Reduced platelet mitochondrial respiration and oxidative phosphorylation in patients with post COVID-19 syndrome are regenerated after spa rehabilitation and targeted ubiquinol therapy

Zuzana Sumbalová, Jarmila Kucharská, Zuzana Rausová, Patrik Palacka, Eleonóra Kovalčíková, Timea Takácsová, Viliam Mojto, Plácido Navas, Guillermo Lopéz-Lluch, Anna Gvozdjáková, Zuzana Sumbalová, Jarmila Kucharská, Zuzana Rausová, Patrik Palacka, Eleonóra Kovalčíková, Timea Takácsová, Viliam Mojto, Plácido Navas, Guillermo Lopéz-Lluch, Anna Gvozdjáková

Abstract

European Association of Spa Rehabilitation recommend spa rehabilitation for patients with post COVID-19 syndrome (post C-19). We studied effects of special mountain spa rehabilitation program and its combination with ubiquinol (reduced form of coenzyme Q10-CoQ10) supplementation on pulmonary function, clinical symptoms, endogenous CoQ10 levels, and platelet mitochondrial bioenergetics of patients with post C-19. 36 patients with post C-19 enrolled for rehabilitation in mountain spa resort and 15 healthy volunteers representing the control group were included in this study. 14 patients with post C-19 (MR group) were on mountain spa rehabilitation lasting 16-18 days, 22 patients (MRQ group) were supplemented with ubiquinol (2 × 100 mg/day) during the rehabilitation and additional 12-14 days at home. Clinical symptoms and functional capacity of the lungs were determined in the patients before and after the spa rehabilitation program. Platelet bioenergetics by high-resolution respirometry, plasma TBARS concentration, and CoQ10 concentration in blood, plasma and platelets were evaluated before and after the spa rehabilitation program, and in 8 patients of MRQ group also after additional 12-14 days of CoQ10 supplementation. Pulmonary function and clinical symptoms improved after the rehabilitation program in both groups, 51.8% of symptoms disappeared in the MR group and 62.8% in the MRQ group. Platelet mitochondrial Complex I (CI)-linked oxidative phosphorylation (OXPHOS) and electron transfer (ET) capacity were markedly reduced in both groups of patients. After the rehabilitation program the improvement of these parameters was significant in the MRQ group and moderate in the MR group. CI-linked OXPHOS and ET capacity increased further after additional 12-14 days of CoQ10 supplementation. CoQ10 concentration in platelets, blood and plasma markedly raised after the spa rehabilitation with ubiquinol supplementation, not in non-supplemented group. In the MRQ group all parameters of platelet mitochondrial respiration correlated with CoQ10 concentration in platelets, and the increase in CI-linked OXPHOS and ET capacity correlated with the increase of CoQ10 concentration in platelets. Our data show a significant role of supplemented ubiquinol in accelerating the recovery of mitochondrial health in patients with post C-19. Mountain spa rehabilitation with coenzyme Q10 supplementation could be recommended to patients with post C-19. This study was registered as a clinical trial: ClinicalTrials.gov ID: NCT05178225.

Keywords: mitochondrial oxidative phosphorylation; platelets; post COVID-19 syndrome; pulmonary function; spa rehablitation; ubiquinol.

Conflict of interest statement

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2022 Sumbalová, Kucharská, Rausová, Palacka, Kovalčíková, Takácsová, Mojto, Navas, Lopéz-Lluch and Gvozdjáková.

Figures

FIGURE 1
FIGURE 1
The trace from the measurement of platelet mitochondrial respiration following SUIT reference protocol 1 (Doerrier et al., 2018). The blue line represents oxygen concentration (µM), and the red trace oxygen consumption as flow per cells (pmol O2/s/106 cells). The protocol includes following titration steps: ce—cells; Dig—Digitonin; PM—pyruvate + malate; ADP; cyt c—cytochrome c; U—the uncoupler FCCP; G—glutamate; S—succinate. All substrates were titrated in kinetically saturating concentrations, uncoupler FCCP was titrated in optimum concentration for evaluation of maximum O2 flow at given titration step. The evaluated respiratory capacities are marked according to the titration steps in the reference protocol 1 and correspond to following respiratory states: ce—routine respiration of intact cells; Dig—residual oxygen consumption (ROX) after permeabilization with digitonin; 1PM—LEAK respiration with CI-linked substrates pyruvate + malate; 2D—CI-linked OXPHOS capacity; 2D;c—CI-linked OXPHOS capacity after addition of cytochrome c; 3U—CI-linked electron transfer (ET) capacity with pyruvate + malate; 4G—CI-linked ET capacity with pyruvate + malate + glutamate; 5S—CI&II-linked ET capacity. (Author ZS, published in Gvozdjáková et al., 2022).
FIGURE 2
FIGURE 2
The effect of rehabilitation program on 6MWT and exercise dyspnea of patients with post C-19. Reference—the reference values for healthy subjects of age 50–59 years (Casanova et al., 2011). MR1, MRQ1—the group of patients with post C-19 at the beginning of the study; MR2, MRQ2—the groups of patients with post C-19 after 16–18 days of rehabilitation program without/with CoQ10 supplementation. +p < 0.05, ++p < 0.01 vs. the same group at the beginninng of the study.
FIGURE 3
FIGURE 3
Platelet mitochondrial respiration in control subjects and patients with post C-19. The respiration was measured in freshly isolated platelets following substrate-uncoupler-inhibitor titration (SUIT) reference protocol 1 (Doerrier et al., 2018) and valuated as O2 flux per mitochondrial marker citrate synthase activity, JO2/CS (pmol/s/IU). A) The graph show mean ± sem of the respiratory capacities after titration step indicated on the x-axis: ce—intact cells; Dig—digitonin; 1p.m.—pyruvate plus malate; 2D—ADP—adenosine diphosphate; 2D; c—cytochrome c; 3U—uncoupler FCCP; 4G—glutamate; 5S—succinate. For linking the respiratory rates to respiratory states refer to Figure 1. Control—the control group; MR1, MRQ1 the groups of patients at the beginning of the study; MR2, MRQ2—the MR and MRQ group after 16–18 days of rehabilitation program without/with CoQ10 supplementation; MRQ3—the MRQ group after 12–14 days of completion of the rehabilitation program and continuation of CoQ10 supplementation at home. *p < 0.05, **p < 0.01, ***p < 0.01 vs. Control. +p < 0.05, ++p < 0.01 vs. the same group at the biginning of the study.
FIGURE 4
FIGURE 4
OXPHOS efficiency of platelet mitochondrial respiration of patients with post C-19. P-L control efficiency was calculated from parameters of mitochondrial respiration as (2D-1PM)/2D (for parameters and groups refer to Figure 3). *p < 0.05 vs. Control. +p < 0.05 vs. the same group at the beginning of the study.
FIGURE 5
FIGURE 5
The effect of mountain spa rehabilitation program on CoQ10 concentration and lipid peroxidation in patients with post C-19. The concentration of coenzyme Q10-TOTAL in blood (A), plasma (B), platelets (C), and the concentration of TBARS in plasma (D) of control subjects and patients with post C-19. The groups names as for Figure 3. +p < 0.05, +++p < 0.001 vs. the same group at the biginning of the study.
FIGURE 6
FIGURE 6
The correlations between CoQ10-TOTAL concentration in platelets (CoQ10-PLT) and platelet mitochondrial respiration rates (A) 1PM, (B) 2D, (C) 2D; c, (D) 3U, (E) 4G, (F) 5S of patients with post C-19. The groups names and respiration rates labeling as for Figure 3. r—Pearson correlation coefficient; p-values show statistical significance of the correlations.
FIGURE 7
FIGURE 7
The correlations between an increase of CoQ10 concentration in platelets (ΔCoQ10-PLT) and an increase in parameters of platelet mitochondrial respiration of patients of MRQ group (A) Δ2D, (B) Δ2D; c, (C) Δ3U, (D) Δ4G. The markers show the difference values between MRQ2 and MRQ1, and between MRQ3 and MRQ1 time points for each patient from MRQ group. The groups names and respiration rates labeling as for Figure 3. r—Pearson correlation coefficient; p-values show statistical significance of the correlations.

References

    1. Acosta M. J., Vazquez Fonseca L., Desbats M. A., Cerqua C., Zordan R., Trevisson E., et al. (2016). Coenzyme Q biosynthesis in health and disease. Biochim. Biophys. Acta 1857 (8), 1079–1085. 10.1016/j.bbabio.2016.03.036
    1. Anand S. K., Tikoo S. K. (2013). Viruses as modulators of mitochondrial functions. Adv. Virol. 2013, 738794. 10.1155/2013/738794
    1. Basak N., Norboo T., Mustak M. S., Thangaraj K. (2021). Heterogeneity in hematological parameters of high and low altitude Tibetan populations. J. Blood Med. 12, 287–298. 10.2147/JBM.S294564
    1. Bhagavan H. N., Chopra R. K. (2006). Coenzyme Q10: Absorption, tissue uptake, metabolism and pharmacokinetics. Free Radic. Res. 40 (5), 445–453. 10.1080/10715760600617843
    1. Casanova C., Celli B. R., Baria P., Casas A., Cote C., de Torres J. P., et al. (2011). The 6-min walk distance in healthy subjects: Reference standards from seven countries. Eur. Respir. J. 37, 150–156. 10.1183/09031936.00194909
    1. Cheng A. P., Cheng M. P., Gu W., Sesing Lenz J., Hsu E., Schurr E., et al. (2021). Cell-free DNA tissues of origin by methylation profiling reveals significant cell.; tissue.; and organ-specific injury related to COVID-19 severity. Med 2 (4), 411–422.e5. e5. 10.1016/j.medj.2021.01.001
    1. Doerrier C., Garcia-Souza L. F., Krumschnabel G., Wohlfarter Y., Mészáros A. T., Gnaiger E. (2018). High-resolution FluoRespirometry and OXPHOS protocols for human cells, permeabilized fibers from small biopsies of muscle, and isolated mitochondria. Methods Mol. Biol. 1782, 31–70. 10.1007/978-1-4939-7831-1_3
    1. Eigentler A., Draxl A., Gnaiger E. (2020). Laboratory protocol: Citrate synthase a mitochondrial marker enzyme. Mitochondr Physiol. Netw. 17 (04), 1–12.
    1. Fernandez-Ayala D. J. M., Navas P., López-Lluch G. (2020). Age- related mitochondrial dysfunction as a key factor in COVID-19 disease. Exp. Gerontol. 142, 111147. 10.1016/j.exger.2020.111147
    1. Foy B. H., Carlson J. C. T., Reinertsen E., Padros I., Valls R., Pallares Lopez R., et al. (2020). Association of red blood cell distribution width with mortality risk in hospitalized adults with SARS-CoV-2 infection. JAMA Netw. Open 3 (9), e2022058. 10.1001/jamanetworkopen.2020.22058
    1. Ganji R., Reddy P. H. (2021). Impact of COVID-19 on mitochondrial-based immunity in aging and age-related diseases. Front. Aging Neurosci. 12, 614650. 10.3389/fnagi.2020.614650
    1. Gnaiger E., Mitochondrial pathways and respiratory control. An introduction to OXPHOS analysis. 5th ed. Bioenerg. Commun. 2020, 2020, 112. 10.26124/bec:2020-0002 (accessed on 08.03.2022)
    1. Gomes C., Zuniga M., Crotty K. A., Qian K., Tovar N. C., Lin L. H., et al. (2021). Autoimmune anti-DNA and anti-phosphatidylserine antibodies predict development of severe COVID-19. Life Sci. Alliance 4 (11), e202101180. 10.26508/lsa.202101180
    1. Gvozdjáková A., Jendrichovský M., Kovalčíková E. (2021). Spa rehabilitation and targeting energy, antoxidant therapy of patients with post-COVID-19 syndrome. (Kúpeľná rehabilitácia a cielená energetická, antioxidačná terapia pacientov s post-COVID-19 syndrómom. In Slovak language. Prakt. lekárnictvo 11 (2), 96–98.
    1. Gvozdjáková A., Klaučo F., Kucharská J., Sumbalová Z., GvozdjAkovA A. (2020). Is mitochondrial bioenergetics and coenzyme Q10 the target of a virus COVID-19? Bratisl. Lek. Listy 121 (11), 775–778. 10.4149/BLL_2020_126
    1. Gvozdjáková A., Kucharská J., Ostatníková D., Babinská K., Nakládal D., Crane F. L. (2014). Ubiquinol improves symptoms in children with autism. Oxid. Med. Cell. Longev. 2014, 798957. 10.1155/2014/798957
    1. Gvozdjáková A., Kucharská J., Rausová Z., Palacka P., Kovalčíková E., Takácsová T., et al. (2022). Mountain spa rehabilitation improved health of patients with post-COVID-19 syndrome: Pilot study. Environ. Sci. Pollut. Res. 2022, 22949. 10.1007/s11356-022-22949-2
    1. Gvozdjáková A., Sumbalová Z., Kucharská J., Chládeková A., Rausová Z., Vančová O., et al. (2019). Platelet mitochondrial bioenergetic analysis in patients with nephropathies and non-communicable diseases: A new method. Bratisl. Lek. Listy 120, 630–635. 10.4149/BLL_2019_104
    1. Hernández-Camacho J. D., García-Corzo L., Fernández-Ayala D. J. M., Navas P., López-LluchCoenzyme G. (2021). Coenzyme Q at the hinge of health and metabolic diseases. Antioxidants (Basel) 10 (11), 1785. 10.3390/antiox10111785
    1. Hoppel F., Calabria E., Pesta D. H., Kantner-Rumplmair W., Gnaiger E., Burtscher M. (2021). Effects of ultramarathon running on mitochondrial function of platelets and oxidative stress parameters: A pilot study. Front. Physiol. 12, 1300. 10.3389/fphys.2019.01300
    1. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Z. Y., et al. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506. 10.1016/S0140-6736(20)30183-5
    1. Janero D. R., Bughardt B. (1989). Thiobarbituric acid-reactive malondialdehyde formation during superoxide-dependent, iron-catalyzed lipid peroxidation: Influence of peroxidation conditions. Lipids 24, 125–131. 10.1007/BF02535249
    1. Jendrichovsky M., Pobeha P., Takácsová T., Kolcunová P., Heczková P. (2021). Recommendations for pulmonary rehabilitation and respiratory physiotherapy post-COVID-19 patients (In Slovak language: Odporúčania pre pľúcnu rehabilitáciu a respiračnú fyzioterapiu post COVID-19 pacientov). Available at: .
    1. Jimeno-Almazán A., Pallarés J. G., Buendía-Romero Á., Martínez-Cava A., Franco-López F., Sánchez-Alcaraz Martínez B. J., et al. (2021). Post-COVID-19 syndrome and the potential benefits of exercise. Int. J. Environ. Res. Public Health 18 (10), 5329. 10.3390/ijerph18105329
    1. Kaarbo M., Ager-Wick E., Osenbroch P. O., Kilander A., Skinnes R., Muller F., et al. (2011). Human cytomegalovirus infection increases mitochondrial biogenesis. Mitochondrion 11 (6), 935–945. 10.1016/j.mito.2011.08.008
    1. Kalil A. C., Thomas P. G. (2019). Influenza virus-related critical illness: Pathophysiology and epidemiology. Crit. Care 23 (1), 258. 10.1186/s13054-019-2539-x
    1. Kołodziej M., Wyszyńska J., Bal-Bocheńska M. (2021). COVID-19: A new challenge for pulmonary rehabilitation? J. Clin. Med. 10 (15), 3361. 10.3390/jcm10153361
    1. Kramer P. A., Ravi S., Chacko B., Johnson M. S., Darley-Usmar V. M. (2014). A review of the mitochondrial and glycolytic metabolism in human platelets and leukocytes: Implications for their use as bioenergetic biomarkers. Redox Biol. 2, 206–210. 10.1016/j.redox.2013.12.026
    1. Kucharská J., Gvozdjáková A., Mizera S., Braunová Z., Schreinerová Z., Schrameková E., et al. (1998). Participation of coenzyme Q10 in the rejection development of the transplanted heart. Physiol. Res. 47/6, 399–404.
    1. Lang J. K., Gohil K., Packer L. (1986). Simultaneous determination of tocopherols, ubiquinols, and ubiquinones in blood, plasma, tissue homogenates, and subcellular fractions. Anal. Biochem. 157, 106–116. 10.1016/0003-2697(86)90203-4
    1. Li J. Y., You Z., Wang Q., Zhou Z. J., Qiu Y., Luo R., et al. (2020). The epidemic of 2019-novel-coronavirus (2019-nCoV) pneumonia and insights for emerging infectious diseases in the future. Microbes Infect. 22, 80–85. 10.1016/j.micinf.2020.02.002
    1. Liu K., Zhang W., Yang Y., Zhang J., Li Y., Chen Y. (2020). Respiratory rehabilitation in elderly patients with COVID-19: A randomized controlled study. Complement. Ther. Clin. Pract. 39, 101166. 10.1016/j.ctcp.2020.101166
    1. Lopez-Lluch G. (2017). Mitochondrial activity and dynamics changes regarding metabolism in ageing and obesity. Mech. Ageing Dev. 162, 108–121. 10.1016/j.mad.2016.12.005
    1. Maccarone M. C., Mesiero S. (2021). Spa therapy interventions for post respiratory rehabilitation in COVID-19 subjects: Does the review of recent evidence suggest a role? Environ. Sci. Pollut. Res. Int. 28, 46063–46066. 10.1007/s11356-021-15443-8
    1. Mosca F., Fattorini D., Bompadre S., Littarru G. P. (2002). Assay of coenzyme Q10 in plasma by a single dilution step. Anal. Biochem. 305, 49–54. 10.1006/abio.2002.5653
    1. Nguyen Q. L., Wang Y., Helbling N., Simon M. A., Shiva S. (2019). Alterations in platelet bioenergetics in Group 2 PH-HFpEF patients. PLoS One 14 (7), e0220490. 10.1371/journal.pone.0220490
    1. Niklowitz P., Menke T., Andler W. M., Okun J. G. (2004). Simultaneous analysis of coenzyme Q10 in plasma, erythrocytes and platelets: Comparison of the antioxidant level in blood cells and their environment in healthy children and after oral supplementation in adults. Clin. Chim. Acta. 342, 219–226. 10.1016/j.cccn.2003.12.020
    1. Pesta D., Gnaiger E. (2012). High-resolution respirometry: OXPHOS protocols for human cells and permeabilized fibers from small biopsies of human muscle. Methods Mol. Biol. 810, 25–58. 10.1007/978-1-61779-382-0_3
    1. Posadzki P., Pieper D., Bajpai R., Makaruk H., Könsgen N., Neuhaus A. L., et al. (2020). Exercise/physical activity and health outcomes: An overview of cochrane systematic reviews. BMC Public Health 20 (1), 1724. 10.1186/s12889-020-09855-3
    1. Rauchová H. (2021). Coenzyme Q10 effects in neurological diseases. Physiol. Res. 70 (4), S683–S714. 10.33549/physiolres.934712
    1. Ripoli M., D´Aprile A., Quarato G., Sarasin-Filipowicz M., Gouttenoire J., Scrima R., et al. (2010). Hepatitis C virus-linked mitochondrial dysfunction promotes hypoxia-inducible factor 1 alpha-mediated glycolytic adaptation. J. Virol. 84 (1), 647–660. 10.1128/JVI.00769-09
    1. Scheffer D. D. L., Latini A. (2020). Exercise-induced immune system response: Anti-inflammatory status on peripheral and central organs. Biochim. Biophys. Acta. Mol. Basis Dis. 1866 (10), 165823. 10.1016/j.bbadis.2020.165823
    1. Shi C. H., Qi H. Y., Boularan C., Huang N. N., Abu-Asab M., Shelhamer J. H., et al. (2014). SARS-Coronavirus open reading frame-9b suppresses innate immunity by targeting mitochondria and the MAVS/TRAF3/TRAF6 signalosome. J. Immunol. 193, 3080–3089. 10.4049/jimmunol.1303196
    1. Shi T. T., Yang F. Y., Liu C., Cao X., Lu J., Zhang X. L., et al. (2018). Angiotensin-converting enzyme 2 regulates mitochondrial function in pancreatic β-cells. Biochem. Biophys. Res. Commun. 495 (1), 860–866. 10.1016/j.bbrc.2017.11.055
    1. Siddiq M. A. B., Rathore F. A., Clegg D., Rasker J. J. (2020). Pulmonary rehabilitation in COVID-19 patients: A scoping review of current practice and its application during the pandemic. Turk. J. Phys. Med. Rehabil. 66, 480–494. 10.5606/tftrd.2020.6889
    1. Sifuentes-Franco S., Sánchez-Macías D. C., Carrillo-Ibarra S., Rivera-Valdés J. J., Zuñiga L. Y., Sánchez-López V. A. (2022). Antioxidant and anti-inflammatory effects of coenzyme Q10 supplementation on infectious diseases. Healthc. (Basel) 10 (3), 487. 10.3390/healthcare10030487
    1. Singh K. K., Chaubey G., Chen J. Y., Suravajhala P. (2020). Decoding SARS-CoV-2 hijacking of host mitochondria in COVID-19 pathogenesis. Am. J. Physiol. Cell Physiol. 319 (2), C258–C267. 10.1152/ajpcell.00224.2020
    1. Sjövall F., Ehinger J. K., Marelsson S. E., Morota S., Frostner E. A., Uchino H., et al. (2013). Mitochondrial respiration in human viable platelets-methodology and influence of gender, age and storage. Mitochondrion 13 (1), 7–14. 10.1016/j.mito.2012.11.001
    1. Srere P. A. (1969). Citrate synthase: [EC 4.1.3.7. Citrate oxaloacetate-lyase (CoA-acetylating)]. Methods Enzym. 13, 3–11. Academic Press.
    1. Sue-Ling C. B., Abel W. M., Sue-Ling K. (2022). Coenzyme Q10 as adjunctive therapy for cardiovascular disease and hypertension: A systematic review. J. Nutr. 152 (7), 1666–1674. 10.1093/jn/nxac079
    1. Sumbalova Z., Droescher S., Hiller E., Chang S., Garcia L., Calabria E., et al. (2016). Isolation of blood cells for HRR. Mitochondr. Physiol. Netw. 21 (01), 1–15.
    1. Sumbalová Z., Kucharská J., Palacka P., Rausová Z., Langsjoen P. H., Langsjoen A. M., et al. (2022). Platelet mitochondrial function and endogenous coenzyme Q10 levels are are reduced in patients after COVID-19. Bratisl. Lek. Listy 123, 9–15. 10.4149/BLL_2022_002
    1. Sumbalova Z., Vancova O., Krumschnabel G., Gnaiger E. (2014). “Optimization of malate concentration for high-resolution respirometry: mitochondria from rat liver and brain,” in Mitochondrial Physiology – methods, concepts and biomedical perspectives. Editors Laner V., Gnaiger E. MiP2014. Mitochondr Physiol Network 19.13, 88.
    1. Tiku V., Tan M. W., Dikic I. (2020). Mitochondrial functions in infection and immunity. Trends Cell Biol. 30 (4), 263–275. 10.1016/j.tcb.2020.01.006
    1. Vastag L., Koyuncu E., Grady S. L., Shenk T. E., Rabinowitz J. D. (2011). Divergent effects of human cytomegalovirus and herpes simplex virus-1 on cellular metabolism. PLoS Pathog. 7 (7), e1002124. 10.1371/journal.ppat.1002124
    1. Wang T. J., Chau B., Lui M., Lam G. T., Lin N., Humbert S. (2020). Physical medicine and rehabilitation and pulmonary rehabilitation for COVID-19. Am. J. Phys. Med. Rehabil. 99/9, 769–774. 10.1097/PHM.0000000000001505
    1. Zhang L., Liu Y. (2020). Potential interventions for novel coronavirus in China: A systematic review. J. Med. Virol. 92, 479–490. 10.1002/jmv.25707
    1. Zhao H., Raines L. N., Huang S. C.-C. (2020). Carbohydrate and amino acid metabolism as hallmarks for innate immune cell activation and function. Cells 9 (3), 562. 10.3390/cells9030562

Source: PubMed

3
Subskrybuj