the button quickly enough they gain money (reward trials) or avoid losing money (loss trials) and are informed of this during the feedback stage (fourth screen), corresponding to the outcome phase. The time window within which the participant has to make a response to obtain a successful outcome is constantly adjusted such that the participant succeeds on an expected 60‐66% of trials (Knutson et al., 2000). Note that the timings depicted are an example only. These timings vary from study to study
Figure 2
Figure 2
ALE single analysis results. (a) Single analysis of reward anticipation (contrast LA). (b) Single analysis of loss anticipation (contrast LA). (c) Single analysis of reward outcome (contrast RO). Single analyses were conducted with a cluster‐forming threshold of p < .001 uncorrected and a cluster‐level threshold of p < .05 [Color figure can be viewed at http://wileyonlinelibrary.com]
Figure 3
Figure 3
ALE results for the conjunction and subtraction analysis between of reward anticipation and loss anticipation. (a) Subtraction analysis of reward anticipation relative to loss anticipation (contrast RA‐LA). (b) Subtraction analysis of loss anticipation relative to reward anticipation (contrast LA‐RA). (c) Conjunction analysis of reward anticipation and loss anticipation (contrast RA + LA). Subtraction analyses were conducted with a significance level of p < .005 [Color figure can be viewed at http://wileyonlinelibrary.com]
Figure 4
Figure 4
ALE results for the conjunction and subtraction analysis between reward anticipation and reward outcome. (a) Subtraction analysis of reward anticipation relative to reward outcome (contrast RA‐RO). (b) Subtraction analysis of reward outcome relative to reward anticipation (contrast RO‐RA). (c) Conjunction analysis of reward anticipation and reward outcome (contrast RA + RO). Subtraction analyses were conducted with a significance level of p < .001 [Color figure can be viewed at http://wileyonlinelibrary.com]

References

    1. Adcock, R. A. , Thangavel, A. , Whitfield‐Gabrieli, S. , Knutson, B. , & Gabrieli, J. D. E. (2006). Reward‐motivated learning: mesolimbic activation precedes memory formation. Neuron, 50(3), 507–517. doi:
    1. Anderson, A. K. , Christoff, K. , Stappen, I. , Panitz, D. , Ghahremani, D. G. , Glover, G. , … Sobel, N. (2003). Dissociated neural representations of intensity and valence in human olfaction. Nature Neuroscience, 6(2), 196–202. doi:
    1. Andrews, M. M. , Meda, S. A. , Thomas, A. D. , Potenza, M. N. , Krystal, J. H. , Worhunsky, P. , … Pearlson, G. D. (2011). Individuals family history positive for alcoholism show functional magnetic resonance imaging differences in reward sensitivity that are related to impulsivity factors. Biological Psychiatry, 69(7), 675–683. doi:
    1. Atallah, H. E. , Lopez‐Paniagua, D. , Rudy, J. W. , & O'Reilly, R. C. (2007). Separate neural substrates for skill learning and performance in the ventral and dorsal striatum. Nature Neuroscience, 10(1), 126–131. doi:
    1. Balleine, B. W. , Delgado, M. R. , & Hikosaka, O. (2007). The role of the dorsal striatum in reward and decision‐making. The . Journal of Neuroscience, 27(31), 8161–8165. doi:
    1. Balodis, I. M. , Grilo, C. M. , Kober, H. , Worhunsky, P. D. , White, M. A. , Stevens, M. C. , … Potenza, M. N. (2014). A pilot study linking reduced fronto‐Striatal recruitment during reward processing to persistent bingeing following treatment for binge‐eating disorder. International Journal of Eating Disorders, 47(4), 376–384. doi:
    1. Balodis, I. M. , Kober, H. , Worhunsky, P. D. , Stevens, M. C. , Pearlson, G. D. , Carroll, K. M. , & Potenza, M. N. (2016). Neurofunctional reward processing changes in cocaine dependence during recovery. Neuropsychopharmacology, 41(8), 2112–2121. doi:
    1. Balodis, I. M. , Kober, H. , Worhunsky, P. D. , Stevens, M. C. , Pearlson, G. D. , & Potenza, M. N. (2012). Diminished frontostriatal activity during processing of monetary rewards and losses in pathological gambling. Biological Psychiatry, 71(8), 749–757. doi:
    1. Balodis, I. M. , Kober, H. , Worhunsky, P. D. , White, M. A. , Stevens, M. C. , Pearlson, G. D. , … Potenza, M. N. (2013). Monetary reward processing in obese individuals with and without binge eating disorder. Biological Psychiatry, 73(9), 877–886. doi:
    1. Balodis, I. M. , & Potenza, M. N. (2015). Anticipatory reward processing in addicted populations: a focus on the monetary incentive delay task. Biological Psychiatry, 77(5), 434–444. doi:
    1. Baron, A. , & Galizio, M. (2005). Positive and negative reinforcement : should the distinction be preserved? The Behavior Analyst, 28(2), 85–98.
    1. Bartra, O. , McGuire, J. T. , & Kable, J. W. (2013). The valuation system: a coordinate‐based meta‐analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage, 76, 412–427. doi:
    1. Behan, B. , Stone, A. , & Garavan, H. (2015). Right prefrontal and ventral striatum interactions underlying impulsive choice and impulsive responding. Human Brain Mapping, 36(1), 187–198. doi:
    1. Bjork, J. M. , & Hommer, D. W. (2007). Anticipating instrumentally obtained and passively‐received rewards: a factorial fMRI investigation. Behavioural Brain Research, 177(1), 165–170. doi:
    1. Bjork, J. M. , Knutson, B. , Fong, G. W. , Caggiano, D. M. , Bennett, S. M. , & Hommer, D. M. (2004). Incentive‐elicited brain activation in adolescents: similarities and differences from young adults. Journal of Neuroscience, 24(8), 1793–1802. doi:
    1. Bjork, J. M. , Smith, A. R. , Chen, G. , & Hommer, D. W. (2010). Adolescents, adults and rewards: comparing motivational neurocircuitry recruitment using fMRI. PLoS ONE, 5(7), e11440. doi:
    1. Bjork, J. M. , Smith, A. R. , Chen, G. , & Hommer, D. W. (2012). Mesolimbic recruitment by nondrug rewards in detoxified alcoholics: effort anticipation, reward anticipation, and reward delivery. Human Brain Mapping, 33(9), 2174–2188. doi:
    1. Bjork, J. M. , Smith, A. R. , & Hommer, D. W. (2008). Striatal sensitivity to reward deliveries and omissions in substance dependent patients. NeuroImage, 42(4), 1609–1621. doi:
    1. Boecker, R. , Holz, N. E. , Buchmann, A. F. , Blomeyer, D. , Plichta, M. M. , Wolf, I. , … Laucht, M. (2014). Impact of early life adversity on reward processing in young adults: EEG‐fMRI results from a prospective study over 25 years. PLoS ONE, 9(8), e104185. doi:
    1. Boecker‐Schlier, R. , Holz, N. E. , Buchmann, A. F. , Blomeyer, D. , Plichta, M. M. , Jennen‐Steinmetz, C. , … Laucht, M. (2016). Interaction between COMT Val 158 Met polymorphism and childhood adversity affects reward processing in adulthood. NeuroImage, 132, 556–570. doi:
    1. Bossaerts, P. (2010). Risk and risk prediction error signals in anterior insula. Brain Structure and Function, 214(5–6), 645–653. doi:
    1. Boureau, Y. , & Dayan, P. (2011). Opponency revisited : competition and cooperation between dopamine and serotonin. Neuropsychopharmacology, 36(1), 74–97. doi:
    1. Bray, S. , Shimojo, S. , & O'Doherty, J. P. (2010). Human medial orbitofrontal cortex is recruited during experience of imagined and real rewards. Journal of Neurophysiology, 103(5), 2506–2512. doi:
    1. Breiter, H. C. , Aharon, I. , Kahneman, D. , Dale, A. , & Shizgal, P. (2001). Functional imaging of neural resposes to monetary gains and losses. Neuron, 30(2), 619.
    1. Brewer, J. A. , Garrison, K. A. , & Whitfield‐Gabrieli, S. (2013). What about the “self” is processed in the posterior cingulate cortex? Frontiers in Human Neuroscience, 7(October), 647. doi:
    1. Bromberg‐Martin, E. S. , Matsumoto, M. , & Hikosaka, O. (2010). Dopamine in motivational control: rewarding, aversive, and alerting. Neuron, 68(5), 815–834. doi:
    1. Brooks, A. M. , & Berns, G. S. (2013). Aversive stimuli and loss in the mesocorticolimbic dopamine system. Trends in Cognitive Sciences, 17(6), 281–286. doi:
    1. Bustamante, J.‐C. , Barrós‐Loscertales, A. , Costumero, V. , Fuentes‐Claramonte, P. , Rosell‐Negre, P. , Ventura‐Campos, N. , … Ávila, C. (2014). Abstinence duration modulates striatal functioning during monetary reward processing in cocaine patients. Addiction Biology, 19(5), 885–894. doi:
    1. Carl, H. , Walsh, E. , Eisenlohr‐Moul, T. , Minkel, J. , Crowther, A. , Moore, T. , … Smoski, M. J. (2016). Sustained anterior cingulate cortex activation during reward processing predicts response to psychotherapy in major depressive disorder. Journal of Affective Disorders, 203, 204–212. doi:
    1. Carter, R. M. , Macinnes, J. J. , Huettel, S. A. , & Adcock, R. A. (2009). Activation in the VTA and nucleus accumbens increases in anticipation of both gains and losses. Frontiers in Behavioral Neuroscience, 3(21), doi:
    1. Castro, D. C. , & Berridge, K. C. (2014). Opioid hedonic hotspot in nucleus accumbens shell: mu, delta, and kappa maps for enhancement of sweetness “liking” and “wanting. Journal of Neuroscience, 34(12), 4239–4250. doi:
    1. Cho, Y. T. , Fromm, S. , Guyer, A. E. , Detloff, A. , Pine, D. S. , Fudge, J. L. , & Ernst, M. (2013). Nucleus accumbens, thalamus and insula connectivity during incentive anticipation in typical adults and adolescents. NeuroImage, 66, 508–521. doi:
    1. Choi, J.‐S. , Shin, Y.‐C. , Jung, W. H. , Jang, J. H. , Kang, D.‐H. , Choi, C.‐H. , … Kwon, J. S. (2012). Altered brain activity during reward anticipation in pathological gambling and obsessive‐compulsive disorder. PLoS ONE, 7(9), e45938. doi:
    1. Chumbley, J. R. , & Friston, K. J. (2009). False discovery rate revisited: FDR and topological inference using Gaussian random fields. NeuroImage, 44(1), 62–70. doi:
    1. Clithero, J. A. , & Rangel, A. (2014). Informatic parcellation of the network involved in the computation of subjective value. Social Cognitive and Affective Neuroscience, 9(9), 1289–1302. doi:
    1. Cooper, J. C. , & Knutson, B. (2008). Valence and salience contribute to nucleus accumbens activation. NeuroImage, 39(1), 538–547. doi:
    1. Costumero, V. , Barrós‐Loscertales, A. , Bustamante, J. C. , Ventura‐Campos, N. , Fuentes, P. , & Ávila, C. (2013). Reward sensitivity modulates connectivity among reward brain areas during processing of anticipatory reward cues. European Journal of Neuroscience, 38(3), 2399–2407. doi:
    1. Damiano, C. R. , Aloi, J. , Dunlap, K. , Burrus, C. J. , Mosner, M. G. , Kozink, R. V. , … Dichter, G. S. (2014). Association between the oxytocin receptor (OXTR) gene and mesolimbic responses to rewards. Molecular Autism, 5(1), 7. doi:
    1. Delgado, M. R. , Jou, R. L. , Ledoux, J. E. , & Phelps, E. A. (2009). Avoiding negative outcomes: tracking the mechanisms of avoidance learning in humans during fear conditioning. Frontiers in Behavioral Neuroscience, 3, doi:
    1. Delgado, M. R. , Jou, R. L. , & Phelps, E. A. (2011). Neural systems underlying aversive conditioning in humans with primary and secondary reinforcers. Frontiers in Neuroscience, 5(MAY), 1–10. doi:
    1. Delgado, M. R. , Li, J. , Schiller, D. , & Phelps, E. A. (2008). The role of the striatum in aversive learning and aversive prediction errors. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1511), 3787–3800. doi:
    1. den Ouden, H. E. M. , Kok, P. , & de Lange, F. P. (2012). How prediction errors shape perception, attention, and motivation. Frontiers in Psychology, 3, 1–12. doi:
    1. DePasque Swanson, S. , & Tricomi, E. (2014). Goals and task difficulty expectations modulate striatal responses to feedback. Cognitive, Affective, & Behavioral Neuroscience, 14(2), 610–620. doi:
    1. Diekhof, E. K. , Kaps, L. , Falkai, P. , & Gruber, O. (2012). The role of the human ventral striatum and the medial orbitofrontal cortex in the representation of reward magnitude—An activation likelihood estimation meta‐analysis of neuroimaging studies of passive reward expectancy and outcome processing. Neuropsychologia, 50(7), 1252–1266. doi:
    1. Dillon, D. G. , Bogdan, R. , Fagerness, J. , Holmes, A. J. , Perlis, R. H. , & Pizzagalli, D. A. (2010). Variation in TREK1 gene linked to depression‐resistant phenotype is associated with potentiated neural responses to rewards in humans. Human Brain Mapping, 31(2), 210–221. doi:
    1. Doll, B. B. , Simon, D. A. , & Daw, N. D. (2012). The ubiquity of model‐based reinforcement learning. Current Opinion in Neurobiology, 22(6), 1075–1081. doi:
    1. Eickhoff, S. B. , Bzdok, D. , Laird, A. R. , Kurth, F. , & Fox, P. T. (2012). Activation likelihood estimation meta‐analysis revisited. NeuroImage, 59(3), 2349–2361. doi:
    1. Eickhoff, S. B. , Bzdok, D. , Laird, A. R. , Roski, C. , Caspers, S. , Zilles, K. , & Fox, P. T. (2011). Co‐activation patterns distinguish cortical modules, their connectivity and functional differentiation. NeuroImage, 57(3), 938–949. doi:
    1. Eickhoff, S. B. , Laird, A. R. , Fox, P. M. , Lancaster, J. L. , & Fox, P. T. (2017). Implementation errors in the GingerALE Software: description and recommendations. Human Brain Mapping, 38(1), 7–11. doi:
    1. Eickhoff, S. B. , Laird, A. R. , Grefkes, C. , Wang, L. E. , Zilles, K. , & Fox, P. T. (2009). Coordinate‐based activation likelihood estimation meta‐analysis of neuroimaging data: a random‐effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30(9), 2907–2926. doi:
    1. Eickhoff, S. B. , Nichols, T. E. , Laird, A. R. , Hoffstaedter, F. , Amunts, K. , Fox, P. T. , … Eickhoff, C. R. (2016). Behavior, Sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. NeuroImage, 137, 70–33. doi:
    1. Enzi, B. , Edel, M.‐A. , Lissek, S. , Peters, S. , Hoffmann, R. , Nicolas, V. , … Saft, C. (2012). Altered ventral striatal activation during reward and punishment processing in premanifest Huntington's disease: a functional magnetic resonance study. Experimental Neurology, 235(1), 256–264. doi:
    1. Fellows, L. K. (2004). The cognitive neuroscience of human decision making: a review and conceptual framework. Behavioral and Cognitive Neuroscience Reviews, 3(3), 159–172. doi:
    1. Figee, M. , Vink, M. , De Geus, F. , Vulink, N. , Veltman, D. J. , Westenberg, H. , & Denys, D. (2011). Dysfunctional reward circuitry in obsessive‐compulsive disorder. Biological Psychiatry, 69(9), 867–874. doi:
    1. Filbey, F. M. , Dunlop, J. , & Myers, U. S. (2013). Neural effects of positive and negative incentives during marijuana withdrawal. PLoS ONE, 8(5), e61470. doi:
    1. Fiorillo, C. D. , Tobler, P. N. , & Schultz, W. (2003). Discrete coding of reward probability and uncertainty by dopamine neurons. Science, 299(5614), 1898–1902. doi:
    1. Funayama, T. , Ikeda, Y. , Tateno, A. , Takahashi, H. , Okubo, Y. , Fukayama, H. , & Suzuki, H. (2014). Modafinil augments brain activation associated with reward anticipation in the nucleus accumbens. Psychopharmacology, 231(16), 3217–3228. doi:
    1. Galtress, T. , Marshall, A. T. , & Kirkpatrick, K. (2012). Motivation and timing: clues for modeling the reward system. Behavioural Processes, 90(1), 142–153. doi:
    1. Glover, G. H. (1999). 3D z‐shim method for reduction of susceptibility effects in BOLD fMRI. Magnetic Resonance in Medicine, 42(2), 290–299. doi:/(SICI)1522–2594(199908)42:2 < 290::AID‐MRM11 > ;2‐N
    1. Glover, G. H. , & Law, C. S. (2001). Spiral‐in/out BOLD fMRI for increased SNR and reduced susceptibility artifacts. Magnetic Resonance in Medicine, 46(3), 515–522. doi:
    1. Guitart‐Masip, M. , Fuentemilla, L. , Bach, D. R. , Huys, Q. J. , Dayan, P. , Dolan, R. J. , & Duzel, E. (2011). Action dominates valence in anticipatory representations in the human striatum and dopaminergic midbrain. Journal of Neuroscience, 31(21), 7867–7875. doi:
    1. Guyer, A. E. , Nelson, E. E. , Perez‐Edgar, K. , Hardin, M. G. , Roberson‐Nay, R. , Monk, C. S. , … Ernst, M. (2006). Striatal functional alteration in adolescents characterized by early childhood behavioral inhibition. Journal of Neuroscience, 26(24), 6399–6405. doi:
    1. Haber, S. N. , & Knutson, B. (2010). The reward circuit: linking primate anatomy and human imaging. Neuropsychopharmacology, 35(1), 4–23. doi:
    1. Hägele, C. , Schlagenhauf, F. , Rapp, M. , Sterzer, P. , Beck, A. , Bermpohl, F. , … Heinz, A. (2015). Dimensional psychiatry: reward dysfunction and depressive mood across psychiatric disorders. Psychopharmacology, 232(2), 331–341. doi:
    1. Hamani, C. , Mayberg, H. , Stone, S. , Laxton, A. , Haber, S. , & Lozano, A. M. (2011). The subcallosal cingulate gyrus in the context of major depression. Biological Psychiatry, 69(4), 301–308. doi:
    1. Hampton, A. N. , Bossaerts, P. , & O'Doherty, J. P. (2006). The role of the ventromedial prefrontal cortex in abstract state‐based inference during decision making in humans. The Journal of Neuroscience, 26(32), 8360–8367. doi:
    1. Hanssen, E. , van der Velde, J. , Gromann, P. M. , Shergill, S. S. , de Haan, L. , Bruggeman, R. , … van Atteveldt, N. (2015). Neural correlates of reward processing in healthy siblings of patients with schizophrenia. Frontiers in Human Neuroscience, 9(September), 504. doi:
    1. Hardin, M. G. , Pine, D. S. , & Ernst, M. (2009). The influence of context valence in the neural coding of monetary outcomes. NeuroImage, 48(1), 249–257. doi:
    1. Hommer, D. W. , Knutson, B. , Fong, G. W. , Bennett, S. , Adams, C. M. , & Varner, J. L. (2003). Amygdalar recruitment during anticipation of monetary rewards : an event‐related fMRI study. Annals of the New York Academy of Sciences, 985(1), 476–478. doi:
    1. Jensen, J. , McIntosh, A. R. , Crawley, A. P. , Mikulis, D. J. , Remington, G. , & Kapur, S. (2003). Direct activation of the ventral striatum in anticipation of aversive stimuli. Neuron, 40(6), 1251–1257. doi:
    1. Jensen, J. , Smith, A. J. , Willeit, M. , Crawley, A. P. , Mikulis, D. J. , Vitcu, I. , & Kapur, S. (2007). Separate brain regions code for salience vs. valence during reward prediction in humans. Human Brain Mapping, 28(4), 294–302. doi:
    1. Jia, Z. , Worhunsky, P. D. , Carroll, K. M. , Rounsaville, B. J. , Stevens, M. C. , Pearlson, G. D. , & Potenza, M. N. (2011). An initial study of neural responses to monetary incentives as related to treatment outcome in cocaine dependence. Biological Psychiatry, 70(6), 553–560. doi:
    1. Juckel, G. , Friedel, E. , Koslowski, M. , Witthaus, H. , Özgürdal, S. , Gudlowski, Y. , … Schlagenhauf, F. (2012). Ventral striatal activation during reward processing in subjects with ultra‐high risk for schizophrenia. Neuropsychobiology, 66(1), 50–56. doi:
    1. Juckel, G. , Schlagenhauf, F. , Koslowski, M. , Filonov, D. , Wüstenberg, T. , Villringer, A. , … Heinz, A. (2006). Dysfunction of ventral striatal reward prediction in schizophrenic patients treated with typical, not atypical, neuroleptics. Psychopharmacology, 187(2), 222–228. doi:
    1. Juckel, G. , Schlagenhauf, F. , Koslowski, M. , Wüstenberg, T. , Villringer, A. , Knutson, B. , … Heinz, A. (2006). Dysfunction of ventral striatal reward prediction in schizophrenia. NeuroImage, 29(2), 409–416. doi:
    1. Jung, W. H. , Kang, D.‐H. , Han, J. Y. , Jang, J. H. , Gu, B.‐M. , Choi, J.‐S. , … Kwon, J. S. (2011). Aberrant ventral striatal responses during incentive processing in unmedicated patients with obsessive‐compulsive disorder. Acta Psychiatrica Scandinavica, 123(5), 376–386. doi:
    1. Kappel, V. , Koch, A. , Lorenz, R. C. , Brühl, R. , Renneberg, B. , Lehmkuhl, U. , … Beck, A. (2013). CID: a valid incentive delay paradigm for children. Journal of Neural Transmission, 120(8), 1259–1270. doi:
    1. Kaufmann, C. , Beucke, J. C. , Preuße, F. , Endrass, T. , Schlagenhauf, F. , Heinz, A. , … Kathmann, N. (2013). Medial prefrontal brain activation to anticipated reward and loss in obsessive‐compulsive disorder. NeuroImage: Clinical, 2(1), 212–220. doi:
    1. Kim, S. (2013). Neuroscientific model of motivational process. Frontiers in Psychology, 4, 1–12. doi:
    1. Kim, H. , Shimojo, S. , & O'Doherty, J. P. (2011). Overlapping responses for the expectation of juice and money rewards in human ventromedial prefrontal cortex. Cerebral Cortex, 21(4), 769–776. doi:
    1. Kirk, U. , Brown, K. W. , & Downar, J. (2015). Adaptive neural reward processing during anticipation and receipt of monetary rewards in mindfulness meditators. Social Cognitive and Affective Neuroscience, 10(5), 752–759. doi:
    1. Knutson, B. , Adams, C. M. , Fong, G. W. , & Hommer, D. (2001). Anticipation of increasing monetary reward selectively recruits nucleus accumbens. The Journal of Neuroscience, 21(16), RC159 Retrieved from
    1. Knutson, B. , Bhanji, J. P. , Cooney, R. E. , Atlas, L. Y. , & Gotlib, I. H. (2008). Neural responses to monetary incentives in major depression. Biological Psychiatry, 63(7), 686–692. doi:
    1. Knutson, B. , & Cooper, J. C. (2005). Functional magnetic resonance imaging of reward prediction. Curr Opin Neurol Current Opinion in Neurology, 18(4), 411–410. doi: [pii]
    1. Knutson, B. , Fong, G. W. , Adams, C. M. , Varner, J. L. , & Hommer, D. (2001). Dissociation of reward anticipation and outcome with event‐related fMRI. Neuroreport, 12(17), 3683–3687. doi:
    1. Knutson, B. , Fong, G. W. , Bennett, S. M. , Adams, C. M. , & Hommer, D. (2003). A region of mesial prefrontal cortex tracks monetarily rewarding outcomes: characterization with rapid event‐related fMRI. NeuroImage, 18(2), 263–272. doi:
    1. Knutson, B. , & Greer, S. M. (2008). Anticipatory affect: neural correlates and consequences for choice. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 363(1511), 3771–3786. doi:
    1. Knutson, B. , & Heinz, A. (2015). Probing psychiatric symptoms with the monetary incentive delay task. Biological Psychiatry, 77(5), 418–420. doi:
    1. Knutson, B. , Westdorp, A. , Kaiser, E. , & Hommer, D. (2000). FMRI visualization of brain activity during a monetary incentive delay task. NeuroImage, 12(1), 20–27. doi:
    1. Kohls, G. , Perino, M. T. , Taylor, J. M. , Madva, E. N. , Cayless, S. J. , Troiani, V. , … Schultz, R. T. (2013). The nucleus accumbens is involved in both the pursuit of social reward and the avoidance of social punishment. Neuropsychologia, 51(11), 2062–2069. doi:
    1. Kringelbach, M. L. , & Rolls, E. T. (2004). The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Progress in Neurobiology, 72(5), 341–372. doi:
    1. Kurniawan, I. T. , Guitart‐Masip, M. , Dayan, P. , & Dolan, R. J. (2013). Effort and valuation in the brain : the effects of anticipation and execution. The Journal of Neuroscience : The Official Journal of the Society for Neuroscience, 33(14), 6160–6169. doi:
    1. Lammel, S. , Lim, B. K. , & Malenka, R. C. (2014). Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology, 76, 351–359. doi:
    1. Lancaster, J. L. , Tordesillas‐Gutiérrez, D. , Martinez, M. , Salinas, F. , Evans, A. , Zilles, K. , … Fox, P. T. (2007). Bias between MNI and talairach coordinates analyzed using the ICBM‐152 brain template. Human Brain Mapping, 28(11), 1194–1205. doi:
    1. Levy, D. J. , & Glimcher, P. W. (2012). The root of all value: a neural common currency for choice. Current Opinion in Neurobiology, 22(6), 1027–1038. doi:
    1. Limbrick‐Oldfield, E. H. , Van Holst, R. J. , & Clark, L. (2013). Fronto‐striatal dysregulation in drug addiction and pathological gambling: consistent inconsistencies? NeuroImage: Clinical, 2(1), 385–393. doi:
    1. Liu, X. , Hairston, J. , Schrier, M. , & Fan, J. (2011). Common and distinct networks underlying reward valence and processing stages: a meta‐analysis of functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 35(5), 1219–1236. doi:
    1. Liu, X. , Powell, D. K. , Wang, H. , Gold, B. T. , Corbly, C. R. , & Joseph, J. E. (2007). Functional dissociation in frontal and striatal areas for processing of positive and negative reward information. The Journal of Neuroscience, 27(17), 4587–4597. doi:
    1. Luijten, M. , Schellekens, A. F. , Kühn, S. , Machielse, M. W. J. , & Sescousse, G. (2017). Disruption of reward processing in addiction: an image‐based meta‐analysis of functional magnetic resonance imaging studies. JAMA Psychiatry, 74(4), 387. doi:
    1. Lutz, K. , & Widmer, M. (2014). What can the monetary incentive delay task tell us about the neural processing of reward and punishment? Neuroscience and Neuroeconomics, 3, 33–45. doi:
    1. Maresh, E. L. , Allen, J. P. , & Coan, J. A. (2014). Increased default mode network activity in socially anxious individuals during reward processing. Biology of Mood & Anxiety Disorders, 4(1), 7. doi:
    1. Mattfeld, A. T. , Gluck, M. A. , & Stark, C. E. L. (2011). Functional specialization within the striatum along both the dorsal/ventral and anterior/posterior axes during associative learning via reward and punishment. Learning & Memory, 18(11), 703–711. doi:
    1. McClure, S. M. , York, M. K. , & Montague, P. R. (2004). The neural substrates of reward processing in humans: the modern role of fMRI. The Neuroscientist, 10(3), 260–268. doi:
    1. Miller, E. M. , Shankar, M. U. , Knutson, B. , & McClure, S. M. (2014). Dissociating motivation from reward in human striatal activity. Journal of Cognitive Neuroscience, 26(5), 1075–1084. doi:
    1. Mogenson, G. J. , Jones, D. L. , & Yim, C. Y. (1980). From motivation to action: functional interface between the limbic system and the motor system. Progress in Neurobiology, 14(2–3), 69–97. doi:
    1. Mori, A. , Okamoto, Y. , Okada, G. , Takagaki, K. , Jinnin, R. , Takamura, M. , … Yamawaki, S. (2016). Behavioral activation can normalize neural hypoactivation in subthreshold depression during a monetary incentive delay task. Journal of Affective Disorders, 189, 254–262. doi:
    1. Mucci, A. , Dima, D. , Soricelli, A. , Volpe, U. , Bucci, P. , Frangou, S. , … Maj, M. (2015). Is avolition in schizophrenia associated with a deficit of dorsal caudate activity? A functional magnetic resonance imaging study during reward anticipation and feedback. Psychological Medicine, 45(08), 1765–1778. doi:
    1. Nakao, T. , Ohira, H. , & Northoff, G. (2012). Distinction between externally vs. Internally guided decision‐making: operational differences, meta‐analytical comparisons and their theoretical implications. Frontiers in Neuroscience, 6(MAR), 1–26. doi:
    1. Nieuwenhuis, S. , Heslenfeld, D. J. , von Geusau, N. J. A. , Mars, R. B. , Holroyd, C. B. , & Yeung, N. (2005). Activity in human reward‐sensitive brain areas is strongly context dependent. NeuroImage, 25(4), 1302–1309. doi:
    1. Niv, Y. , Daw, N. D. , Joel, D. , & Dayan, P. (2007). Tonic dopamine: opportunity costs and the control of response vigor. Psychopharmacology, 191(3), 507–520. doi:
    1. Norris, D. G. (2012). Spin‐echo fMRI: the poor relation? NeuroImage, 62(2), 1109–1115. doi:
    1. Northoff, G. , Heinzel, A. , de Greck, M. , Bermpohl, F. , Dobrowolny, H. , & Panksepp, J. (2006). Self‐referential processing in our brain‐A meta‐analysis of imaging studies on the self. NeuroImage, 31(1), 440–457. doi:
    1. O'Doherty, J. P. (2009). Reward Processing: Human Imaging In Encyclopedia of Neuroscience (pp. 335–343. Elsevier. doi:
    1. O'Doherty, J. P. , Dayan, P. , Schultz, J. , Deichmann, R. , Friston, K. , & Dolan, R. J. (2004). Dissociable role of ventral and dorsal striatum in instrumental conditioning. Science, 304(5669), 452–454. doi:
    1. O'Doherty, J. P. , Hampton, A. , & Kim, H. (2007). Model‐based fMRI and its application to reward learning and decision making. Annals of the New York Academy of Sciences, 1104(1), 35–53. doi:
    1. Ojemann, J. G. , Akbudak, E. , Snyder, A. Z. , McKinstry, R. C. , Raichle, M. E. , & Conturo, T. E. (1997). Anatomic localization and quantitative analysis of gradient refocused echo‐planar fMRI susceptibility artifacts. NeuroImage, 6(3), 156–167. doi:
    1. Ousdal, O. T. , Specht, K. , Server, A. , Andreassen, O. A. , Dolan, R. J. , & Jensen, J. (2014). The human amygdala encodes value and space during decision making. NeuroImage, 101, 712–719. doi:
    1. Palminteri, S. , Justo, D. , Jauffret, C. , Pavlicek, B. , Dauta, A. , Delmaire, C. , … Pessiglione, M. (2012). Critical roles for anterior insula and dorsal striatum in punishment‐based avoidance learning. Neuron, 76(5), 998–1009. doi:
    1. Patel, K. T. , Stevens, M. C. , Meda, S. A. , Muska, C. , Thomas, A. D. , Potenza, M. N. , & Pearlson, G. D. (2013). Robust changes in reward circuitry during reward loss in current and former cocaine users during performance of a monetary incentive delay task. Biological Psychiatry, 74(7), 529–537. doi:
    1. Pearson, J. M. , Hayden, B. Y. , Raghavachari, S. , & Platt, M. L. (2009). Neurons in posterior cingulate cortex signal exploratory decisions in a dynamic multioption choice task. Current Biology, 19(18), 1532–1537. doi:
    1. Pearson, J. M. , Heilbronner, S. R. , Barack, D. L. , Hayden, B. Y. , & Platt, M. L. (2011). Posterior cingulate cortex: adapting behavior to a changing world. Trends in Cognitive Sciences, 15(4), 143–151. doi:
    1. Pecina, S. , & Berridge, K. C. (2005). Hedonic hot spot in nucleus accumbens shell: where do μ‐opioids cause increased hedonic impact of sweetness? Journal of Neuroscience, 25(50), 11777–11786. doi:
    1. Peck, C. J. , & Salzman, C. D. (2014). Amygdala neural activity reflects spatial attention towards stimuli promising reward or threatening punishment. eLife, 3, e04478. doi:
    1. Peters, J. , Bromberg, U. , Schneider, S. , Brassen, S. , Menz, M. , Banaschewski, T. , … Büchel, C. (2011). Lower ventral striatal activation during reward anticipation in adolescent smokers. American Journal of Psychiatry, 168(5), 540–549. doi:
    1. Peters, J. , & Büchel, C. (2010). Neural representations of subjective reward value. Behavioural Brain Research, 213(2), 135–141. doi:
    1. Pfabigan, D. M. , Seidel, E.‐M. , Sladky, R. , Hahn, A. , Paul, K. , Grahl, A. , … Lamm, C. (2014). P300 amplitude variation is related to ventral striatum BOLD response during gain and loss anticipation: an EEG and fMRI experiment. NeuroImage, 96, 12–21. doi:
    1. Plassmann, H. , O'Doherty, J. , & Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal of Neuroscience, 27(37), 9984–9988. doi:
    1. Poldrack, R. A. , & Gorgolewski, K. J. (2014). Making big data open: data sharing in neuroimaging. Nature Neuroscience, 17(11), 1510–1517. doi:
    1. Rademacher, L. , Krach, S. , Kohls, G. , Irmak, A. , Gründer, G. , & Spreckelmeyer, K. N. (2010). Dissociation of neural networks for anticipation and consumption of monetary and social rewards. NeuroImage, 49(4), 3276–3285. doi:
    1. Rademacher, L. , Salama, A. , Gründer, G. , & Spreckelmeyer, K. N. (2014). Differential patterns of nucleus accumbens activation during anticipation of monetary and social reward in young and older adults. Social Cognitive and Affective Neuroscience, 9(6), 825–831. doi:
    1. Richards, J. M. , Plate, R. C. , & Ernst, M. (2013). A systemic review of fMRI reward paradigms in adolescents versus adults: the impact of task design and implications for understanding neurodevelopment. Neuroscience and Biobehavioral Reviews, 37(5), 976–991. doi:
    1. Rolls, E. T. , McCabe, C. , & Redoute, J. (2008). Expected value, reward outcome, and temporal difference error representations in a probabilistic decision task. Cerebral Cortex, 18(3), 652–663. doi:
    1. Romanczuk‐Seiferth, N. , Koehler, S. , Dreesen, C. , Wüstenberg, T. , & Heinz, A. (2015). Pathological gambling and alcohol dependence: neural disturbances in reward and loss avoidance processing. Addiction Biology, 20(3), 557–569. doi:
    1. Rushworth, M. F. S. , Noonan, M. P. , Boorman, E. D. , Walton, M. E. , & Behrens, T. E. (2011). Frontal cortex and reward‐guided learning and decision‐making. Neuron, 70(6), 1054–1069. doi:
    1. Saji, K. , Ikeda, Y. , Kim, W. , Shingai, Y. , Tateno, A. , Takahashi, H. , … Suzuki, H. (2013). Acute NK1 receptor antagonist administration affects reward incentive anticipation processing in healthy volunteers. The International Journal of Neuropsychopharmacology, 16(07), 1461–1471. doi:
    1. Salamone, J. D. , & Correa, M. (2012). The mysterious motivational functions of mesolimbic dopamine. Neuron, 76(3), 470–485. doi:
    1. Salimi‐Khorshidi, G. , Smith, S. M. , Keltner, J. R. , Wager, T. D. , & Nichols, T. E. (2009). Meta‐analysis of neuroimaging data: a comparison of image‐based and coordinate‐based pooling of studies. NeuroImage, 45(3), 810–823. doi:
    1. Samanez‐Larkin, G. R. , Gibbs, S. E. B. , Khanna, K. , Nielsen, L. , Carstensen, L. L. , & Knutson, B. (2007). Anticipation of monetary gain but not loss in healthy older adults. Nature Neuroscience, 10(6), 787–791. doi:
    1. Schacter, D. L. , Addis, D. R. , & Buckner, R. L. (2007). Remembering the past to imagine the future: the prospective brain. Nature Reviews Neuroscience, 8(9), 657–661. doi:
    1. Schlagenhauf, F. , Juckel, G. , Koslowski, M. , Kahnt, T. , Knutson, B. , Dembler, T. , … Heinz, A. (2008). Reward system activation in schizophrenic patients switched from typical neuroleptics to olanzapine. Psychopharmacology, 196(4), 673–684. doi:
    1. Schmidt, L. , Lebreton, M. , Cléry‐Melin, M. L. , Daunizeau, J. , & Pessiglione, M. (2012). Neural mechanisms underlying motivation of mental versus physical effort. PLoS Biology, 10(2), e1001266. doi:
    1. Schneider, S. , Peters, J. , Bromberg, U. , Brassen, S. , Miedl, S. F. , Banaschewski, T. , … Büchel, C. (2012). Risk taking and the adolescent reward system: a potential common link to substance abuse. American Journal of Psychiatry, 169(1), 39–46. doi:
    1. Schoenbaum, G. , Takahashi, Y. , Liu, T. L. , & Mcdannald, M. A. (2011). Does the orbitofrontal cortex signal value? Annals of the New York Academy of Sciences, 1239(1), 87–99. doi:
    1. Schönberg, T. , Daw, N. D. , Joel, D. , & O'Doherty, J. P. (2007). Reinforcement learning signals in the human striatum distinguish learners from nonlearners during reward‐based decision making. The Journal of Neuroscience, 27(47), 12860–12867. doi:
    1. Schultz, W. , & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23, 473–500. doi:
    1. Sescousse, G. , Caldú, X. , Segura, B. , & Dreher, J. C. (2013). Processing of primary and secondary rewards: A quantitative meta‐analysis and review of human functional neuroimaging studies. Neuroscience and Biobehavioral Reviews, 37(4), 681–696. doi:
    1. Silverman, M. H. , Jedd, K. , & Luciana, M. (2015). Neural networks involved in adolescent reward processing: an activation likelihood estimation meta‐analysis of functional neuroimaging studies. NeuroImage, 122, 427–439. doi:
    1. Small, D. M. , Gregory, M. D. , Mak, Y. E. , Gitelman, D. , Mesulam, M. M. , & Parrish, T. (2003). Dissociation of neural representation of intensity and affective valuation in human gustation. Neuron, 39(4), 701–711. doi:
    1. Stark, R. , Bauer, E. , Merz, C. J. , Zimmermann, M. , Reuter, M. , Plichta, M. M. , … Herrmann, M. J. (2011). ADHD related behaviors are associated with brain activation in the reward system. Neuropsychologia, 49(3), 426–434. doi:
    1. Stoy, M. , Schlagenhauf, F. , Schlochtermeier, L. , Wrase, J. , Knutson, B. , Lehmkuhl, U. , … Ströhle, A. (2011). Reward processing in male adults with childhood ADHD‐a comparison between drug‐naïve and methylphenidate‐treated subjects. Psychopharmacology, 215(3), 467–481. doi:
    1. Stoy, M. , Schlagenhauf, F. , Sterzer, P. , Bermpohl, F. , Hägele, C. , Suchotzki, K. , … Ströhle, A. (2012). Hyporeactivity of ventral striatum towards incentive stimuli in unmedicated depressed patients normalizes after treatment with escitalopram. Journal of Psychopharmacology, 26(5), 677–688. doi:
    1. Ströhle, A. , Stoy, M. , Wrase, J. , Schwarzer, S. , Schlagenhauf, F. , Huss, M. , … Heinz, A. (2008). Reward anticipation and outcomes in adult males with attention‐deficit/hyperactivity disorder. NeuroImage, 39(3), 966–972. doi:
    1. Tom, S. M. , Fox, C. R. , Trepel, C. , & Poldrack, R. A. (2007). The neural basis of loss aversion in decision‐making under risk. Science, 315(5811), 515–518. doi:
    1. Treadway, M. T. , Buckholtz, J. W. , & Zald, D. H. (2013). Perceived stress predicts altered reward and loss feedback processing in medial prefrontal cortex. Frontiers in Human Neuroscience, 7, 180. doi:
    1. Turkeltaub, P. E. , Eickhoff, S. B. , Laird, A. R. , Fox, M. , Wiener, M. , & Fox, P. (2012). Minimizing within‐experiment and within‐group effects in activation likelihood estimation meta‐analyses. Human Brain Mapping, 33(1), 1–13. doi:
    1. Vassena, E. , Silvetti, M. , Boehler, C. N. , Achten, E. , Fias, W. , & Verguts, T. (2014). Overlapping neural systems represent cognitive effort and reward anticipation. PLoS ONE, 9(3), e91008. doi:
    1. Walter, M. , Stadler, J. , Tempelmann, C. , Speck, O. , & Northoff, G. (2008). High resolution fMRI of subcortical regions during visual erotic stimulation at 7 T. Magnetic Resonance Materials in Physics, Biology and Medicine, 21(1–2), 103–111. doi:
    1. Walton, M. E. , Chau, B. K. H. , & Kennerley, S. W. (2015). Prioritising the relevant information for learning and decision making within orbital and ventromedial prefrontal cortex. Current Opinion in Behavioral Sciences, 1, 78–85. doi:
    1. Wang, K. S. , Smith, D. V. , & Delgado, M. R. (2016). Using fMRI to study reward processing in humans : past, present, and future. Journal of Neurophysiology, 115(3), 1664–1678. doi:
    1. Weiland, B. J. , Heitzeg, M. M. , Zald, D. , Cummiford, C. , Love, T. , Zucker, R. A. , & Zubieta, J. K. (2014). Relationship between impulsivity, prefrontal anticipatory activation, and striatal dopamine release during rewarded task performance. Psychiatry Research—Neuroimaging, 223(3), 244–252. doi:
    1. Weiskopf, N. , Hutton, C. , Josephs, O. , Turner, R. , & Deichmann, R. (2007). Optimized EPI for fMRI studies of the orbitofrontal cortex: compensation of susceptibility‐induced gradients in the readout direction. Magnetic Resonance Materials in Physics, Biology and Medicine, 20(1), 39–49. doi:
    1. Wrase, J. , Kahnt, T. , Schlagenhauf, F. , Beck, A. , Cohen, M. X. , Knutson, B. , & Heinz, A. (2007). Different neural systems adjust motor behavior in response to reward and punishment. NeuroImage, 36(4), 1253–1262. doi:
    1. Wu, C. C. , Samanez‐Larkin, G. R. , Katovich, K. , & Knutson, B. (2014). Affective traits link to reliable neural markers of incentive anticipation. NeuroImage, 84, 279–289. doi:
    1. Xia, X. , Fan, L. , Cheng, C. , Eickhoff, S. B. , Chen, J. , Li, H. , & Jiang, T. (2017). Multimodal connectivity‐based parcellation reveals a shell‐core dichotomy of the human nucleus accumbens. Human Brain Mapping, 38(8), 3878–3898. doi:
    1. Yacubian, J. , Gläscher, J. , Schroeder, K. , Sommer, T. , Braus, D. F. , & Büchel, C. (2006). Dissociable systems for gain‐ and loss‐related value predictions and errors of prediction in the human brain. The Journal of Neuroscience, 26(37), 9530–9537. doi:
    1. Yan, C. , Wang, Y. , Su, L. , Xu, T. , Yin, D‐Z. , Fan, M‐X. , … Chan, R. C. K. (2016). Differential mesolimbic and prefrontal alterations during reward anticipation and consummation in positive and negative schizotypy. Psychiatry Research: Neuroimaging, 254, 127–136. doi:
    1. Yau, W. Y. , Zubieta, J. K. , Weiland, B. J. , Samudra, P. G. , Zucker, R. A. , & Heitzeg, M. M. (2012). Nucleus accumbens response to incentive stimuli anticipation in children of alcoholics: relationships with precursive behavioral risk and lifetime alcohol use. J Neurosci, 32(7), 2544–2551. doi:
    1. Young, C. B. , Chen, T. , Nusslock, R. , Keller, J. , Schatzberg, A. F. , & Menon, V. (2016). Anhedonia and general distress show dissociable ventromedial prefrontal cortex connectivity in major depressive disorder. Translational Psychiatry, 6(5), e810. doi:
    1. Zink, C. F. , Pagnoni, G. , Chappelow, J. , Martin‐Skurski, M. , & Berns, G. S. (2006). Human striatal activation reflects degree of stimulus saliency. NeuroImage, 29(3), 977–983. doi:
    1. Zink, C. F. , Pagnoni, G. , Martin, M. E. , Dhamala, M. , & Berns, G. S. (2003). Human striatal response to salient nonrewarding stimuli. The Journal of Neuroscience, 23(22), 8092–8097. doi:
    1. Zink, C. F. , Pagnoni, G. , Martin‐Skurski, M. E. , Chappelow, J. C. , & Berns, G. S. (2004). Human striatal responses to monetary reward depend on saliency. Neuron, 42(3), 509–517. doi:

Source: PubMed

3
Subskrybuj