Single-trial regression elucidates the role of prefrontal theta oscillations in response conflict

Michael X Cohen, James F Cavanagh, Michael X Cohen, James F Cavanagh

Abstract

In most cognitive neuroscience experiments there are many behavioral and experimental dynamics, and many indices of brain activity, that vary from trial to trial. For example, in studies of response conflict, conflict is usually treated as a binary variable (i.e., response conflict exists or does not in any given trial), whereas some evidence and intuition suggests that conflict may vary in intensity from trial to trial. Here we demonstrate that single-trial multiple regression of time-frequency electrophysiological activity reveals neural mechanisms of cognitive control that are not apparent in cross-trial averages. We also introduce a novel extension to oscillation phase coherence and synchronization analyses, based on "weighted" phase modulation, that has advantages over standard coherence measures in terms of linking electrophysiological dynamics to trial-varying behavior and experimental variables. After replicating previous response conflict findings using trial-averaged data, we extend these findings using single-trial analytic methods to provide novel evidence for the role of medial frontal-lateral prefrontal theta-band synchronization in conflict-induced response time dynamics, including a role for lateral prefrontal theta-band activity in biasing response times according to perceptual conflict. Given that these methods shed new light on the prefrontal mechanisms of response conflict, they are also likely to be useful for investigating other neurocognitive processes.

Keywords: EEG; cognitive control; medial frontal cortex; oscillations; regression; response conflict; single trial; theta.

Figures

Figure 1
Figure 1
Conditions (x-axis) are labeled according to previous (first, lowercase letter) and current trial (second, uppercase letter) conflict: C = congruent, I = incongruent. (A) Reaction times in ms. (B) Spearman's rank correlation coefficients. Error bars denote SEM.
Figure 2
Figure 2
Trial-averaged results, separated according to condition. (A,B) Condition-averaged topographical maps of power and phase coherence, which are the average of 150 ms surrounding the time point indicated below the maps. (C,D) Time–frequency plots of peri-response power and inter-trial phase coherence. Black areas enclose regions in which contiguous pixels were significantly different from inter-trial-interval baseline at p < 0.01 (two-tailed) for at least 300 ms and at least three consecutive frequencies.
Figure 3
Figure 3
Time–frequency plots of peri-response (time = 0) single-trial multiple regression coefficients, separated by condition (rows) and regression term (A–C). Black lines enclose significant regions, as in Figure 2. Time–frequency (TF) regression coefficient plots are taken from electrodes indicated by fuchsia circles.
Figure 4
Figure 4
Individual subject single-trial data illustrating the relationship between theta power (x-axis) and RT (y-axis). Axes differ per subject and are unlabeled. Each point is a single trial; lines reflect the best linear fit. Red pluses and lines are taken from cI trials, blue circles and lines from cC trials. These data correspond to the regression from a single time–frequency point for each subject. To select this subject-specific time–frequency point, we averaged the RT regression coefficients from all conditions and selected the point with the largest coefficient within the range of 1–12 Hz, −400 to 200 ms (the average across subjects was −233 ms and 5.1 Hz). Note that this selection procedure is not based on maximizing differences between cI and cC trials.
Figure 5
Figure 5
Time–frequency plots of peri-response single-trial phase modulation, separated by condition. Black lines enclose significant regions, as in Figure 2. Note the differences between these phase modulation plots – where the dominant effects occur in the theta band over frontal regions – and the trial-averaged phase coherence in Figure 2, which shows a dominant delta-band effect without a medial frontal focus.
Figure 6
Figure 6
Phase synchronization between electrode FCz (over MFC) and lateral prefrontal sites including F6 is present generally prior to the response, and, during high conflict situations, increases in strength with increasing reaction time. (A) Time–frequency plots of FCz–F6 “standard” (no modulation) phase synchronization (left column) and synchronization modulated by reaction time, luminance, and their interaction (right three columns). (B) Topographical maps of reaction time-modulated synchronization with FCz over time (columns) and condition (rows). Statistical thresholding is the same as in previous figures.
Figure 7
Figure 7
Selection of independent components for all subjects. Components were selected based on spatial correlation with a priori specified templates (left column). The average component across subjects was similar to the templates (middle column). Individual maps from all 15 subjects are shown in the right-most column.
Figure 8
Figure 8
Trial-averaged power results from the independent components (same as Figure 2C but using components instead of electrode-specific data).
Figure 9
Figure 9
Single-trial multiple regression analyses from independent components. The analysis was identical to that presented in Figure 3 but using components time courses instead of electrode-specific data.
Figure 10
Figure 10
Comparison of theta-band effects (trial-averaged power, power regression with reaction time, phase modulation by reaction time). Gray shading indicates that the regression coefficients are significantly greater than trial-averaged power at p < 0.01, minimum 300 ms continuous cluster threshold. Red and blue circles indicate subject-specific waveform peak times.

References

    1. Aron A. R., Robbins T. W., Poldrack R. A. (2004). Inhibition and the right inferior frontal cortex. Trends Cogn. Sci. 8, 170–177
    1. Boehler C. N., Bunzeck N., Krebs R. M., Noesselt T., Schoenfeld M. A., Heinze H. J., Munte T. F., Woldorff M. G., Hopf J. M. (2010). Substantia nigra activity level predicts trial-to-trial adjustments in cognitive control. J. Cogn. Neurosci. 23, 362–373
    1. Botvinick M. M., Braver T. S., Barch D. M., Carter C. S., Cohen J. D. (2001). Conflict monitoring and cognitive control. Psychol. Rev. 108, 624–652
    1. Cavanagh J. F., Cohen M. X., Allen J. J. (2009). Prelude to and resolution of an error: EEG phase synchrony reveals cognitive control dynamics during action monitoring. J. Neurosci. 29, 98–10510.1523/JNEUROSCI.4137-08.2009
    1. Cavanagh J. F., Frank M. J., Klein T. J., Allen J. J. B. (2010). Frontal theta links prediction errors to behavioral adaptation in reinforcement learning. Neuroimage 49, 3198–3209
    1. Christie G. J., Tata M. S. (2009). Right frontal cortex generates reward-related theta-band oscillatory activity. Neuroimage 48, 415–42210.1016/j.neuroimage.2009.06.076
    1. Cohen M. X. (2011a). Error-related medial frontal theta activity predicts cingulate-related structural connectivity. Neuroimage 2010, 30.10.1016/j.neuroimage.2010.12.072
    1. Cohen M. X. (2011b). It's about time. Front. Hum. Neurosci. 5:2.10.3389/fnhum.2011.00002
    1. Cohen M. X., Ridderinkhof K. R., Haupt S., Elger C. E., Fell J. (2008). Medial frontal cortex and response conflict: evidence from human intracranial EEG and medial frontal cortex lesion. Brain Res. 1238, 127–14210.1016/j.brainres.2008.07.114
    1. Cohen M. X., van Gaal S., Ridderinkhof K. R., Lamme V. A. (2009). Unconscious errors enhance prefrontal-occipital oscillatory synchrony. Front. Hum. Neurosci. 3 54.10.3389/neuro.09.054.2009
    1. De Lucia M., Michel C. M., Murray M. M. (2010). Comparing ICA-based and single-trial topographic ERP analyses. Brain Topogr. 23, 119–12710.1007/s10548-010-0145-y
    1. Debener S., Ullsperger M., Siegel M., Engel A. K. (2007). Towards single-trial analysis in cognitive brain research. Trends Cogn. Sci. 11, 502–503
    1. Debener S., Ullsperger M., Siegel M., Fiehler K., von Cramon D. Y., Engel A. K. (2005). Trial-by-trial coupling of concurrent electroencephalogram and functional magnetic resonance imaging identifies the dynamics of performance monitoring. J. Neurosci. 25, 11730–1173710.1523/JNEUROSCI.3286-05.2005
    1. Delorme A., Makeig S. (2004). EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134, 9–21
    1. Delorme A., Westerfield M., Makeig S. (2007). Medial prefrontal theta bursts precede rapid motor responses during visual selective attention. J. Neurosci. 27, 11949–11959
    1. Dixon P. (2008). Models of accuracy in repeated-measures designs. J. Mem. Lang. 59, 447–456
    1. Egner T. (2007). Congruency sequence effects and cognitive control. Cogn. Affect. Behav. Neurosci. 7, 380–390
    1. Eichele H., Juvodden H. T., Ullsperger M., Eichele T. (2010). Mal-adaptation of event-related EEG responses preceding performance errors. Front. Hum. Neurosci. 4 65.10.3389/fnhum.2010.00065
    1. Eichele T., Calhoun V. D., Debener S. (2009). Mining EEG-fMRI using independent component analysis. Int. J. Psychophysiol. 73, 53–6110.1016/j.ijpsycho.2008.12.018
    1. Forstmann B. U., Jahfari S., Scholte H. S., Wolfensteller U., van den Wildenberg W. P., Ridderinkhof K. R. (2008). Function and structure of the right inferior frontal cortex predict individual differences in response inhibition: a model-based approach. J. Neurosci. 28, 9790–979610.1523/JNEUROSCI.1465-08.2008
    1. Gratton G., Coles M. G., Donchin E. (1992). Optimizing the use of information: strategic control of activation of responses. J. Exp. Psychol. Gen. 121, 480–506
    1. Hanslmayr S., Pastotter B., Bauml K. H., Gruber S., Wimber M., Klimesch W. (2008). The electrophysiological dynamics of interference during the Stroop task. J. Cogn. Neurosci. 20, 215–225
    1. Jaeger T. F. (2008). Categorical Data Analysis: away from ANOVAs (transformation or not) and towards Logit Mixed Models. J. Mem. Lang. 59, 434–446
    1. Lachaux J. P., Rodriguez E., Martinerie J., Varela F. J. (1999). Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8, 194–20810.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>;2-C
    1. Luu P., Tucker D. M. (2001). Regulating action: alternating activation of midline frontal and motor cortical networks. Clin. Neurophysiol. 112, 1295–130610.1016/S1388-2457(01)00559-4
    1. Marco-Pallares J., Cucurell D., Cunillera T., Garcia R., Andres-Pueyo A., Münte T. F., Rodriguez-Fornells A. (2008). Human oscillatory activity associated to reward processing in a gambling task. Neuropsychologia 46, 241–24810.1016/j.neuropsychologia.2007.07.016
    1. Mars R. B., Debener S., Gladwin T. E., Harrison L. M., Haggard P., Rothwell J. C., Bestmann S. (2008). Trial-by-trial fluctuations in the event-related electroencephalogram reflect dynamic changes in the degree of surprise. J. Neurosci. 28, 12539–1254510.1523/JNEUROSCI.2925-08.2008
    1. Mathalon D. H., Whitfield S. L., Ford J. M. (2003). Anatomy of an error: ERP and fMRI. Biol. Psychol. 64, 119–141
    1. Mazaheri A., Nieuwenhuis I. L., van Dijk H., Jensen O. (2009). Prestimulus alpha and mu activity predicts failure to inhibit motor responses. Hum. Brain Mapp. 30, 1791–180010.1002/hbm.20763
    1. Miltner W. H., Lemke U., Weiss T., Holroyd C., Scheffers M. K., Coles M. G. (2003). Implementation of error-processing in the human anterior cingulate cortex: a source analysis of the magnetic equivalent of the error-related negativity. Biol. Psychol. 64, 157–166
    1. O'Leary D. P. (1990). Robust regression computation using iteratively reweighted least squares. J. Matrix Anal. Appl. 11, 466–480
    1. Onton J., Delorme A., Makeig S. (2005). Frontal midline EEG dynamics during working memory. Neuroimage 27, 341–35610.1016/j.neuroimage.2005.04.014
    1. Philiastides M. G., Sajda P. (2007). EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making. J. Neurosci. 27, 13082–1309110.1523/JNEUROSCI.3540-07.2007
    1. Ratcliff R., Philiastides M. G., Sajda P. (2009). Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG. Proc. Natl. Acad. Sci. U.S.A. 106, 6539–6544
    1. Ridderinkhof K. R., Ullsperger M., Crone E. A., Nieuwenhuis S. (2004). The role of the medial frontal cortex in cognitive control. Science 306, 443–44710.1126/science.1100301
    1. Rissman J., Gazzaley A., D'Esposito M. (2004). Measuring functional connectivity during distinct stages of a cognitive task. Neuroimage 23, 752–76310.1016/j.neuroimage.2004.06.035
    1. Rousselet G. A., Husk J. S., Pernet C. R., Gaspar C. M., Bennett P. J., Sekuler A. B. (2009). Age-related delay in information accrual for faces: evidence from a parametric, single-trial EEG approach. BMC Neurosci. 10, 11410.1186/1471-2202-10-114
    1. Rousselet G. A., Pernet C. R., Bennett P. J., Sekuler A. B. (2008). Parametric study of EEG sensitivity to phase noise during face processing. BMC Neurosci. 9, 98.10.1186/1471-2202-9-98
    1. Scholte H. S., Ghebreab S., Waldorp L., Smeulders A. W., Lamme V. A. (2009). Brain responses strongly correlate with Weibull image statistics when processing natural images. J. Vis. 9, 1–15
    1. Schwind J., Dormann W. U. (1986). Off-line removal of ocular artifacts from event-related potentials using a multiple linear regression model. Int. J. Psychophysiol. 4, 203–208
    1. Szmalec A., Verbruggen F., Vandierendonck A., De Baene W., Verguts T., Notebaert W. (2008). Stimulus ambiguity elicits response conflict. Neurosci. Lett. 435, 158–162
    1. Trujillo L. T., Allen J. J. (2007). Theta EEG dynamics of the error-related negativity. Clin. Neurophysiol. 118, 645–66810.1016/j.clinph.2006.11.009
    1. van Veen V., Cohen J. D., Botvinick M. M., Stenger V. A., Carter C. S. (2001). Anterior cingulate cortex, conflict monitoring, and levels of processing. Neuroimage 14, 1302–130810.1006/nimg.2001.0923
    1. Vocat R., Pourtois G., Vuilleumier P. (2008). Unavoidable errors: a spatio-temporal analysis of time-course and neural sources of evoked potentials associated with error processing in a speeded task. Neuropsychologia 46, 2545–255510.1016/j.neuropsychologia.2008.04.006
    1. Wang C., Ulbert I., Schomer D. L., Marinkovic K., Halgren E. (2005). Responses of human anterior cingulate cortex microdomains to error detection, conflict monitoring, stimulus-response mapping, familiarity, and orienting. J. Neurosci. 25, 604–61310.1523/JNEUROSCI.4151-04.2005
    1. Weissman D. H., Roberts K. C., Visscher K. M., Woldorff M. G. (2006). The neural bases of momentary lapses in attention. Nat. Neurosci. 9, 971–978
    1. Wessel J. R., Ullsperger M. (2010). Selection of independent components representing event-related brain potentials: a data-driven approach for greater objectivity. Neuroimage 54, 2105–211510.1016/j.neuroimage.2010.10.033
    1. Yarkoni T., Barch D. M., Gray J. R., Conturo T. E., Braver T. S. (2009). BOLD correlates of trial-by-trial reaction time variability in gray and white matter: a multi-study fMRI analysis. PLoS ONE 4, e4257.10.1371/journal.pone.0004257
    1. Yeung N., Ralph J., Nieuwenhuis S. (2007). Drink alcohol and dim the lights: the impact of cognitive deficits on medial frontal cortex function. Cogn. Affect. Behav. Neurosci. 7, 347–355
    1. Zanto T. P., Rubens M. T., Bollinger J., Gazzaley A. (2010). Top-down modulation of visual feature processing: the role of the inferior frontal junction. Neuroimage 53, 736–74510.1016/j.neuroimage.2010.06.012

Source: PubMed

3
Subskrybuj