Improvement in cardiometabolic risk markers following a multifunctional diet is associated with gut microbial taxa in healthy overweight and obese subjects

Nittaya Marungruang, Juscelino Tovar, Inger Björck, Frida Fåk Hållenius, Nittaya Marungruang, Juscelino Tovar, Inger Björck, Frida Fåk Hållenius

Abstract

Purpose: A multifunctional diet (MFD) targeting subclinical inflammation was developed as a tool to decrease risk factors for cardiometabolic disease in healthy "at-risk" individuals (BMI 25-33 kg/m2). MFD contains several components that are degraded in the colon by the microbiota, such as dietary fibers from rye, barley, oats and berries. It also contains soy beans, oily fish and plant stanols. In previous studies, we have observed improved cardiometabolic markers in healthy at-risk individuals after 4-8 week intake of MFD. However, whether these improvements can be associated with changes in the gut microbiota composition has not been investigated. In the present study, we analyzed the gut microbiota before and after an 8-week dietary intervention with MFD.

Methods: Cardiometabolic at-risk individuals (n = 47), between 51 and 72 years old and with a BMI of 25-33 kg/m2, were given either the MFD or a control diet lacking the functional ("active") components for 8 weeks in a parallel, randomized design. Next-generation sequencing of bacterial 16S rRNA genes was used to analyze the gut microbiota composition.

Results: The 8-week intervention with MFD did not significantly alter the gut microbiota composition at phylum or genus taxonomic levels, while LEfSE analysis identified increased abundance of Prevotella copri in the MFD group as compared to the control group. Treponema correlated positively with blood pressure. In contrast, Faecalibacterium showed a negative association with blood pressure, while Bilophila appeared to associate with a negative blood lipid profile.

Conclusions: Taken together, results from the present study may be used in the further development of effective dietary concepts capable of reducing cardiometabolic risk markers in humans through a targeted modulation of the gut microbial community.

Trial registration number: Clinical Trials.gov NCT02148653.

Keywords: Cardiovascular; Diet; Human; Microbiota; Obese; Prevention.

Conflict of interest statement

Ethical standards

The study was approved by the Regional Ethical Review Board, Lund, Sweden (Dnr 5932008). Written informed consent was obtained from each study participant and the study protocol adhered to the ethical guidelines of the 1975 Declaration of Helsinki. Trial registration number: Clinical Trials.gov NCT02148653.

Conflict of interest

Inger Björck is founder and shareholder in ProPrev AB, and Frida Fåk Hållenius is a shareholder in ProPrev AB. Nittaya Marungruang and Juscelino Tovar declare no conflict of interest.

Figures

Fig. 1
Fig. 1
Gut microbiota composition in MFD and control groups at baseline and end point. Relative abundance of the gut microbiota at a phylum and b genus level. cPrevotella/Bacteroides ratio. d Weighted UniFrac PCoA plot showing gut microbial community composition among the groups at 50,620 randomly selected sequences/sample
Fig. 2
Fig. 2
LDA score plot (left) and cladogram plot (right) from LEfSE analysis of the gut microbiota composition in MFD and control groups at baseline and end point. A = MFD, B = Control diet, v1 = baseline, v3 = end point. Microbial taxa shown have an LDA score higher than 2
Fig. 3
Fig. 3
Loading (big panel) and score scatter (small) PLS plots illustrating correlations between gut microbiota at genus level and cardiometabolic risk markers in MFD and control diet groups. Bacterial genera significantly correlated with the risk markers are shown in big green circles. Uncl, unclassified

References

    1. Bäckhed F, Ding H, Wang T, Hooper L, Koh G, Nagy A, Semenkovich C, Gordon J. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA. 2004;101:15718–15723. doi: 10.1073/pnas.0407076101.
    1. Ley R, Turnbaugh P, Klein S, Gordon J. Microbial ecology: human gut microbes associated with obesity. Nature. 2006;444:1022–1023. doi: 10.1038/4441022a.
    1. Cani P, Bibiloni R, Knauf C, Waget A, Nevrinck A, Delzenne N, Burcelin R. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes. 2008;57:1470–1481. doi: 10.2337/db07-1403.
    1. Klinder A, Shen Q, Heppel S, Lovegrove JA, Rowland I, Tuohy KM. Impact of increasing fruit and vegetables and flavonoid intake on the human gut microbiota. Food Funct. 2016;7(4):1788–1796. doi: 10.1039/c5fo01096a.
    1. Selma MV, Gonzalez-Sarrias A, Salas-Salvado J, Andres-Lacueva C, Alasalvar C, Orem A, Tomas-Barberan FA, Espin JC. The gut microbiota metabolism of pomegranate or walnut ellagitannins yields two urolithin-metabotypes that correlate with cardiometabolic risk biomarkers: Comparison between normoweight, overweight-obesity and metabolic syndrome. Clin Nutr. 2017 doi: 10.1016/j.clnu.2017.03.012.
    1. Minihane AM, Vinoy S, Russell WR, Baka A, Roche HM, Tuohy KM, Teeling JL, Blaak EE, Fenech M, Vauzour D, McArdle HJ, Kremer BH, Sterkman L, Vafeiadou K, Benedetti MM, Williams CM, Calder PC. Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr. 2015;114(7):999–1012. doi: 10.1017/s0007114515002093.
    1. Tovar J, Nilsson A, Johansson M, Ekesbo R, Aberg AM, Johansson U, Bjorck I. A diet based on multiple functional concepts improves cardiometabolic risk parameters in healthy subjects. Nutr Metabol. 2012;9:29. doi: 10.1186/1743-7075-9-29.
    1. Tovar J, Johansson M, Bjorck I. A multifunctional diet improves cardiometabolic-related biomarkers independently of weight changes: an 8-week randomized controlled intervention in healthy overweight and obese subjects. Eur J Nutr. 2016;55(7):2295–2306. doi: 10.1007/s00394-015-1039-2.
    1. Tovar J, de Mello VD, Nilsson A, Johansson M, Paananen J, Lehtonen M, Hanhineva K, Bjorck I. Reduction in cardiometabolic risk factors by a multifunctional diet is mediated via several branches of metabolism as evidenced by nontargeted metabolite profiling approach. Mol Nutr Food Res. 2017 doi: 10.1002/mnfr.201600552.
    1. Nordic Council of Ministers . Nutrition recommendations 2012: integrating nutrition and physical activity. Copenhagen: Nordic Council of Ministers; 2014.
    1. Caporaso J, Kuczynski J, Stombaugh J, Bittinger K, Bushman F, Costello E, Fierer N, Peña A, Goodrich J, Gordon J, Huttley G, Kelley S, Knights D, Koenig J, Ley R, Lozupone C, McDonald D, Muegge B, Pirrung M, Reeder J, Sevinsky J, Turnbaugh P, Walters W, Widmann J, Yatsunenko T, Zaneveld J, Knight R. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7:335–336. doi: 10.1038/nmeth.f.303.
    1. Edgar RC. Search and clustering orders of magnitude faster than BLAST. Bioinformatics. 2010;26(19):2460–2461. doi: 10.1093/bioinformatics/btq461.
    1. DeSantis T, Hugenholtz P, Larsen N, Rojas M, Brodie E, Keller K, Huber T, Dalevi D, Hu P, Andersen G. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 2006;72:5069–5072. doi: 10.1128/AEM.03006-05.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73(16):5261–5267. doi: 10.1128/aem.00062-07.
    1. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B (Methodological) 1995;57(1):289–300.
    1. McDonald JH. Handbook of biological statistics. 3. Baltimore: Sparky House Publishing; 2014. pp. 254–260.
    1. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, Huttenhower C. Metagenomic biomarker discovery and explanation. Genome Biol. 2011;12(6):R60. doi: 10.1186/gb-2011-12-6-r60.
    1. Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 2013;31(9):814–821. doi: 10.1038/nbt.2676.
    1. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee YS, De Vadder F, Arora T, Hallen A, Martens E, Bjorck I, Backhed F. Dietary Fiber-Induced Improvement in Glucose Metabolism Is Associated with Increased Abundance of Prevotella. Cell Metab. 2015 doi: 10.1016/j.cmet.2015.10.001.
    1. Arumugam Manimozhiyan, Raes Jeroen, Pelletier Eric, Le Paslier Denis, Yamada Takuji, Mende Daniel R., Fernandes Gabriel R., Tap Julien, Bruls Thomas, Batto Jean-Michel, Bertalan Marcelo, Borruel Natalia, Casellas Francesc, Fernandez Leyden, Gautier Laurent, Hansen Torben, Hattori Masahira, Hayashi Tetsuya, Kleerebezem Michiel, Kurokawa Ken, Leclerc Marion, Levenez Florence, Manichanh Chaysavanh, Nielsen H. Bjørn, Nielsen Trine, Pons Nicolas, Poulain Julie, Qin Junjie, Sicheritz-Ponten Thomas, Tims Sebastian, Torrents David, Ugarte Edgardo, Zoetendal Erwin G., Wang Jun, Guarner Francisco, Pedersen Oluf, de Vos Willem M., Brunak Søren, Doré Joel, Antolín María, Artiguenave François, Blottiere Hervé M., Almeida Mathieu, Brechot Christian, Cara Carlos, Chervaux Christian, Cultrone Antonella, Delorme Christine, Denariaz Gérard, Dervyn Rozenn, Foerstner Konrad U., Friss Carsten, van de Guchte Maarten, Guedon Eric, Haimet Florence, Huber Wolfgang, van Hylckama-Vlieg Johan, Jamet Alexandre, Juste Catherine, Kaci Ghalia, Knol Jan, Lakhdari Omar, Layec Severine, Le Roux Karine, Maguin Emmanuelle, Mérieux Alexandre, Melo Minardi Raquel, M'rini Christine, Muller Jean, Oozeer Raish, Parkhill Julian, Renault Pierre, Rescigno Maria, Sanchez Nicolas, Sunagawa Shinichi, Torrejon Antonio, Turner Keith, Vandemeulebrouck Gaetana, Varela Encarna, Winogradsky Yohanan, Zeller Georg, Weissenbach Jean, Ehrlich S. Dusko, Bork Peer. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174–180. doi: 10.1038/nature09944.
    1. Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, Bewtra M, Knights D, Walters WA, Knight R, Sinha R, Gilroy E, Gupta K, Baldassano R, Nessel L, Li H, Bushman FD, Lewis JD. Linking long-term dietary patterns with Gut microbial enterotypes. Science. 2011;334(6052):105–108. doi: 10.1126/science.1208344.
    1. Kovatcheva-Datchary P, Nilsson A, Akrami R, Lee Ying S, De Vadder F, Arora T, Hallen A, Martens E, Björck I, Bäckhed F. Dietary fiber-induced improvement in glucose metabolism is associated with increased abundance of prevotella. Cell Metabol. 2015 doi: 10.1016/j.cmet.2015.10.001.
    1. Matsushita K, Hamaguchi M, Hashimoto M, Yamazaki M, Yamazaki T, Asai K, Yamori M, Bessho K, Toda H, Hasegawa G, Nakamura N, Fukui M. The novel association between red complex of oral microbe and body mass index in healthy Japanese: a population based cross-sectional study. J Clin Biochem Nutr. 2015;57(2):135–139. doi: 10.3164/jcbn.15-19.
    1. Quevrain E, Maubert MA, Michon C, Chain F, Marquant R, Tailhades J, Miquel S, Carlier L, Bermudez-Humaran LG, Pigneur B, Lequin O, Kharrat P, Thomas G, Rainteau D, Aubry C, Breyner N, Afonso C, Lavielle S, Grill JP, Chassaing G, Chatel JM, Trugnan G, Xavier R, Langella P, Sokol H, Seksik P. Identification of an anti-inflammatory protein from Faecalibacterium prausnitzii, a commensal bacterium deficient in Crohn’s disease. Gut. 2015 doi: 10.1136/gutjnl-2014-307649.
    1. Haro C, Garcia-Carpintero S, Alcala-Diaz JF, Gomez-Delgado F, Delgado-Lista J, Perez-Martinez P, Rangel Zuniga OA, Quintana-Navarro GM, Landa BB, Clemente JC, Lopez-Miranda J, Camargo A, Perez-Jimenez F. The gut microbial community in metabolic syndrome patients is modified by diet. J Nutr Biochem. 2015 doi: 10.1016/j.jnutbio.2015.08.011.
    1. Kumar M, Nagpal R, Kumar R, Hemalatha R, Verma V, Kumar A, Chakraborty C, Singh B, Marotta F, Jain S, Yadav H. Cholesterol-lowering probiotics as potential biotherapeutics for metabolic diseases. Exp Diab Res. 2012;2012:902917. doi: 10.1155/2012/902917.
    1. Devkota S, Wang Y, Musch MW, Leone V, Fehlner-Peach H, Nadimpalli A, Antonopoulos DA, Jabri B, Chang EB. Dietary-fat-induced taurocholic acid promotes pathobiont expansion and colitis in Il10-/- mice. Nature. 2012;487(7405):104–108. doi: 10.1038/nature11225.

Source: PubMed

3
Subskrybuj