Arterial pressure-based cardiac output in septic patients: different accuracy of pulse contour and uncalibrated pressure waveform devices

Xavier Monnet, Nadia Anguel, Brice Naudin, Julien Jabot, Christian Richard, Jean-Louis Teboul, Xavier Monnet, Nadia Anguel, Brice Naudin, Julien Jabot, Christian Richard, Jean-Louis Teboul

Abstract

Introduction: We compared the ability of two devices estimating cardiac output from arterial pressure-curve analysis to track the changes in cardiac output measured with transpulmonary thermodilution induced by volume expansion and norepinephrine in sepsis patients.

Methods: In 80 patients with septic circulatory failure, we administered volume expansion (40 patients) or introduced/increased norepinephrine (40 patients). We measured the pulse contour-derived cardiac index (CI) provided by the PiCCO device (CIpc), the arterial pressure waveform-derived CI provided by the Vigileo device (CIpw), and the transpulmonary thermodilution CI (CItd) before and after therapeutic interventions.

Results: The changes in CIpc accurately tracked the changes in CItd induced by volume expansion (bias, -0.20 +/- 0.63 L/min/m2) as well as by norepinephrine (bias, -0.05 +/- 0.74 L/min/m2). The changes in CIpc accurately detected an increase in CItd >or= 15% induced by volume expansion and norepinephrine introduction/increase (area under ROC curves, 0.878 (0.736 to 0.960) and 0.924 (0.795 to 0.983), respectively; P < 0.05 versus 0.500 for both). The changes in CIpw were less reliable for tracking the volume-induced changes in CItd (bias, -0.23 +/- 0.95 L/min/m2) and norepinephrine-induced changes in CItd (bias, -0.01 +/- 1.75 L/min/m2). The changes in CIpw were unable to detect an increase in CItd >or= 15% induced by volume expansion and norepinephrine introduction/increase (area under ROC curves, 0.564 (0.398 to 0.720) and 0.541 (0.377 to 0.700, respectively, both not significantly different from versus 0.500).

Conclusions: The CIpc was reliable and accurate for assessing the CI changes induced by volume expansion and norepinephrine. By contrast, the CIpw poorly tracked the trends in CI induced by those therapeutic interventions.

Figures

Figure 1
Figure 1
Bland-Altman plots. (a, b) Bland-Altman plot for the changes (in absolute values) and correlation (for the percentage changes) induced by volume expansion on cardiac index obtained by transpulmonary thermodilution (CItd) and cardiac index obtained by the pulse-contour analysis (CIpc). (c, d) Bland-Altman plot for the changes (in absolute values) and correlation (for the percentage changes) induced by volume expansion on cardiac index obtained by transpulmonary thermodilution (CItd) and cardiac index obtained by the arterial pressure waveform analysis (CIpw). Bland-Altman plots: straight line, bias; dashed line: +2 SD/-2 SD limits of agreement); dashed line, correlation line.
Figure 2
Figure 2
Receiver operating characteristic (ROC) curves. (a) ROC curves constructed for testing the ability of the changes in cardiac index obtained by the pulse-contour analysis (CIpc) (straight line) and of the changes in cardiac index obtained by the arterial-pressure waveform analysis (CIpw) (dashed line) to detect an increase in cardiac index obtained by transpulmonary thermodilution (CItd) ≥15% induced by me expansion. (b) ROC curves constructed for testing the ability of the changes in cardiac index obtained by the pulse-contour analysis (CIpc) (straight line) and of the changes in cardiac index obtained by the arterial-pressure waveform analysis (CIpw) (dashed line) to detect an increase in cardiac index obtained by transpulmonary thermodilution (CItd) ≥15% induced by the introduction/increase in norepinephrine.
Figure 3
Figure 3
Bland-Altman plots. (a, b) Bland-Altman plot for the changes (in absolute values) and correlation (for the percentage changes) induced by the introduction/increase in norepinephrine on cardiac index obtained by transpulmonary thermodilution (CItd) and cardiac index obtained by the pulse-contour analysis (CIpc). (c, d) Bland-Altman plot for the changes (in absolute values) and correlation (for the percentage changes) induced by the introduction/increase in norepinephrine on cardiac index obtained by transpulmonary thermodilution (CItd) and cardiac index obtained by the arterial-pressure waveform analysis (CIpw). Plots: straight line, bias; dashed line: +2SD/-2SD limits of agreement); dashed line, correlation line.

References

    1. Antonelli M, Levy M, Andrews PJ, Chastre J, Hudson LD, Manthous C, Meduri GU, Moreno RP, Putensen C, Stewart T, Torres A. Hemodynamic monitoring in shock and implications for management. International Consensus Conference, Paris, France, 27-28 April 2006. Intensive Care Med. 2007;33:575–590. doi: 10.1007/s00134-007-0531-4.
    1. Morgan P, Al-Subaie N, Rhodes A. Minimally invasive cardiac output monitoring. Curr Opin Crit Care. 2008;14:322–326. doi: 10.1097/MCC.0b013e3282fd6e4a.
    1. Bein B, Meybohm P, Cavus E, Renner J, Tonner PH, Steinfath M, Scholz J, Doerges V. The reliability of pulse contour-derived cardiac output during hemorrhage and after vasopressor administration. Anesth Analg. 2007;105:107–113. doi: 10.1213/01.ane.0000268140.02147.ed.
    1. Buhre W, Weyland A, Kazmaier S, Hanekop GG, Baryalei MM, Sydow M, Sonntag H. Comparison of cardiac output assessed by pulse-contour analysis and thermodilution in patients undergoing minimally invasive direct coronary artery bypass grafting. J Cardiothorac Vasc Anesth. 1999;13:437–440. doi: 10.1016/S1053-0770(99)90216-1.
    1. Felbinger TW, Reuter DA, Eltzschig HK, Bayerlein J, Goetz AE. Cardiac index measurements during rapid preload changes: a comparison of pulmonary artery thermodilution with arterial pulse contour analysis. J Clin Anesth. 2005;17:241–248. doi: 10.1016/j.jclinane.2004.06.013.
    1. Felbinger TW, Reuter DA, Eltzschig HK, Moerstedt K, Goedje O, Goetz AE. Comparison of pulmonary arterial thermodilution and arterial pulse contour analysis: evaluation of a new algorithm. J Clin Anesth. 2002;14:296–301. doi: 10.1016/S0952-8180(02)00363-X.
    1. Godje O, Hoke K, Goetz AE, Felbinger TW, Reuter DA, Reichart B, Friedl R, Hannekum A, Pfeiffer UJ. Reliability of a new algorithm for continuous cardiac output determination by pulse-contour analysis during hemodynamic instability. Crit Care Med. 2002;30:52–58. doi: 10.1097/00003246-200201000-00008.
    1. Goedje O, Hoeke K, Lichtwarck-Aschoff M, Faltchauser A, Lamm P, Reichart B. Continuous cardiac output by femoral arterial thermodilution calibrated pulse contour analysis: comparison with pulmonary arterial thermodilution. Crit Care Med. 1999;27:2407–2412. doi: 10.1097/00003246-199911000-00014.
    1. Sander M, von Heymann C, Foer A, von Dossow V, Grosse J, Dushe S, Konertz WF, Spies CD. Pulse contour analysis after normothermic cardiopulmonary bypass in cardiac surgery patients. Crit Care. 2005;9:R729–R734. doi: 10.1186/cc3903.
    1. Manecke GR. Edwards FloTrac sensor and Vigileo monitor: easy, accurate, reliable cardiac output assessment using the arterial pulse wave. Expert Rev Med Devices. 2005;2:523–527. doi: 10.1586/17434440.2.5.523.
    1. Button D, Weibel L, Reuthebuch O, Genoni M, Zollinger A, Hofer CK. Clinical evaluation of the FloTrac/Vigileo system and two established continuous cardiac output monitoring devices in patients undergoing cardiac surgery. Br J Anaesth. 2007;99:329–336. doi: 10.1093/bja/aem188.
    1. Cannesson M, Attof Y, Rosamel P, Joseph P, Bastien O, Lehot JJ. Comparison of FloTrac cardiac output monitoring system in patients undergoing coronary artery bypass grafting with pulmonary artery cardiac output measurements. Eur J Anaesthesiol. 2007;24:832–839. doi: 10.1017/S0265021507001056.
    1. de Waal EE, Kalkman CJ, Rex S, Buhre WF. Validation of a new arterial pulse contour-based cardiac output device. Crit Care Med. 2007;35:1904–1909. doi: 10.1097/01.CCM.0000275429.45312.8C.
    1. Mayer J, Boldt J, Schollhorn T, Rohm KD, Mengistu AM, Suttner S. Semi-invasive monitoring of cardiac output by a new device using arterial pressure waveform analysis: a comparison with intermittent pulmonary artery thermodilution in patients undergoing cardiac surgery. Br J Anaesth. 2007;98:176–182. doi: 10.1093/bja/ael341.
    1. Mayer J, Boldt J, Wolf MW, Lang J, Suttner S. Cardiac output derived from arterial pressure waveform analysis in patients undergoing cardiac surgery: validity of a second generation device. Anesth Analg. 2008;106:867–872. doi: 10.1213/ane.0b013e318161964d. table of contents.
    1. Compton FD, Zukunft B, Hoffmann C, Zidek W, Schaefer JH. Performance of a minimally invasive uncalibrated cardiac output monitoring system (Flotrac/Vigileo) in haemodynamically unstable patients. Br J Anaesth. 2008;100:451–456. doi: 10.1093/bja/aem409.
    1. Lorsomradee S, Lorsomradee S, Cromheecke S, De Hert SG. Uncalibrated arterial pulse contour analysis versus continuous thermodilution technique: effects of alterations in arterial waveform. J Cardiothorac Vasc Anesth. 2007;21:636–643. doi: 10.1053/j.jvca.2007.02.003.
    1. Opdam HI, Wan L, Bellomo R. A pilot assessment of the FloTrac cardiac output monitoring system. Intensive Care Med. 2007;33:344–349. doi: 10.1007/s00134-006-0410-4.
    1. Prasser C, Bele S, Keyl C, Schweiger S, Trabold B, Amann M, Welnhofer J, Wiesenack C. Evaluation of a new arterial pressure-based cardiac output device requiring no external calibration. BMC Anesthesiol. 2007;7:9. doi: 10.1186/1471-2253-7-9.
    1. Sakka SG, Kozieras J, Thuemer O, van Hout N. Measurement of cardiac output: a comparison between transpulmonary thermodilution and uncalibrated pulse contour analysis. Br J Anaesth. 2007;99:337–342. doi: 10.1093/bja/aem177.
    1. Sander M, Spies CD, Grubitzsch H, Foer A, Muller M, von Heymann C. Comparison of uncalibrated arterial waveform analysis in cardiac surgery patients with thermodilution cardiac output measurements. Crit Care. 2006;10:R164. doi: 10.1186/cc5103.
    1. Biancofiore G, Critchley LA, Lee A, Bindi L, Bisa M, Esposito M, Meacci L, Mozzo R, DeSimone P, Urbani L, Filipponi F. Evaluation of an uncalibrated arterial pulse contour cardiac output monitoring system in cirrhotic patients undergoing liver surgery. Br J Anaesth. 2009;102:47–54. doi: 10.1093/bja/aen343.
    1. Della Rocca G, Costa MG, Chiarandini P, Bertossi G, Lugano M, Pompei L, Coccia C, Sainz-Barriga M, Pietropaoli P. Arterial pulse cardiac output agreement with thermodilution in patients in hyperdynamic conditions. J Cardiothorac Vasc Anesth. 2008;22:681–687. doi: 10.1053/j.jvca.2008.02.021.
    1. Biais M, Nouette-Gaulain K, Cottenceau V, Vallet A, Cochard JF, Revel P, Sztark F. Cardiac output measurement in patients undergoing liver transplantation: pulmonary artery catheter versus uncalibrated arterial pressure waveform analysis. Anesth Analg. 2008;106:1480–1486. doi: 10.1213/ane.0b013e318168b309. table of contents.
    1. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Esophageal Doppler monitoring predicts fluid responsiveness in critically ill ventilated patients. Intensive Care Med. 2005;31:1195–1201. doi: 10.1007/s00134-005-2731-0.
    1. Monnet X, Rienzo M, Osman D, Anguel N, Richard C, Pinsky MR, Teboul JL. Passive leg raising predicts fluid responsiveness in the critically ill. Crit Care Med. 2006;34:1402–1407. doi: 10.1097/01.CCM.0000215453.11735.06.
    1. Monnet X, Teboul JL. Passive leg raising. Intensive Care Med. 2008;34:659–663. doi: 10.1007/s00134-008-0994-y.
    1. Monnet X, Osman D, Ridel C, Lamia B, Richard C, Teboul JL. Predicting volume responsiveness by using the end-expiratory occlusion in mechanically ventilated intensive care unit patients. Crit Care Med. 2009;37:951–956. doi: 10.1097/CCM.0b013e3181968fe1.
    1. Michard F, Boussat S, Chemla D, Anguel N, Mercat A, Lecarpentier Y, Richard C, Pinsky MR, Teboul JL. Relation between respiratory changes in arterial pulse pressure and fluid responsiveness in septic patients with acute circulatory failure. Am J Respir Crit Care Med. 2000;162:134–138.
    1. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, Reinhart K, Angus DC, Brun-Buisson C, Beale R, Calandra T, Dhainaut JF, Gerlach H, Harvey M, Marini JJ, Marshall J, Ranieri M, Ramsay G, Sevransky J, Thompson BT, Townsend S, Vender JS, Zimmerman JL, Vincent JL. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Crit Care Med. 2008;36:296–327. doi: 10.1097/01.CCM.0000298158.12101.41.
    1. Pottecher T, Calvat S, Dupont H, Durand-Gasselin J, Gerbeaux P. Haemodynamic management of severe sepsis: recommendations of the French Intensive Care Societies (SFAR/SRLF) Consensus Conference, 13 October Paris, France. Crit Care. 2006;10:311. doi: 10.1186/cc4965.
    1. Hamzaoui O, Monnet X, Richard C, Osman D, Chemla D, Teboul JL. Effects of changes in vascular tone on the agreement between pulse contour and transpulmonary thermodilution cardiac output measurements within an up to 6-hour calibration-free period. Crit Care Med. 2008;36:434–440. doi: 10.1097/01.CCM.OB013E318161FEC4.
    1. Critchley LA, Critchley JA. A meta-analysis of studies using bias and precision statistics to compare cardiac output measurement techniques. J Clin Monit Comput. 1999;15:85–91. doi: 10.1023/A:1009982611386.
    1. Bein B, Worthmann F, Tonner PH, Paris A, Steinfath M, Hedderich J, Scholz J. Comparison of esophageal Doppler, pulse contour analysis, and real-time pulmonary artery thermodilution for the continuous measurement of cardiac output. J Cardiothorac Vasc Anesth. 2004;18:185–189. doi: 10.1053/j.jvca.2004.01.025.
    1. Rodig G, Prasser C, Keyl C, Liebold A, Hobbhahn J. Continuous cardiac output measurement: pulse contour analysis vs thermodilution technique in cardiac surgical patients. Br J Anaesth. 1999;82:525–530.
    1. Zollner C, Haller M, Weis M, Morstedt K, Lamm P, Kilger E, Goetz AE. Beat-to-beat measurement of cardiac output by intravascular pulse contour analysis: a prospective criterion standard study in patients after cardiac surgery. J Cardiothorac Vasc Anesth. 2000;14:125–129. doi: 10.1016/S1053-0770(00)90003-X.
    1. Senn A, Button D, Zollinger A, Hofer CK. Assessment of cardiac output changes using a modified Flotrac/Vigileo algorithm in cardiac surgery patients. Crit Care. 2009;13:R32. doi: 10.1186/cc7739.
    1. Cecconi M, Rhodes A, Poloniecki J, Della Rocca G, Grounds RM. Bench-to-bedside review: the importance of the precision of the reference technique in method comparison studies with specific reference to the measurement of cardiac output. Crit Care. 2009;13:201. doi: 10.1186/cc7129.

Source: PubMed

3
Subskrybuj