The Link between Depression and Chronic Pain: Neural Mechanisms in the Brain

Jiyao Sheng, Shui Liu, Yicun Wang, Ranji Cui, Xuewen Zhang, Jiyao Sheng, Shui Liu, Yicun Wang, Ranji Cui, Xuewen Zhang

Abstract

Chronic pain, as a stress state, is one of the critical factors for determining depression, and their coexistence tends to further aggravate the severity of both disorders. Unfortunately, their association remains unclear, which creates a bottleneck problem for managing chronic pain-induced depression. In recent years, studies have found considerable overlaps between pain- and depression-induced neuroplasticity changes and neurobiological mechanism changes. Such overlaps are vital to facilitating the occurrence and development of chronic pain and chronic pain-induced depression. In this review, we summarized the role of neuroplasticity in the occurrence and development of the two disorders in question and explored individualized application strategies of analgesic drugs and antidepressants that have different pharmacological effects in the treatment of chronic pain-induced depression. Therefore, this review may provide new insights into the understanding of association between chronic pain and depression.

Figures

Figure 1
Figure 1
Potential mechanisms of opioids in chronic pain-induced depression therapy.
Figure 2
Figure 2
The treatment of chronic pain-induced depression.

References

    1. Li X., Hu L. The role of stress regulation on neural plasticity in pain chronification. Neural Plasticity. 2016;2016:9. doi: 10.1155/2016/6402942.6402942
    1. Treede R. D., Rief W., Barke A., et al. A classification of chronic pain for ICD-11. Pain. 2015;156(6):1003–1007. doi: 10.1097/j.pain.0000000000000160.
    1. Li X. Y., Wan Y., Tang S. J., Guan Y., Wei F., Ma D. Maladaptive plasticity and neuropathic pain. Neural Plasticity. 2016;2016:2. doi: 10.1155/2016/4842159.4842159
    1. Cohen S. P., Mao J. Neuropathic pain: mechanisms and their clinical implications. BMJ. 2014;348:p. f7656. doi: 10.1136/bmj.f7656.
    1. Breivik H., Collett B., Ventafridda V., Cohen R., Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. European Journal of Pain. 2006;10(4):287–333. doi: 10.1016/j.ejpain.2005.06.009.
    1. Whiteford H. A., Degenhardt L., Rehm J., et al. Global burden of disease attributable to mental and substance use disorders: findings from the Global Burden of Disease Study 2010. Lancet. 2013;382(9904):1575–1586. doi: 10.1016/S0140-6736(13)61611-6.
    1. Collins P. Y., Patel V., Joestl S. S., et al. Grand challenges in global mental health. Nature. 2011;475(7354):27–30. doi: 10.1038/475027a.
    1. von Knorring L., Perris C., Eisemann M., Eriksson U., Perris H. Pain as a symptom in depressive disorders. II. Relationship to personality traits as assessed by means of KSP. Pain. 1983;17(4):377–384. doi: 10.1016/0304-3959(83)90169-0.
    1. Lee P., Zhang M., Hong J. P., et al. Frequency of painful physical symptoms with major depressive disorder in Asia: relationship with disease severity and quality of life. The Journal of Clinical Psychiatry. 2009;70(1):83–91. doi: 10.4088/JCP.08m04114.
    1. Aguera-Ortiz L., Failde I., Mico J. A., Cervilla J., Lopez-Ibor J. J. Pain as a symptom of depression: prevalence and clinical correlates in patients attending psychiatric clinics. Journal of Affective Disorders. 2011;130(1-2):106–112. doi: 10.1016/j.jad.2010.10.022.
    1. Bair M. J., Robinson R. L., Katon W., Kroenke K. Depression and pain comorbidity: a literature review. Archives of Internal Medicine. 2003;163(20):2433–2445. doi: 10.1001/archinte.163.20.2433.
    1. Williams L. S., Jones W. J., Shen J., Robinson R. L., Weinberger M., Kroenke K. Prevalence and impact of depression and pain in neurology outpatients. Journal of Neurology, Neurosurgery, and Psychiatry. 2003;74(11):1587–1589. doi: 10.1136/jnnp.74.11.1587.
    1. Fishbain D. A., Cutler R., Rosomoff H. L., Rosomoff R. S. Chronic pain-associated depression: antecedent or consequence of chronic pain? A review. The Clinical Journal of Pain. 1997;13(2):116–137. doi: 10.1097/00002508-199706000-00006.
    1. Meerwijk E. L., Ford J. M., Weiss S. J. Brain regions associated with psychological pain: implications for a neural network and its relationship to physical pain. Brain Imaging and Behavior. 2013;7(1):1–14. doi: 10.1007/s11682-012-9179-y.
    1. MacQueen G. M., Yucel K., Taylor V. H., Macdonald K., Joffe R. Posterior hippocampal volumes are associated with remission rates in patients with major depressive disorder. Biological Psychiatry. 2008;64(10):880–883. doi: 10.1016/j.biopsych.2008.06.027.
    1. Gold P. W., Machado-Vieira R., Pavlatou M. G. Clinical and biochemical manifestations of depression: relation to the neurobiology of stress. Neural Plasticity. 2015;2015:11. doi: 10.1155/2015/581976.581976
    1. Chan S. W., Harmer C. J., Norbury R., O'Sullivan U., Goodwin G. M., Portella M. J. Hippocampal volume in vulnerability and resilience to depression. Journal of Affective Disorders. 2016;189:199–202. doi: 10.1016/j.jad.2015.09.021.
    1. Kang H. J., Voleti B., Hajszan T., et al. Decreased expression of synapse-related genes and loss of synapses in major depressive disorder. Nature Medicine. 2012;18(9):1413–1417. doi: 10.1038/nm.2886.
    1. Baliki M. N., Petre B., Torbey S., et al. Corticostriatal functional connectivity predicts transition to chronic back pain. Nature Neuroscience. 2012;15(8):1117–1119. doi: 10.1038/nn.3153.
    1. Cohen E. J., Quarta E., Bravi R., Granato A., Minciacchi D. Neural plasticity and network remodeling: from concepts to pathology. Neuroscience. 2017;344:326–345. doi: 10.1016/j.neuroscience.2016.12.048.
    1. Haase J., Brown E. Integrating the monoamine, neurotrophin and cytokine hypotheses of depression—a central role for the serotonin transporter? Pharmacology & Therapeutics. 2015;147:1–11. doi: 10.1016/j.pharmthera.2014.10.002.
    1. Cleare A., Pariante C. M., Young A. H., et al. Evidence-based guidelines for treating depressive disorders with antidepressants: a revision of the 2008 British Association for Psychopharmacology guidelines. Journal of Psychopharmacology. 2015;29(5):459–525. doi: 10.1177/0269881115581093.
    1. Cipriani A., Furukawa T. A., Salanti G., et al. Comparative efficacy and acceptability of 12 new-generation antidepressants: a multiple-treatments meta-analysis. Lancet. 2009;373(9665):746–758. doi: 10.1016/S0140-6736(09)60046-5.
    1. Doboszewska U., Wlaz P., Nowak G., Radziwon-Zaleska M., Cui R., Mlyniec K. Zinc in the monoaminergic theory of depression: its relationship to neural plasticity. Neural Plasticity. 2017;2017:18. doi: 10.1155/2017/3682752.3682752
    1. Ossipov M. H., Dussor G. O., Porreca F. Central modulation of pain. The Journal of Clinical Investigation. 2010;120(11):3779–3787. doi: 10.1172/JCI43766.
    1. Taylor A. M., Becker S., Schweinhardt P., Cahill C. Mesolimbic dopamine signaling in acute and chronic pain: implications for motivation, analgesia, and addiction. Pain. 2016;157(6):1194–1198. doi: 10.1097/j.pain.0000000000000494.
    1. Loggia M. L., Berna C., Kim J., et al. Disrupted brain circuitry for pain-related reward/punishment in fibromyalgia. Arthritis & Rhematology. 2014;66(1):203–212. doi: 10.1002/art.38191.
    1. Martikainen I. K., Nuechterlein E. B., Pecina M., et al. Chronic back pain is associated with alterations in dopamine neurotransmission in the ventral striatum. The Journal of Neuroscience. 2015;35(27):9957–9965. doi: 10.1523/JNEUROSCI.4605-14.2015.
    1. Glantz L. A., Gilmore J. H., Overstreet D. H., Salimi K., Lieberman J. A., Jarskog L. F. Pro-apoptotic Par-4 and dopamine D2 receptor in temporal cortex in schizophrenia, bipolar disorder and major depression. Schizophrenia Research. 2010;118(1–3):292–299. doi: 10.1016/j.schres.2009.12.027.
    1. Sagheddu C., Aroni S., De Felice M., et al. Enhanced serotonin and mesolimbic dopamine transmissions in a rat model of neuropathic pain. Neuropharmacology. 2015;97:383–393. doi: 10.1016/j.neuropharm.2015.06.003.
    1. Foltran R. B., Diaz S. L. BDNF isoforms: a round trip ticket between neurogenesis and serotonin? Journal of Neurochemistry. 2016;138(2) Part B:204–221. doi: 10.1016/j.nbd.2016.07.010.
    1. Huang E. J., Reichardt L. F. Trk receptors: roles in neuronal signal transduction. Annual Review of Biochemistry. 2003;72:609–642. doi: 10.1146/annurev.biochem.72.121801.161629.
    1. Duman R. S., Aghajanian G. K., Sanacora G., Krystal J. H. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nature Medicine. 2016;22(3):238–249. doi: 10.1038/nm.4050.
    1. Krishnan V., Nestler E. J. The molecular neurobiology of depression. Nature. 2008;455(7215):894–902. doi: 10.1038/nature07455.
    1. Bocchio-Chiavetto L., Bagnardi V., Zanardini R., et al. Serum and plasma BDNF levels in major depression: a replication study and meta-analyses. The World Journal of Biological Psychiatry. 2010;11(6):763–773. doi: 10.3109/15622971003611319.
    1. Villanueva R. Neurobiology of major depressive disorder. Neural Plasticity. 2013;2013:7. doi: 10.1155/2013/873278.873278
    1. Yajima Y., Narita M., Usui A., et al. Direct evidence for the involvement of brain-derived neurotrophic factor in the development of a neuropathic pain-like state in mice. Journal of Neurochemistry. 2005;93(3):584–594. doi: 10.1111/j.1471-4159.2005.03045.x.
    1. Garraway S. M., Huie J. R. Spinal plasticity and behavior: BDNF-induced neuromodulation in uninjured and injured spinal cord. Neural Plasticity. 2016;2016:19. doi: 10.1155/2016/9857201.9857201
    1. Wood S. K., Wood C. S., Lombard C. M., et al. Inflammatory factors mediate vulnerability to a social stress-induced depressive-like phenotype in passive coping rats. Biological Psychiatry. 2015;78(1):38–48. doi: 10.1016/j.biopsych.2014.10.026.
    1. Walker A. K., Kavelaars A., Heijnen C. J., Dantzer R. Neuroinflammation and comorbidity of pain and depression. Pharmacological Reviews. 2014;66(1):80–101. doi: 10.1124/pr.113.008144.
    1. Kalkman H. O., Feuerbach D. Antidepressant therapies inhibit inflammation and microglial M1-polarization. Pharmacology & Therapeutics. 2016;163:82–93. doi: 10.1016/j.pharmthera.2016.04.001.
    1. Capuron L., Neurauter G., Musselman D. L., et al. Interferon-alpha-induced changes in tryptophan metabolism. Relationship to depression and paroxetine treatment. Biological Psychiatry. 2003;54(9):906–914. doi: 10.1016/S0006-3223(03)00173-2.
    1. Capuron L., Ravaud A., Dantzer R. Early depressive symptoms in cancer patients receiving interleukin 2 and/or interferon alfa-2b therapy. Journal of Clinical Oncology. 2000;18(10):2143–2151. doi: 10.1200/JCO.2000.18.10.2143.
    1. Musselman D. L., Lawson D. H., Gumnick J. F., et al. Paroxetine for the prevention of depression induced by high-dose interferon alfa. The New England Journal of Medicine. 2001;344(13):961–966. doi: 10.1056/NEJM200103293441303.
    1. Raison C. L., Woolwine B. J., Demetrashvili M. F., et al. Paroxetine for prevention of depressive symptoms induced by interferon-alpha and ribavirin for hepatitis C. Alimentary Pharmacology & Therapeutics. 2007;25(10):1163–1174. doi: 10.1111/j.1365-2036.2007.03316.x.
    1. Raison C. L., Dantzer R., Kelley K. W., et al. CSF concentrations of brain tryptophan and kynurenines during immune stimulation with IFN-alpha: relationship to CNS immune responses and depression. Molecular Psychiatry. 2010;15(4):393–403.
    1. Wichers M. C., Koek G. H., Robaeys G., Verkerk R., Scharpe S., Maes M. IDO and interferon-alpha-induced depressive symptoms: a shift in hypothesis from tryptophan depletion to neurotoxicity. Molecular Psychiatry. 2005;10(6):538–544.
    1. Sanacora G., Zarate C. A., Krystal J. H., Manji H. K. Targeting the glutamatergic system to develop novel, improved therapeutics for mood disorders. Nature Reviews. Drug Discovery. 2008;7(5):426–437. doi: 10.1038/nrd2462.
    1. Yao L., Zhou Q. Enhancing NMDA receptor function: recent progress on allosteric modulators. Neural Plasticity. 2017;2017:11. doi: 10.1155/2017/2875904.2875904
    1. Zanos P., Moaddel R., Morris P. J., et al. NMDAR inhibition-independent antidepressant actions of ketamine metabolites. Nature. 2016;533(7604):481–486. doi: 10.1038/nature17998.
    1. Paoletti P., Bellone C., Zhou Q. NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nature Reviews. Neuroscience. 2013;14(6):383–400. doi: 10.1038/nrn3504.
    1. Nozaki C., Vergnano A. M., Filliol D., et al. Zinc alleviates pain through high-affinity binding to the NMDA receptor NR2A subunit. Nature Neuroscience. 2011;14(8):1017–1022. doi: 10.1038/nn.2844.
    1. Kalkman H. O. Alterations in the expression of neuronal chloride transporters may contribute to schizophrenia. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2011;35(2):410–414.
    1. Krystal A. D., Sutherland J., Hochman D. W. Loop diuretics have anxiolytic effects in rat models of conditioned anxiety. PloS One. 2012;7(4, article e35417) doi: 10.1371/journal.pone.0035417.
    1. Matrisciano F., Nasca C., Molinaro G., et al. Enhanced expression of the neuronal K+/Cl- cotransporter, KCC2, in spontaneously depressed Flinders Sensitive Line rats. Brain Research. 2010;1325:112–120. doi: 10.1016/j.brainres.2010.02.017.
    1. Lutz P. E., Kieffer B. L. Opioid receptors: distinct roles in mood disorders. Trends in Neurosciences. 2013;36(3):195–206. doi: 10.1016/j.tins.2012.11.002.
    1. Richards E. M., Mathews D. C., Luckenbaugh D. A., et al. A randomized, placebo-controlled pilot trial of the delta opioid receptor agonist AZD2327 in anxious depression. Psychopharmacology. 2016;233(6):1119–1130. doi: 10.1007/s00213-015-4195-4.
    1. Tao R., Auerbach S. B. GABAergic and glutamatergic afferents in the dorsal raphe nucleus mediate morphine-induced increases in serotonin efflux in the rat central nervous system. The Journal of Pharmacology and Experimental Therapeutics. 2002;303(2):704–710. doi: 10.1124/jpet.102.038133.
    1. Dhir A. Investigational drugs for treating major depressive disorder. Expert Opinion on Investigational Drugs. 2017;26(1):9–24.
    1. Saitoh A., Yamada M. Antidepressant-like effects of delta opioid receptor agonists in animal models. Current Neuropharmacology. 2012;10(3):231–238. doi: 10.2174/157015912803217314.
    1. Fadda P., Scherma M., Fresu A., Collu M., Fratta W. Dopamine and serotonin release in dorsal striatum and nucleus accumbens is differentially modulated by morphine in DBA/2J and C57BL/6J mice. Synapse. 2005;56(1):29–38. doi: 10.1002/syn.20122.
    1. Tenore P. L. Psychotherapeutic benefits of opioid agonist therapy. Journal of Addictive Diseases. 2008;27(3):49–65. doi: 10.1080/10550880802122646.
    1. Mague S. D., Pliakas A. M., Todtenkopf M. S., et al. Antidepressant-like effects of kappa-opioid receptor antagonists in the forced swim test in rats. The Journal of Pharmacology and Experimental Therapeutics. 2003;305(1):323–330. doi: 10.1124/jpet.102.046433.
    1. Berrocoso E., Sanchez-Blazquez P., Garzon J., Mico J. A. Opiates as antidepressants. Current Pharmaceutical Design. 2009;15(14):1612–1622. doi: 10.2174/138161209788168100.
    1. Svingos A. L., Chavkin C., Colago E. E., Pickel V. M. Major coexpression of kappa-opioid receptors and the dopamine transporter in nucleus accumbens axonal profiles. Synapse. 2001;42(3):185–192. doi: 10.1002/syn.10005.
    1. Filliol D., Ghozland S., Chluba J., et al. Mice deficient for delta- and mu-opioid receptors exhibit opposing alterations of emotional responses. Nature Genetics. 2000;25(2):195–200. doi: 10.1038/76061.
    1. Konig M., Zimmer A. M., Steiner H., et al. Pain responses, anxiety and aggression in mice deficient in pre-proenkephalin. Nature. 1996;383(6600):535–538. doi: 10.1038/383535a0.
    1. Ragnauth A., Schuller A., Morgan M., et al. Female preproenkephalin-knockout mice display altered emotional responses. Proceedings of the National Academy of Sciences of the United States of America. 2001;98(4):1958–1963.
    1. Garay R. P., Zarate C. A., Jr., Charpeaud T., et al. Investigational drugs in recent clinical trials for treatment-resistant depression. Expert Review of Neurotherapeutics. 2017;17(6):593–609.
    1. Karp J. F., Butters M. A., Begley A. E., et al. Safety, tolerability, and clinical effect of low-dose buprenorphine for treatment-resistant depression in midlife and older adults. The Journal of Clinical Psychiatry. 2014;75(8):e785–e793.
    1. Pergolizzi J., Boger R. H., Budd K., et al. Opioids and the management of chronic severe pain in the elderly: consensus statement of an International Expert Panel with focus on the six clinically most often used World Health Organization Step III opioids (buprenorphine, fentanyl, hydromorphone, methadone, morphine, oxycodone) Pain Practice. 2008;8(4):287–313. doi: 10.1111/j.1533-2500.2008.00204.x.
    1. Fava M., Memisoglu A., Thase M. E., et al. Opioid modulation with buprenorphine/samidorphan as adjunctive treatment for inadequate response to antidepressants: a randomized double-blind placebo-controlled trial. The American Journal of Psychiatry. 2016;173(5):499–508. doi: 10.1176/appi.ajp.2015.15070921.
    1. Caspani O., Reitz M. C., Ceci A., Kremer A., Treede R. D. Tramadol reduces anxiety-related and depression-associated behaviors presumably induced by pain in the chronic constriction injury model of neuropathic pain in rats. Pharmacology, Biochemistry, and Behavior. 2014;124:290–296. doi: 10.1016/j.pbb.2014.06.018.
    1. Ehrich E., Turncliff Y., DU Y., et al. Evaluation of opioid modulation in major depressive disorder. Neuropsychopharmacology. 2015;40(6):1448–1455. doi: 10.1038/npp.2014.330.
    1. Salas J., Scherrer J. F., Schneider F. D., et al. New-onset depression following stable, slow, and rapid rate of prescription opioid dose escalation. Pain. 2017;158(2):306–312. doi: 10.1097/j.pain.0000000000000763.
    1. Crofford L. J. Adverse effects of chronic opioid therapy for chronic musculoskeletal pain. Nature Reviews Rheumatology. 2010;6(4):191–197. doi: 10.1038/nrrheum.2010.24.
    1. Scherrer J. F., Salas J., Copeland L. A., et al. Prescription opioid duration, dose, and increased risk of depression in 3 large patient populations. Annals of Family Medicine. 2016;14(1):54–62. doi: 10.1370/afm.1885.
    1. Sullivan M. D. Why does depression promote long-term opioid use? Pain. 2016;157(11):2395–2396. doi: 10.1097/j.pain.0000000000000658.
    1. Braden J. B., Sullivan M. D., Ray G. T., et al. Trends in long-term opioid therapy for noncancer pain among persons with a history of depression. General Hospital Psychiatry. 2009;31(6):564–570. doi: 10.1016/j.genhosppsych.2009.07.003.
    1. Cunningham J. L., Craner J. R., Evans M. M., Hooten W. M. Benzodiazepine use in patients with chronic pain in an interdisciplinary pain rehabilitation program. Journal of Pain Research. 2017;10:311–317.
    1. Zeilhofer H. U., Mohler H., Di Lio A. GABAergic analgesia: new insights from mutant mice and subtype-selective agonists. Trends in Pharmacological Sciences. 2009;30(8):397–402. doi: 10.1016/j.tips.2009.05.007.
    1. Rudolph U., Knoflach F. Beyond classical benzodiazepines: novel therapeutic potential of GABAA receptor subtypes. Nature Reviews. Drug Discovery. 2011;10(9):685–697. doi: 10.1038/nrd3502.
    1. Vollenweider I., Smith K. S., Keist R., Rudolph U. Antidepressant-like properties of alpha2-containing GABA(A) receptors. Behavioural Brain Research. 2011;217(1):77–80. doi: 10.1016/j.bbr.2010.10.009.
    1. Mladenovic M., Patsilinakos A., Pirolli A., Sabatino M., Ragno R. Understanding the molecular determinant of reversible human monoamine oxidase B inhibitors containing 2H-chromen-2-one core: structure-based and ligand-based derived 3-D QSAR predictive models. Journal of Chemical Information and Modeling. 2017;57(4):787–814. doi: 10.1021/acs.jcim.6b00608.
    1. Youdim M. B., Edmondson D., Tipton K. F. The therapeutic potential of monoamine oxidase inhibitors. Nature Reviews. Neuroscience. 2006;7(4):295–309. doi: 10.1038/nrn1883.
    1. Zisook S. A clinical overview of monoamine oxidase inhibitors. Psychosomatics. 1985;26(3):240–246. doi: 10.1016/S0033-3182(85)72877-0. 251.
    1. Da Prada M., Kettler R., Keller H. H., et al. From moclobemide to Ro 19-6327 and Ro 41-1049: the development of a new class of reversible, selective MAO-A and MAO-B inhibitors. Journal of Neural Transmission. Supplementum. 1990;29:279–292.
    1. Gareri P., Falconi U., De Fazio P., De Sarro G. Conventional and new antidepressant drugs in the elderly. Progress in Neurobiology. 2000;61(4):353–396. doi: 10.1016/S0301-0082(99)00050-7.
    1. Menkes D. B., Fawcett J. P., Busch A. F., Jones D. Moclobemide in chronic neuropathic pain: preliminary case reports. The Clinical Journal of Pain. 1995;11(2):134–138. doi: 10.1097/00002508-199506000-00008.
    1. Mattia C., Coluzzi F. Indantadol, a novel NMDA antagonist and nonselective MAO inhibitor for the potential treatment of neuropathic pain. IDrugs. 2007;10(9):636–644.
    1. Kremer M., Salvat E., Muller A., Yalcin I., Barrot M. Antidepressants and gabapentinoids in neuropathic pain: mechanistic insights. Neuroscience. 2016;338:183–206. doi: 10.1016/j.neuroscience.2016.06.057.
    1. Kopsky D. J., Hesselink J. M. High doses of topical amitriptyline in neuropathic pain: two cases and literature review. Pain Practice. 2012;12(2):148–153. doi: 10.1111/j.1533-2500.2011.00477.x.
    1. Rowbotham M. C., Reisner L. A., Davies P. S., Fields H. L. Treatment response in antidepressant-naive postherpetic neuralgia patients: double-blind, randomized trial. The Journal of Pain. 2005;6(11):741–746. doi: 10.1016/j.jpain.2005.07.001.
    1. Castren E. Is mood chemistry? Nature Reviews. Neuroscience. 2005;6(3):241–246. doi: 10.1038/nrn1629.
    1. Dale E., Bang-Andersen B., Sanchez C. Emerging mechanisms and treatments for depression beyond SSRIs and SNRIs. Biochemical Pharmacology. 2015;95(2):81–97. doi: 10.1016/j.bcp.2015.03.011.
    1. Gebhardt S., Heinzel-Gutenbrunner M., Konig U. Pain relief in depressive disorders: a meta-analysis of the effects of antidepressants. Journal of Clinical Psychopharmacology. 2016;36(6):658–668. doi: 10.1097/JCP.0000000000000604.
    1. Jaracz J., Gattner K., Jaracz K., Gorna K. Unexplained painful physical symptoms in patients with major depressive disorder: prevalence, pathophysiology and management. CNS Drugs. 2016;30(4):293–304. doi: 10.1007/s40263-016-0328-5.
    1. Baron R., Binder A., Wasner G. Neuropathic pain: diagnosis, pathophysiological mechanisms, and treatment. Lancet Neurology. 2010;9(8):807–819. doi: 10.1016/S1474-4422(10)70143-5.
    1. Tasmuth T., Hartel B., Kalso E. Venlafaxine in neuropathic pain following treatment of breast cancer. European Journal of Pain. 2002;6(1):17–24. doi: 10.1053/eujp.2001.0266.
    1. Nowak G., Ordway G. A., Paul I. A. Alterations in the N-methyl-D-aspartate (NMDA) receptor complex in the frontal cortex of suicide victims. Brain Research. 1995;675(1-2):157–164. doi: 10.1016/0006-8993(95)00057-W.
    1. Gray A. L., Hyde T. M., Deep-Soboslay A., Kleinman J. E., Sodhi M. S. Sex differences in glutamate receptor gene expression in major depression and suicide. Molecular Psychiatry. 2015;20(9):1057–1068. doi: 10.1038/mp.2015.91.
    1. Feyissa A. M., Chandran A., Stockmeier C. A., Karolewicz B. Reduced levels of NR2A and NR2B subunits of NMDA receptor and PSD-95 in the prefrontal cortex in major depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2009;33(1):70–75.
    1. Malan T. P., Mata H. P., Porreca F. Spinal GABA(A) and GABA(B) receptor pharmacology in a rat model of neuropathic pain. Anesthesiology. 2002;96(5):1161–1167. doi: 10.1097/00000542-200205000-00020.
    1. Mitani H., Shirayama Y., Yamada T., Maeda K., Ashby C. R., Jr., Kawahara R. Correlation between plasma levels of glutamate, alanine and serine with severity of depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry. 2006;30(6):1155–1158.
    1. Huang Y. J., Lane H. Y., Lin C. H. New treatment strategies of depression: based on mechanisms related to neuroplasticity. Neural Plasticity. 2017;2017:11. doi: 10.1155/2017/4605971.4605971
    1. Gerhard D. M., Wohleb E. S., Duman R. S. Emerging treatment mechanisms for depression: focus on glutamate and synaptic plasticity. Drug Discovery Today. 2016;21(3):454–464. doi: 10.1016/j.drudis.2016.01.016.
    1. Abdallah C. G., Sanacora G., Duman R. S., Krystal J. H. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annual Review of Medicine. 2015;66:509–523. doi: 10.1146/annurev-med-053013-062946.
    1. Li N., Lee B., Liu R. J., et al. mTOR-dependent synapse formation underlies the rapid antidepressant effects of NMDA antagonists. Science. 2010;329(5994):959–964. doi: 10.1126/science.1190287.
    1. Li N., Liu R. J., Dwyer J. M., et al. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biological Psychiatry. 2011;69(8):754–761. doi: 10.1016/j.biopsych.2010.12.015.
    1. Murrough J. W., Iosifescu D. V., Chang C. L., et al. Antidepressant efficacy of ketamine in treatment-resistant major depression: a two-site randomized controlled trial. American Journal of Psychiatry. 2013;170(10):1134–1142. doi: 10.1176/appi.ajp.2013.13030392.
    1. Dunlop B. W., Nemeroff C. B. The role of dopamine in the pathophysiology of depression. Archives of General Psychiatry. 2007;64(3):327–337. doi: 10.1001/archpsyc.64.3.327.
    1. Lazenka M. F., Freitas K. C., Henck S., Negus S. S. Relief of pain-depressed behavior in rats by activation of D1-like dopamine receptors. The Journal of Pharmacology and Experimental Therapeutics. 2017;362(1):14–23. doi: 10.1124/jpet.117.240796.
    1. Minami S., Satoyoshi H., Ide S., Inoue T., Yoshioka M., Minami M. Suppression of reward-induced dopamine release in the nucleus accumbens in animal models of depression: differential responses to drug treatment. Neuroscience Letters. 2017;650:72–76. doi: 10.1016/j.neulet.2017.04.028.
    1. Treister R., Pud D., Eisenberg E. The dopamine agonist apomorphine enhances conditioned pain modulation in healthy humans. Neuroscience Letters. 2013;548:115–119. doi: 10.1016/j.neulet.2013.05.041.
    1. Tiemann L., Heitmann H., Schulz E., Baumkotter J., Ploner M. Dopamine precursor depletion influences pain affect rather than pain sensation. PloS One. 2014;9(4, article e96167) doi: 10.1371/journal.pone.0096167.
    1. Jiang H., Chen S., Li C., et al. The serum protein levels of the tPA-BDNF pathway are implicated in depression and antidepressant treatment. Translational Psychiatry. 2017;7(4, article e1079) doi: 10.1038/tp.2017.43.
    1. Kerling A., Kuck M., Tegtbur U., et al. Exercise increases serum brain-derived neurotrophic factor in patients with major depressive disorder. Journal of Affective Disorders. 2017;215:152–155. doi: 10.1016/j.jad.2017.03.034.
    1. Castren E., Kojima M. Brain-derived neurotrophic factor in mood disorders and antidepressant treatments. Neurobiology of Disease. 2017;97(Part B):119–126. doi: 10.1016/j.nbd.2016.07.010.
    1. Pandey G. N., Ren X., Rizavi H. S., Conley R. R., Roberts R. C., Dwivedi Y. Brain-derived neurotrophic factor and tyrosine kinase B receptor signalling in post-mortem brain of teenage suicide victims. The International Journal of Neuropsychopharmacology. 2008;11(8):1047–1061.
    1. Paska A. V., Zupanc T., Pregelj P. The role of brain-derived neurotrophic factor in the pathophysiology of suicidal behavior. Psychiatria Danubina. 2013;25(Supplement 2):S341–S344.
    1. Duman R. S. Synaptic plasticity and mood disorders. Molecular Psychiatry. 2002;7(Supplement 1):S29–S34. doi: 10.1038/sj.mp.4001016.
    1. Coull J. A., Beggs S., Boudreau D., et al. BDNF from microglia causes the shift in neuronal anion gradient underlying neuropathic pain. Nature. 2005;438(7070):1017–1021. doi: 10.1038/nature04223.
    1. Choi T. K., Worley M. J., Trim R. S., et al. Effect of adolescent substance use and antisocial behavior on the development of early adulthood depression. Psychiatry Research. 2016;238:143–149. doi: 10.1016/j.psychres.2016.02.036.
    1. Mayor S. Community programme reduces depression in patients with chronic pain, study shows. BMJ. 2016;353:p. i3352.
    1. Goodyer I. M., Reynolds S., Barrett B., et al. Cognitive-behavioural therapy and short-term psychoanalytic psychotherapy versus brief psychosocial intervention in adolescents with unipolar major depression (IMPACT): a multicentre, pragmatic, observer-blind, randomised controlled trial. Health Technology Assessment. 2017;21(12):1–94. doi: 10.3310/hta21120.
    1. Town J. M., Abbass A., Stride C., Bernier D. A randomised controlled trial of intensive short-term dynamic psychotherapy for treatment resistant depression: the Halifax Depression Study. Journal of Affective Disorders. 2017;214:15–25. doi: 10.1016/j.jad.2017.02.035.
    1. Qaseem A., Barry M. J., Kansagara D. Nonpharmacologic versus pharmacologic treatment of adult patients with major depressive disorder: a clinical practice guideline from the American College of Physicians. Annals of Internal Medicine. 2016;164(5):350–359. doi: 10.7326/M15-2570.
    1. Cherkin D. C., Anderson M. L., Sherman K. J., et al. Two-year follow-up of a randomized clinical trial of mindfulness-based stress reduction vs cognitive behavioral therapy or usual care for chronic low back pain. Jama. 2017;317(6):642–644. doi: 10.1001/jama.2016.17814.
    1. Eccleston C., Palermo T. M., Williams A. C., et al. Psychological therapies for the management of chronic and recurrent pain in children and adolescents. Cochrane Database of Systematic Reviews. 2014;(5):p. Cd003968.

Source: PubMed

3
Subskrybuj