First-In-Class CD13-Targeted Tissue Factor tTF-NGR in Patients with Recurrent or Refractory Malignant Tumors: Results of a Phase I Dose-Escalation Study

Christoph Schliemann, Mirjam Gerwing, Hauke Heinzow, Saliha Harrach, Christian Schwöppe, Moritz Wildgruber, Anna A Hansmeier, Linus Angenendt, Andrew F Berdel, Ursula Stalmann, Björna Berning, Karsten Kratz-Albers, Kristina Middelberg-Bisping, Stefanie Wiebe, Jörn Albring, Christian Wilms, Wolfgang Hartmann, Eva Wardelmann, Tobias Krähling, Walter Heindel, Joachim Gerss, Eike Bormann, Hartmut Schmidt, Georg Lenz, Torsten Kessler, Rolf M Mesters, Wolfgang E Berdel, Christoph Schliemann, Mirjam Gerwing, Hauke Heinzow, Saliha Harrach, Christian Schwöppe, Moritz Wildgruber, Anna A Hansmeier, Linus Angenendt, Andrew F Berdel, Ursula Stalmann, Björna Berning, Karsten Kratz-Albers, Kristina Middelberg-Bisping, Stefanie Wiebe, Jörn Albring, Christian Wilms, Wolfgang Hartmann, Eva Wardelmann, Tobias Krähling, Walter Heindel, Joachim Gerss, Eike Bormann, Hartmut Schmidt, Georg Lenz, Torsten Kessler, Rolf M Mesters, Wolfgang E Berdel

Abstract

Background: Aminopeptidase N (CD13) is present on tumor vasculature cells and some tumor cells. Truncated tissue factor (tTF) with a C-terminal NGR-peptide (tTF-NGR) binds to CD13 and causes tumor vascular thrombosis with infarction.

Methods: We treated 17 patients with advanced cancer beyond standard therapies in a phase I study with tTF-NGR (1-h infusion, central venous access, 5 consecutive days, and rest periods of 2 weeks). The study allowed intraindividual dose escalations between cycles and established Maximum Tolerated Dose (MTD) and Dose-Limiting Toxicity (DLT) by verification cohorts.

Results: MTD was 3 mg/m2 tTF-NGR/day × 5, q day 22. DLT was an isolated and reversible elevation of high sensitivity (hs) Troponin T hs without clinical sequelae. Three thromboembolic events (grade 2), tTF-NGR-related besides other relevant risk factors, were reversible upon anticoagulation. Imaging by contrast-enhanced ultrasound (CEUS) and dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI) showed major tumor-specific reduction of blood flow in all measurable lesions as proof of principle for the mode of action of tTF-NGR. There were no responses as defined by Response Evaluation Criteria in Solid Tumors (RECIST), although some lesions showed intratumoral hemorrhage and necrosis after tTF-NGR application. Pharmacokinetic analysis showed a t1/2(terminal) of 8 to 9 h without accumulation in daily administrations.

Conclusion: tTF-NGR is safely applicable with this regimen. Imaging showed selective reduction of tumor blood flow and intratumoral hemorrhage and necrosis.

Keywords: CD13; aminopeptidase N; first-in-class phase I study; tTF-NGR; vascular targeting.

Conflict of interest statement

W.E.B. and R.M. share a patent on vascular targeting with tissue factor-constructs. W.E.B. and C.S. (Christian Schwöppe) founded a biotech company named ANTUREC Pharmaceuticals GmbH, which will be involved in the future development of tTF-NGR. The other authors declared no competing financial interests.

Figures

Figure 1
Figure 1
Distribution of all patients treated and cycles of tTF-NGR given over the dose range studied. UPN, unique patient number; for further information, see Table 1; C, cycle; EOT, end of treatment; DLT, dose limiting toxicity; VG, verification group.
Figure 2
Figure 2
Contrast-enhanced ultrasound (CEUS) measurement (UPN 006) of wash-in perfusion index (WIAUC/RT, see Supplementary Figure S1) in liver metastasis (green and purple) versus normal liver (yellow) reference region of interest (ROI) before (upper panel, (A)) versus after 5 days of treatment with 2.5 mg/m2 tTF-NGR per day (lower panel, (B)).
Figure 3
Figure 3
Heat maps of dynamic CEUS in a liver metastasis lesion of a colon adenocarcinoma (UPN 023) before and after 3 days of tTF-NGR (cycle 1). Left part: Before treatment with tTF-NGR at 3.0 mg/m2. Right part: Decrease of contrast perfusion after 3 days of 3 mg/m2 tTF-NGR. Color scales at the right lower corner of each photograph semiquantify contrast perfusion (red = high, blue/black = low). The green circle represents “total lesion”, and the yellow circle represents the “central lesion” (for values, see Supplementary Table S4).
Figure 4
Figure 4
Early evaluation of activity of tTF-NGR using Dynamic Contrast-Enhanced Magnetic Resonance Imaging (DCE-MRI): Transverse images show the liver in a 22-year-old patient (UPN 003) with metastatic non-seminomatous germ cell tumor as treated in cycle 1 (1 mg/m2 tTF-NGR per day). Images of tumor (T) before (ac) and after five days of therapy (df): Comparisons of tumor diameter before treatment (dotted line (a)) versus after treatment (dotted line (d)) reveal a moderate increase in tumor diameter 5 days after the beginning of treatment. Comparisons of tumor perfusion maps (volume transfer coefficient k-trans) demonstrate a notable reduction in tumor perfusion (b,e). Modelled perfusion parameter (k-trans) from before treatment (c) and after treatment (f) show a reduction in calculated k-trans values of >50% and delayed enhancement kinetics, indicating a substantial reduction in tumor perfusion. In contrast, healthy liver tissue (L in Figure 4a) shows a moderately enhanced perfusion after therapy. The line diagram (g) visualizes a first reduction of tumor perfusion already 5 h after treatment initiation (immediate) compared to the baseline scan (pre), with further decrease after five days of therapy (post).
Figure 5
Figure 5
Early evaluation of tumor perfusion response to tTF-NGR using R2* mapping in MRI: R2* maps before (a) and after (b) injection of the iron-based contrast medium Resovist® visualize the perfusion of 3 liver metastases (R = right, C = central, and L = left) of a patient with a colorectal carcinoma (UPN 007). The calculated vascular volume fractions (VVF) demonstrate a reduction in blood flow after treatment with tTF-NGR for each of the 3 cycles (c) at 3 (cycle 1), 4 (cycle 2), and 5 (cycle 3) mg/m2 tTF-NGR per day × 5. Notice the partial reperfusion at the beginning of cycles 2 and 3. (c) y-axis shows arbitrary units, black circles represent measurements before (pre) treatment with tTF-NGR, black squares are 5 h (immediate) after tTF-NGR, and black triangles are after 5 days (post) of tTF-NGR at the end of a cycle.
Figure 6
Figure 6
Morphological changes in hepatocellular carcinoma (HCC) (UPN 022) under tTF-NGR therapy: In the initial MRI scans, two prominent HCC lesions are visible in a transversal T2 weighted image. Before treatment with tTF-NGR, the HCC lesions are homogenously hyperintense as compared to the surrounding liver tissue (upper panels). After two cycles with tTF-NGR at 3.0 mg/m2 × 5, morphological changes with multiple hemorrhagic regions (*) have occurred inside the tumor lesions (lower panels), and at the same time, enlargement of tumor diameters can be seen.
Figure 7
Figure 7
Pharmacokinetics with plasma concentration—time curves of tTF-NGR for different doses applied: (A) Cmax values at the end of infusion (1 h) and dose-time curves when 1–4 mg/m2 tTF-NGR were given over 1 h on day 1 (0–24 h). Interpretation of pharmacokinetic (PK) values at 5 mg/m2 dose level (see Supplementary Table S7) was complicated by difficulties to draw and prepare blood samples for testing due to sticky consistency. (B) Values of all patients in the verification cohort at 3 mg/m2 tTF-NGR at day 1, at each of the following 4 days of tTF-NGR application (peak at the end of infusion and trough before the next application), and for cycle 1 (red) and cycle 2 (blue).

References

    1. Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013.
    1. Denekamp J. Endothelial cell proliferation as a novel approach to targeting tumor therapy. Br. J. Cancer. 1982;45:136–139. doi: 10.1038/bjc.1982.16.
    1. Huang X., Molema G., King S., Watkins L., Edgington T.S., Thorpe P.E. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor vasculature. Science. 1997;275:547–550. doi: 10.1126/science.275.5299.547.
    1. Pasqualini R., Koivunen E., Kain R., Lahdenranta J., Sakamoto M., Stryhn A., Ashmun R.A., Shapiro L.H., Arap W., Ruoshlahti E. Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res. 2000;60:722–727.
    1. Curnis F., Arrigoni G., Sacchi A., Fischetti L., Arap W., Pasqualini R., Corti A. Differential binding of drugs containing the NGR motif to CD13 isoforms in tumor vessels, epithelia, and myeloid cells. Cancer Res. 2002;62:867–874.
    1. Wickström M., Larsson R., Nygren P., Gullbo J. Aminopeptidase N (CD13) as a target for cancer chemotherapy. Cancer Sci. 2011;102:501–508. doi: 10.1111/j.1349-7006.2010.01826.x.
    1. Guzman-Rojas L., Rangel R., Salameh A., Edwards J.K., Dondossola E., Kim Y.G., Saghatelian A., Giordano R.J., Kolonin M.G., Staquicini F.I., et al. Cooperative effects of aminopeptidase N (CD13) expressed by nonmalignant and cancer cells within the tumor microenvironment. Proc. Natl. Acad. Sci. USA. 2012;109:1637–1642. doi: 10.1073/pnas.1120790109.
    1. Tokuhara T., Hattori N., Ishida H., Hirai T., Higashiyama M., Kodama K., Miyake M. Clinical significance of aminopeptidase N in non-small cell lung cancer. Clin. Cancer Res. 2006;12:3971–3978. doi: 10.1158/1078-0432.CCR-06-0338.
    1. Ikeda N., Nakajima Y., Tokuhara T., Hattori N., Sho M., Kanehiro H., Miyake M. Clinical significance of aminopeptidase N/CD13 expression in human pancreatic carcinoma. Clin. Cancer Res. 2003;9:1503–1508.
    1. Hashida H., Takabayashi A., Kanai M., Adachi M., Kondo K., Kohno N., Yamaoka Y., Miyake M. Aminopeptidase N is involved in cell motility and angiogenesis: Its clinical significance in human colon cancer. Gastroenterology. 2002;122:376–386. doi: 10.1053/gast.2002.31095.
    1. Schmidt L.H., Brand C., Stucke-Ring J., Schliemann C., Kessler T., Harrach S., Mohr M., Görlich D., Marra A., Hillejan L., et al. Potential therapeutic impact of CD13 expression in non-small cell lung cancer. PLoS ONE. 2017;12:e0177146. doi: 10.1371/journal.pone.0177146.
    1. Surowiak P., Drag M., Materna V., Suchocki S., Grzywa R., Spaczyński M., Dietel M., Oleksyszyn J., Zabel M., Lage H. Expression of aminopeptidase N/CD13 in human ovarian cancers. Int. J. Gynecol. Cancer. 2006;16:1783–1788. doi: 10.1111/j.1525-1438.2006.00657.x.
    1. Kessler T., Schwöppe C., Liersch R., Schliemann C., Hintelmann H., Bieker R., Berdel W.E., Mesters R.M. Generation of fusion proteins for selective occlusion of tumor vessels. Curr. Drug Discov. Technol. 2008;5:1–8.
    1. Bieker R., Kessler T., Schwöppe C., Padró T., Persigehl T., Bremer C., Dreischalück J., Kolkmeyer A., Heindel W., Mesters R.M., et al. Infarction of tumor vessels by NGR-peptide-directed targeting of tissue factor: Experimental results and first-in man experience. Blood. 2009;113:5019–5027. doi: 10.1182/blood-2008-04-150318.
    1. Schwöppe C., Kessler T., Persigehl T., Liersch R., Hintelmann H., Dreischalück J., Ring J., Bremer C., Heindel W., Mesters R.M., et al. Tissue-factor fusion proteins induce occlusion of tumor vessels. Thromb. Res. 2010;125(Suppl. 2):S143–S150. doi: 10.1016/S0049-3848(10)70033-5.
    1. Schwöppe C., Zerbst C., Fröhlich M., Schliemann C., Kessler T., Liersch R., Overkamp L., Holtmeier R., Stypmann J., Dreiling A., et al. Anticancer therapy by tumor vessel infarction with polyethylene glycol conjugated retargeted tissue factor. J. Med. Chem. 2013;56:2337–2347. doi: 10.1021/jm301669z.
    1. Persigehl T., Ring J., Bremer C., Heindel W., Holtmeier R., Stypmann J., Claesener M., Hermann S., Schäfers M., Zerbst C., et al. Non-invasive monitoring of tumor-vessel infarction by retargeted truncated tissue factor tTF-NGR using multi-modal imaging. Angiogenesis. 2014;17:235–246. doi: 10.1007/s10456-013-9391-4.
    1. Brand C., Fröhlich M., Ring J., Schliemann C., Kessler T., Mantke V., König S., Lücke M., Mesters R.M., Berdel W.E., et al. Tumor Growth Inhibition via Occlusion of Tumor Vasculature Induced by N-Terminally PEGylated Retargeted Tissue Factor tTF-NGR. Mol. Pharm. 2015;12:3749–3758. doi: 10.1021/acs.molpharmaceut.5b00508.
    1. Stucke-Ring J., Ronnacker J., Brand C., Höltke C., Schliemann C., Kessler T., Schmidt L.H., Harrach S., Mantke V., Hintelmann H., et al. Combinatorial effects of doxorubicin and retargeted tissue factor by intratumoral entrapment of doxorubicin and proapoptotic increase of tumor vascular infarction. Oncotarget. 2016;7:82458–82472. doi: 10.18632/oncotarget.12559.
    1. Kessler T., Baumeier A., Brand C., Grau M., Angenendt L., Harrach S., Stalmann U., Schmidt L.H., Gosheger G., Hardes J., et al. Aminopeptidase N (CD13): Expression, prognostic impact, and use as therapeutic target for tissue factor induced tumor vascular infarction in soft tissue sarcoma. Transl. Oncol. 2018;11:1271–1282. doi: 10.1016/j.tranon.2018.08.004.
    1. Ehling J., Lammers T., Kiessling F. Non-invasive imaging for studying anti-angiogenic therapy effects. Thromb. Haemost. 2013;109:375–390. doi: 10.1160/TH12-10-0721.
    1. Gerwing M., Herrmann K., Helfen A., Schliemann C., Berdel W.E., Eisenblätter M., Wildgruber M. The beginning of the end for conventional RECIST—Novel therapies require novel imaging approaches. Nat. Rev. Clin. Oncol. 2019;16:442–458. doi: 10.1038/s41571-019-0169-5.
    1. Auner H.W., Tinchon C., Linkesch W., Tiran A., Quehenberger F., Link H., Sill H. Prolonged monitoring of troponin T for the detection of anthracycline cardiotoxicity in adults with hematological malignancies. Ann. Hematol. 2003;82:218–222. doi: 10.1007/s00277-003-0615-3.
    1. Cardinale D., Sandri M.T., Colombo A., Colombo N., Boeri M., Lamantia G., Civelli M., Peccatori F., Martinelli G., Fiorentini C., et al. Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation. 2004;109:2749–2754. doi: 10.1161/.
    1. Ky B., Putt M., Sawaya H., French B., Januzzi J.L., Sebag I.A., Plana J.C., Cohen V., Branchs J., Carver J.R., et al. Early increases in multiple biomarkers predict subsequent cardiotoxicity in patients with breast cancer treated with doxorubicin, taxans, and trastuzumab. J. Am. Coll. Cardiol. 2014;63:809–816. doi: 10.1016/j.jacc.2013.10.061.
    1. Sarocchi M., Grossi F., Arboscello E., Bellodi A., Genova C., Dal Bello M.G., Rijavec E., Barletta G., Rossi G., Biello F., et al. Serial troponin for detection of nivolumab cardiotoxicity in advanced non-small cell lung cancer patients. Oncologist. 2018;23:936–942. doi: 10.1634/theoncologist.2017-0452.
    1. Schmidinger M., Zielinski C.C., Vogl U.M., Bojic A., Schukro C., Ruhsam M., Hejna M., Schmidinger H. Cardiac toxicity of sunitinib and sorafenib in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 2008;26:5204–5212. doi: 10.1200/JCO.2007.15.6331.
    1. Eggers K.M., Lindahl B. Application of cardiac troponin in cardiovascular diseases other than acute coronary syndrome. Clin. Chem. 2017;63:223–225. doi: 10.1373/clinchem.2016.261495.
    1. Jaffe A.S. The 10 commandments of troponin, with special reference to high sensitivity assays. Heart. 2011;97:940–946. doi: 10.1136/hrt.2009.185751.
    1. Mahajan V.S., Jarolim P. How to interpret elevated cardiac troponin levels. Circulation. 2011;124:2350–2354. doi: 10.1161/CIRCULATIONAHA.111.023697.
    1. Giannitsis E., Katus H.A. Cardiac troponin level elevations not related to acute coronary syndromes. Nat. Rev. Cardiol. 2013;10:623–634. doi: 10.1038/nrcardio.2013.129.
    1. Bhagwat S.V., Lahdenranta J., Giordano R., Arap W., Pasqualini R., Shapiro L.H. CD13/APN is activated by angiogenic signals and is essential for capillary tube formation. Blood. 2001;97:652–659. doi: 10.1182/blood.V97.3.652.
    1. Liang W., Gao B., Xu G., Weng D., Xie M., Quian Y. Possible contribution of aminopeptidase N (APN/CD13) to migration and invasion of human osteosarcoma cell lines. Int. J. Oncol. 2014;45:2475–2485. doi: 10.3892/ijo.2014.2664.
    1. [(accessed on 18 May 2020)]; Available online: .
    1. Faintuch B.L., Oliveira E.A., Targino R.C., Moro A.M. Radiolabeled NGR phage display peptide sequence for tumor targeting. Appl. Radiat. Isot. 2014;86:41–45. doi: 10.1016/j.apradiso.2013.12.035.
    1. Kim D.-W., Kim W.H., Kim M.H., Kim C.G. Synthesis and evaluation of novel Tc-99m labeled NGR-containig hexapeptides as tumor imaging agents. J. Label. Compd. Radiopharm. 2015;58:30–35. doi: 10.1002/jlcr.3260.
    1. Li G., Wang X., Zong S., Wang J., Conti P.S., Chen K. MicroPET imaging of CD13 expression using a 64Cu-labeled dimeric NGR peptide based on sacophagine cage. Mol. Pharm. 2014;11:3938–3946. doi: 10.1021/mp500354x.
    1. Mate G., Kertesz I., Enyedi K.N., Mezö G., Angyal J., Vasas N., Kis A., Szabo E., Emri M., Biro T., et al. In vivo imaging of aminopeptidase N (CD13) receptors in experimental renal tumors using the novel radiotracer 68Ga-NOTA-c(NGR) Eur. J. Pharm. Sci. 2015;69:61–71. doi: 10.1016/j.ejps.2015.01.002.
    1. Schmidt L.H., Stucke-Ring J., Brand C., Schliemann C., Harrach S., Muley T., Herpel E., Kessler T., Mohr M., Görlich D., et al. CD13 as target for tissue factor induced tumor vascular infarction in small cell lung cancer. Lung Cancer. 2017;113:121–127. doi: 10.1016/j.lungcan.2017.09.013.
    1. Corti A., Curnis F., Rossoni G., Marcucci F., Gregorc V. Peptide-mediated targeting of cytokines to tumor vasculature: The NGR-hTNF example. BioDrugs. 2013;27:591–603. doi: 10.1007/s40259-013-0048-z.
    1. Gregorc V., Zucali P.A., Santoro A., Ceresoli G.L., Citterio G., de Pas T.M., Zilembo N., de Vincenzo F., Simonelli M., Rossoni G., et al. Phase II study of asparagine-glycine-arginine-human tumor necrosis factor alpha, a selective vascular targeting agent, in previously treated patients with malignant pleural mesothelioma. J. Clin. Oncol. 2010;28:2604–2611. doi: 10.1200/JCO.2009.27.3649.
    1. Ferreri A.J.M., Calimeri T., Conte G.M., Cattaneo D., Fallanca F., Ponzoni M., Scarano E., Curnis F., Nonis A., Lopedote P., et al. R-CHOP preceded by blood-brain barrier permeabilization with engineered tumor necrosis factor-alpha in primary CNS lymphoma. Blood. 2019;134:252–262. doi: 10.1182/blood.2019000633.
    1. Bauvois B., Dauzonne D. Aminopeptidase-N/CD13 (EC 3.4.11.2) inhibitors: Chemistry, biological evaluations, and therapeutic prospects. Med. Res. Rev. 2006;26:88–130. doi: 10.1002/med.20044.
    1. Ichinose Y., Genka K., Koike T., Kato H., Watanabe Y., Mori T., Iioka S., Sakuma A., Ohta M. Randomized double-blind placebo controlled trial of bestatin in patients with resected stage I squamous-cell cancer. J. Natl. Cancer Inst. 2003;95:605–610. doi: 10.1093/jnci/95.8.605.
    1. Rondon A.M.R., Kroone C., Kapteijn M.Y., Versteeg H.H., Buijs J.T. Role of tissue factor in tumor progression and cancer-associated thrombosis. Semin. Thromb. Hemost. 2019;45:396–412. doi: 10.1055/s-0039-1687895.
    1. Khorana A.A., Connolly G.C. Assessing risk of venous thromboembolism in the patient with cancer. J. Clin. Oncol. 2009;27:4839–4847. doi: 10.1200/JCO.2009.22.3271.
    1. Khorana A.A., Kamphuisen P.W., Meyer G., Bauersachs R., Janas M.S., Jarner M.F., Lee A.Y.Y. Tissue factor as a predictor of recurrent venous thromboembolism in malignancy: Biomarker analyses of the CATCH trial. J. Clin. Oncol. 2016;35:1078–1085. doi: 10.1200/JCO.2016.67.4564.
    1. Graf C., Wilgenbus P., Pagel S., Pott J., Marini F., Reyda S., Kitano M., Macher-Göppinger S., Weiler H., Ruf W. Myeloid cell-synthesized coagulation factor X dampens antitumor immunity. Sci. Immunol. 2019;4:eaaw8405. doi: 10.1126/sciimmunol.aaw8405.

Source: PubMed

3
Subskrybuj