Phytochemicals as novel agents for the induction of browning in white adipose tissue

Yusra Azhar, Ashish Parmar, Colette N Miller, Janaiya S Samuels, Srujana Rayalam, Yusra Azhar, Ashish Parmar, Colette N Miller, Janaiya S Samuels, Srujana Rayalam

Abstract

Obesity and its associated metabolic syndrome continue to be a health epidemic in westernized societies and is catching up in the developing world. Despite such increases, little headway has been made to reverse adverse weight gain in the global population. Few medical options exist for the treatment of obesity which points to the necessity for exploration of anti-obesity therapies including pharmaceutical and nutraceutical compounds. Defects in brown adipose tissue, a major energy dissipating organ, has been identified in the obese and is hypothesized to contribute to the overall metabolic deficit observed in obesity. Not surprisingly, considerable attention has been placed on the discovery of methods to activate brown adipose tissue. A variety of plant-derived, natural compounds have shown promise to regulate brown adipose tissue activity and enhance the lipolytic and catabolic potential of white adipose tissue. Through activation of the sympathetic nervous system, thyroid hormone signaling, and transcriptional regulation of metabolism, natural compounds such as capsaicin and resveratrol may provide a relatively safe and effective option to upregulate energy expenditure. Through utilizing the energy dissipating potential of such nutraceutical compounds, the possibility exists to provide a therapeutic solution to correct the energy imbalance that underlines obesity.

Figures

Fig. 1
Fig. 1
Developmental origins of white, brown and beige adipocytes. Beige adipocytes are derived from mesenchymal stem cells (Myf5−) and are closely related to white adipocytes, while brown adipocytes are derived from Myf5+ precursor cells and are closely related to muscle lineage
Fig. 2
Fig. 2
Model for the induction of browning by phytochemicals. Guggulsterone binds to TGR5 and increases the expression of DIO2 which in turn enhances T3 levels leading to the induction of beiging. Resveratrol is a sirtuin activator and enhances the levels of cAMP and also activates AMPK. SIRT1 mediates PGC1α deacetylation and AMPK activates PGC1α. PRDM16 co-activates PGC1α and PPARγ driving the upregulation of thermogenic genes. Likewise, naringenin also activates SIRT1 contributing to the induction of beiging. Abbreviations: AMPK (5’ adenosine monophosphate activated protein kinase), DIO2 (type 2 deiodinase), PGC-1α (PPARγ coactivator 1α), PPARγ (peroxisome proliferator-activated receptor γ), PRDM16 (PR domain containing protein 16), SIRT1 (sirtuin 1) and T3 (tri-iodothyronine)
Fig. 3
Fig. 3
Possible TGR5-medaited effects of guggulsterone and xanthohumol. The structural similarity of guggulsterone and xanthohumol to bile acids allows them to bind to bile acid receptor TGR5 which induces cAMP mediated upregulation of DIO2. DIO2 converts T4 to biologically active T3, which in turn induces UCP1 and increases thermogenic activity of mitochondria. Abbreviations: cAMP (cyclic adenosine monophosphate), DIO2 (type 2 deiodinase), UCP1 (uncoupling protein 1)

References

    1. Jung UJ, Choi MS. Obesity and its metabolic complications: the role of adipokines and the relationship between obesity, inflammation, insulin resistance, dyslipidemia and nonalcoholic fatty liver disease. Int J Mol Sci. 2014;15(4):6184–223. doi: 10.3390/ijms15046184.
    1. Poher AL, Altirriba J, Veyrat-Durebex C, Rohner-Jeanrenaud F. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. 2015;6:4. doi: 10.3389/fphys.2015.00004.
    1. Harms M, Seale P. Brown and beige fat: development, function and therapeutic potential. Nat Med. 2013;19(10):1252–63. doi: 10.1038/nm.3361.
    1. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4(4):611–7. doi: 10.1016/S1097-2765(00)80211-7.
    1. Tanaka T, Yoshida N, Kishimoto T, Akira S. Defective adipocyte differentiation in mice lacking the C/EBPbeta and/or C/EBPdelta gene. EMBO J. 1997;16(24):7432–43. doi: 10.1093/emboj/16.24.7432.
    1. Tang QQ, Lane MD. Adipogenesis: from stem cell to adipocyte. Annu Rev Biochem. 2012;81(1):715–36. doi: 10.1146/annurev-biochem-052110-115718.
    1. Lo KA, Sun L. Turning WAT into BAT: a review on regulators controlling the browning of white adipocytes. Biosci Rep. 2013;33(5):e00065. doi: 10.1042/BSR20130046.
    1. Seale P, Kajimura S, Spiegelman BM. Transcriptional control of brown adipocyte development and physiological function—of mice and men. Genes Dev. 2009;23(7):788–97. doi: 10.1101/gad.1779209.
    1. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, et al. Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of pparγ. Cell. 2012;150(3):620–32. doi: 10.1016/j.cell.2012.06.027.
    1. Kleiner S, Mepani RJ, Laznik D, Ye L, Jurczak MJ, Jornayvaz FR, Estall JL, Chatterjee Bhowmick D, Shulman GI, Spiegelman BM. Development of insulin resistance in mice lacking PGC-1α in adipose tissues. Proc Natl Acad Sci U S A. 2012;109(24):9635–40. doi: 10.1073/pnas.1207287109.
    1. Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B. PPARγ in the control of brown adipocyte differentiation. Biochim Biophys Acta (BBA) - Mol Basis Dis. 2005;1740(2):293–304. doi: 10.1016/j.bbadis.2005.02.003.
    1. Jimenez-Preitner M, Berney X, Uldry M, Vitali A, Cinti S, Ledford JG, Thorens B. Plac8 is an inducer of C/EBPbeta required for brown fat differentiation, thermoregulation, and control of body weight. Cell Metab. 2011;14(5):658–70. doi: 10.1016/j.cmet.2011.08.008.
    1. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. doi: 10.1152/physrev.00015.2003.
    1. Gifford A, Towse TF, Walker RC, Avison MJ, Welch EB. Characterizing active and inactive brown adipose tissue in adult humans using PET-CT and MR imaging. Am J Physiol Endocrinol Metab. 2016;311(1):E95–104. doi: 10.1152/ajpendo.00482.2015.
    1. Sacks H, Symonds ME. Anatomical locations of human brown adipose tissue: functional relevance and implications in obesity and type 2 diabetes. Diabetes. 2013;62(6):1783–90. doi: 10.2337/db12-1430.
    1. Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–17. doi: 10.1056/NEJMoa0810780.
    1. Kajimura S, Saito M. A new era in brown adipose tissue biology: molecular control of brown fat development and energy homeostasis. Annu Rev Physiol. 2014;76:225–49. doi: 10.1146/annurev-physiol-021113-170252.
    1. Feldmann HM, Golozoubova V, Cannon B, Nedergaard J. UCP1 ablation induces obesity and abolishes diet-induced thermogenesis in mice exempt from thermal stress by living at thermoneutrality. Cell Metab. 2009;9(2):203–9. doi: 10.1016/j.cmet.2008.12.014.
    1. Saito M. Brown adipose tissue as a regulator of energy expenditure and body fat in humans. Diabetes Metab J. 2013;37(1):22–9. doi: 10.4093/dmj.2013.37.1.22.
    1. Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest. 2006;116(10):2571–9. doi: 10.1172/JCI29812.
    1. Bates JM, St Germain DL, Galton VA. Expression profiles of the three iodothyronine deiodinases, D1, D2, and D3, in the developing rat. Endocrinology. 1999;140(2):844–51.
    1. Silva JE, Larsen PR. Adrenergic activation of triiodothyronine production in brown adipose tissue. Nature. 1983;305(5936):712–3. doi: 10.1038/305712a0.
    1. Bianco AC, Silva JE. Intracellular conversion of thyroxine to triiodothyronine is required for the optimal thermogenic function of brown adipose tissue. J Clin Invest. 1987;79(1):295–300. doi: 10.1172/JCI112798.
    1. Solmonson A, Mills EM. Uncoupling proteins and the molecular mechanisms of thyroid thermogenesis. Endocrinology. 2016;157(2):455–62. doi: 10.1210/en.2015-1803.
    1. Lopez M, Varela L, Vazquez MJ, Rodriguez-Cuenca S, Gonzalez CR, Velagapudi VR, Morgan DA, Schoenmakers E, Agassandian K, Lage R, et al. Hypothalamic AMPK and fatty acid metabolism mediate thyroid regulation of energy balance. Nat Med. 2010;16(9):1001–8. doi: 10.1038/nm.2207.
    1. Rubio A, Raasmaja A, Silva JE. Thyroid hormone and norepinephrine signaling in brown adipose tissue. II: differential effects of thyroid hormone on beta 3-adrenergic receptors in brown and white adipose tissue. Endocrinology. 1995;136(8):3277–84.
    1. Veeresham C. Natural products derived from plants as a source of drugs. J Adv Pharm Technol Res. 2012;3(4):200–1. doi: 10.4103/2231-4040.104709.
    1. Chaput JP, St-Pierre S, Tremblay A. Currently available drugs for the treatment of obesity: Sibutramine and orlistat. Mini Rev Med Chem. 2007;7(1):3–10. doi: 10.2174/138955707779317849.
    1. Rayalam S, Della-Fera MA, Baile CA. Phytochemicals and regulation of the adipocyte life cycle. J Nutr Biochem. 2008;19(11):717–26. doi: 10.1016/j.jnutbio.2007.12.007.
    1. Colitti M, Grasso S. Nutraceuticals and regulation of adipocyte life: premises or promises. BioFactors. 2014;40(4):398–418. doi: 10.1002/biof.1164.
    1. Leiherer A, Mundlein A, Drexel H. Phytochemicals and their impact on adipose tissue inflammation and diabetes. Vasc Pharmacol. 2013;58(1–2):3–20. doi: 10.1016/j.vph.2012.09.002.
    1. Alberdi G, Rodriguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP. Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem. 2013;141(2):1530–5. doi: 10.1016/j.foodchem.2013.03.085.
    1. Rayalam S, Yang JY, Ambati S, Della-Fera MA, Baile CA. Resveratrol induces apoptosis and inhibits adipogenesis in 3 T3-L1 adipocytes. Phytother Res. 2008;22(10):1367–71. doi: 10.1002/ptr.2503.
    1. Andrade JMO, Frade ACM, Guimarães JB, Freitas KM, Lopes MTP, Guimarães ALS, de Paula AMB, Coimbra CC, Santos SHS. Resveratrol increases brown adipose tissue thermogenesis markers by increasing SIRT1 and energy expenditure and decreasing fat accumulation in adipose tissue of mice fed a standard diet. Eur J Nutr. 2014;53(7):1503–10. doi: 10.1007/s00394-014-0655-6.
    1. Um JH, Park SJ, Kang H, Yang S, Foretz M, McBurney MW, Kim MK, Viollet B, Chung JH. AMP-activated protein kinase-deficient mice are resistant to the metabolic effects of resveratrol. Diabetes. 2010;59(3):554–63. doi: 10.2337/db09-0482.
    1. Price NL, Gomes AP, Ling AJ, Duarte FV, Martin-Montalvo A, North BJ, Agarwal B, Ye L, Ramadori G, Teodoro JS, et al. SIRT1 is required for AMPK activation and the beneficial effects of resveratrol on mitochondrial function. Cell Metab. 2012;15(5):675–90. doi: 10.1016/j.cmet.2012.04.003.
    1. Seo KI, Choi MS, Jung UJ, Kim HJ, Yeo J, Jeon SM, Lee MK. Effect of curcumin supplementation on blood glucose, plasma insulin, and glucose homeostasis related enzyme activities in diabetic db/db mice. Mol Nutr Food Res. 2008;52(9):995–1004. doi: 10.1002/mnfr.200700184.
    1. Ejaz A, Wu D, Kwan P, Meydani M. Curcumin inhibits adipogenesis in 3 T3-L1 adipocytes and angiogenesis and obesity in C57/BL mice. J Nutr. 2009;139(5):919–25. doi: 10.3945/jn.108.100966.
    1. Lone J, Choi JH, Kim SW, Yun JW. Curcumin induces brown fat-like phenotype in 3 T3-L1 and primary white adipocytes. J Nutr Biochem. 2016;27:193–202. doi: 10.1016/j.jnutbio.2015.09.006.
    1. Wang S, Wang X, Ye Z, Xu C, Zhang M, Ruan B, Wei M, Jiang Y, Zhang Y, Wang L, et al. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem Biophys Res Commun. 2015;466(2):247–53. doi: 10.1016/j.bbrc.2015.09.018.
    1. Zhi L, Dong L, Kong D, Sun B, Sun Q, Grundy D, Zhang G, Rong W. Curcumin acts via transient receptor potential vanilloid-1 receptors to inhibit gut nociception and reverses visceral hyperalgesia. Neurogastroenterol Motil. 2013;25(6):e429–40. doi: 10.1111/nmo.12145.
    1. Cavallini DC, Manzoni MS, Bedani R, Roselino MN, Celiberto LS, Vendramini RC, de Valdez G, Abdalla DS, Pinto RA, Rosetto D, et al. Probiotic Soy product supplemented with isoflavones improves the lipid profile of moderately hypercholesterolemic Men: a randomized controlled trial. Nutrients. 2016;8(1):52. doi: 10.3390/nu8010052.
    1. Pudenz M, Roth K, Gerhauser C. Impact of soy isoflavones on the epigenome in cancer prevention. Nutrients. 2014;6(10):4218–72. doi: 10.3390/nu6104218.
    1. Wang L, Waltenberger B, Pferschy-Wenzig EM, Blunder M, Liu X, Malainer C, Blazevic T, Schwaiger S, Rollinger JM, Heiss EH, et al. Natural product agonists of peroxisome proliferator-activated receptor gamma (PPARgamma): a review. Biochem Pharmacol. 2014;92(1):73–89. doi: 10.1016/j.bcp.2014.07.018.
    1. Aziz S, Wakeling L, Miwa S, Hesketh J, Ford D. Genistein promotes a gene expression profile characteristic of brown or beige, rather than white, adipocytes and increases Sirt1 expression in mouse NIH3T3-L1 cells. In: Proceedings of The Physiological Society. The Physiological Society; 2014.
    1. Rasbach KA, Schnellmann RG. Isoflavones promote mitochondrial biogenesis. J Pharmacol Exp Ther. 2008;325(2):536–43. doi: 10.1124/jpet.107.134882.
    1. Zhang M, Ikeda K, Xu J-W, Yamori Y, Gao X-M, Zhang B-L. Genistein suppresses adipogenesis of 3 T3-L1 cells via multiple signal pathways. Phytother Res. 2009;23(5):713–8. doi: 10.1002/ptr.2724.
    1. Zanella I, Marrazzo E, Biasiotto G, Penza M, Romani A, Vignolini P, Caimi L, Di Lorenzo D. Soy and the soy isoflavone genistein promote adipose tissue development in male mice on a low-fat diet. Eur J Nutr. 2015;54(7):1095–107. doi: 10.1007/s00394-014-0786-9.
    1. Park HJ, Yang JY, Ambati S, Della-Fera MA, Hausman DB, Rayalam S, Baile CA. Combined effects of genistein, quercetin, and resveratrol in human and 3 T3-L1 adipocytes. J Med Food. 2008;11(4):773–83. doi: 10.1089/jmf.2008.0077.
    1. Satyavati GV, Dwarakanath C, Tripathi SN. Experimental studies on the hypocholesterolemic effect of Commiphora mukul. Engl. (Guggul) Indian J Med Res. 1969;57(10):1950–62.
    1. Urizar NL, Moore DD. GUGULIPID: a natural cholesterol-lowering agent. Annu Rev Nutr. 2003;23:303–13. doi: 10.1146/annurev.nutr.23.011702.073102.
    1. Ulbricht C, Basch E, Szapary P, Hammerness P, Axentsev S, Boon H, Kroll D, Garraway L, Vora M, Woods J. Guggul for hyperlipidemia: a review by the Natural Standard Research Collaboration. Complement Ther Med. 2005;13(4):279–90. doi: 10.1016/j.ctim.2005.08.003.
    1. Yang JY, Della-Fera MA, Baile CA. Guggulsterone inhibits adipocyte differentiation and induces apoptosis in 3 T3-L1 cells. Obesity (Silver Spring) 2008;16(1):16–22. doi: 10.1038/oby.2007.24.
    1. Sharma B, Salunke R, Srivastava S, Majumder C, Roy P. Effects of guggulsterone isolated from Commiphora mukul in high fat diet induced diabetic rats. Food Chem Toxicol. 2009;47(10):2631–9. doi: 10.1016/j.fct.2009.07.021.
    1. Yang JY, Della-Fera MA, Rayalam S, Ambati S, Baile CA. Enhanced pro-apoptotic and anti-adipogenic effects of genistein plus guggulsterone in 3 T3-L1 adipocytes. BioFactors. 2007;30(3):159–69. doi: 10.1002/biof.5520300303.
    1. Rayalam S, Yang JY, Della-Fera MA, Park HJ, Ambati S, Baile CA. Anti-obesity effects of xanthohumol plus guggulsterone in 3 T3-L1 adipocytes. J Med Food. 2009;12(4):846–53. doi: 10.1089/jmf.2008.0158.
    1. Rayalam S, Della-Fera MA, Ambati S, Boyan B, Baile CA. Enhanced effects of guggulsterone plus 1,25(OH)2D3 on 3 T3-L1 adipocytes. Biochem Biophys Res Commun. 2007;364(3):450–6. doi: 10.1016/j.bbrc.2007.10.051.
    1. Urizar NL, Liverman AB, Dodds DT, Silva FV, Ordentlich P, Yan Y, Gonzalez FJ, Heyman RA, Mangelsdorf DJ, Moore DD. A natural product that lowers cholesterol as an antagonist ligand for FXR. Science. 2002;296(5573):1703–6. doi: 10.1126/science.1072891.
    1. Tripathi YB, Malhotra OP, Tripathi SN. Thyroid Stimulating Action of Z-Guggulsterone Obtained from Commiphora mukul. Planta Med. 1984;50(1):78–80. doi: 10.1055/s-2007-969626.
    1. Watanabe M, Houten SM, Mataki C, Christoffolete MA, Kim BW, Sato H, Messaddeq N, Harney JW, Ezaki O, Kodama T, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature. 2006;439(7075):484–9. doi: 10.1038/nature04330.
    1. Stepanov V, Stankov K, Mikov M. The bile acid membrane receptor TGR5: a novel pharmacological target in metabolic, inflammatory and neoplastic disorders. J Recept Signal Transduct Res. 2013;33(4):213–23. doi: 10.3109/10799893.2013.802805.
    1. Martinez de Mena R, Scanlan TS, Obregon MJ. The T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. Endocrinology. 2010;151(10):5074–83. doi: 10.1210/en.2010-0533.
    1. Rayalam S, Yang JY, Della-Fera MA, Baile CA. Novel molecular targets for prevention of obesity and osteoporosis. J Nutr Biochem. 2011;22(12):1099–104. doi: 10.1016/j.jnutbio.2010.11.009.
    1. Kiyofuji A, Yui K, Takahashi K, Osada K. Effects of xanthohumol-rich hop extract on the differentiation of preadipocytes. J Oleo Sci. 2014;63(6):593–7. doi: 10.5650/jos.ess14009.
    1. Yang JY, Della-Fera MA, Rayalam S, Baile CA. Effect of xanthohumol and isoxanthohumol on 3 T3-L1 cell apoptosis and adipogenesis. Apoptosis. 2007;12(11):1953–63. doi: 10.1007/s10495-007-0130-4.
    1. Yui K, Kiyofuji A, Osada K. Effects of xanthohumol-rich extract from the hop on fatty acid metabolism in rats fed a high-fat diet. J Oleo Sci. 2014;63(2):159–68. doi: 10.5650/jos.ess13136.
    1. Kirkwood JS, Legette LL, Miranda CL, Jiang Y, Stevens JF. A metabolomics-driven elucidation of the anti-obesity mechanisms of xanthohumol. J Biol Chem. 2013;288(26):19000–13. doi: 10.1074/jbc.M112.445452.
    1. Morimoto-Kobayashi Y, Ohara K, Takahashi C, Kitao S, Wang G, Taniguchi Y, Katayama M, Nagai K. Matured Hop bittering components induce thermogenesis in brown adipose tissue via sympathetic nerve activity. PLoS One. 2015;10(6) doi: 10.1371/journal.pone.0131042.
    1. Radovic B, Hussong R, Gerhauser C, Meinl W, Frank N, Becker H, Kohrle J. Xanthohumol, a prenylated chalcone from hops, modulates hepatic expression of genes involved in thyroid hormone distribution and metabolism. Mol Nutr Food Res. 2010;54(Suppl 2):S225–35. doi: 10.1002/mnfr.200900489.
    1. Radovic B, Schmutzler C, Kohrle J. Xanthohumol stimulates iodide uptake in rat thyroid-derived FRTL-5 cells. Mol Nutr Food Res. 2005;49(9):832–6. doi: 10.1002/mnfr.200500053.
    1. Mulvihill EE, Allister EM, Sutherland BG, Telford DE, Sawyez CG, Edwards JY, Markle JM, Hegele RA, Huff MW. Naringenin prevents dyslipidemia, apolipoprotein B overproduction, and hyperinsulinemia in LDL receptor-null mice with diet-induced insulin resistance. Diabetes. 2009;58(10):2198–210. doi: 10.2337/db09-0634.
    1. Assini JM, Mulvihill EE, Sutherland BG, Telford DE, Sawyez CG, Felder SL, Chhoker S, Edwards JY, Gros R, Huff MW. Naringenin prevents cholesterol-induced systemic inflammation, metabolic dysregulation, and atherosclerosis in Ldlr(-)/(-) mice. J Lipid Res. 2013;54(3):711–24. doi: 10.1194/jlr.M032631.
    1. Kim GS, Park HJ, Woo JH, Kim MK, Koh PO, Min W, Ko YG, Kim CH, Won CK, Cho JH. Citrus aurantium flavonoids inhibit adipogenesis through the Akt signaling pathway in 3 T3-L1 cells. BMC Complement Altern Med. 2012;12:31.
    1. Suganami T, Ogawa Y. Adipose tissue macrophages: their role in adipose tissue remodeling. J Leukoc Biol. 2010;88(1):33–9. doi: 10.1189/jlb.0210072.
    1. Yoshida H, Watanabe H, Ishida A, Watanabe W, Narumi K, Atsumi T, Sugita C, Kurokawa M. Naringenin suppresses macrophage infiltration into adipose tissue in an early phase of high-fat diet-induced obesity. Biochem Biophys Res Commun. 2014;454(1):95–101. doi: 10.1016/j.bbrc.2014.10.038.
    1. Jeon SM, Kim HK, Kim HJ, Do GM, Jeong TS, Park YB, Choi MS. Hypocholesterolemic and antioxidative effects of naringenin and its two metabolites in high-cholesterol fed rats. Transl Res. 2007;149(1):15–21. doi: 10.1016/j.trsl.2006.08.001.
    1. Cho KW, Kim YO, Andrade JE, Burgess JR, Kim YC. Dietary naringenin increases hepatic peroxisome proliferators-activated receptor alpha protein expression and decreases plasma triglyceride and adiposity in rats. Eur J Nutr. 2011;50(2):81–8. doi: 10.1007/s00394-010-0117-8.
    1. Barbera MJ, Schluter A, Pedraza N, Iglesias R, Villarroya F, Giralt M. Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem. 2001;276(2):1486–93. doi: 10.1074/jbc.M006246200.
    1. Xue B, Coulter A, Rim JS, Koza RA, Kozak LP. Transcriptional synergy and the regulation of Ucp1 during brown adipocyte induction in white fat depots. Mol Cell Biol. 2005;25(18):8311–22. doi: 10.1128/MCB.25.18.8311-8322.2005.
    1. Perez-Vizcaino F, Duarte J. Flavonols and cardiovascular disease. Mol Asp Med. 2010;31(6):478–94. doi: 10.1016/j.mam.2010.09.002.
    1. Stewart LK, Soileau JL, Ribnicky D, Wang ZQ, Raskin I, Poulev A, Majewski M, Cefalu WT, Gettys TW. Quercetin transiently increases energy expenditure but persistently decreases circulating markers of inflammation in C57BL/6 J mice fed a high-fat diet. Metabolism. 2008;57(7 Suppl 1):S39–46. doi: 10.1016/j.metabol.2008.03.003.
    1. Jung CH, Cho I, Ahn J, Jeon TI, Ha TY. Quercetin reduces high-fat diet-induced fat accumulation in the liver by regulating lipid metabolism genes. Phytother Res. 2013;27(1):139–43. doi: 10.1002/ptr.4687.
    1. Rivera L, Moron R, Sanchez M, Zarzuelo A, Galisteo M. Quercetin ameliorates metabolic syndrome and improves the inflammatory status in obese Zucker rats. Obesity (Silver Spring) 2008;16(9):2081–7. doi: 10.1038/oby.2008.315.
    1. Moon J, Do HJ, Kim OY, Shin MJ. Antiobesity effects of quercetin-rich onion peel extract on the differentiation of 3 T3-L1 preadipocytes and the adipogenesis in high fat-fed rats. Food Chem Toxicol. 2013;58:347–54. doi: 10.1016/j.fct.2013.05.006.
    1. Dong J, Zhang X, Zhang L, Bian HX, Xu N, Bao B, Liu J. Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: a mechanism including AMPKalpha1/SIRT1. J Lipid Res. 2014;55(3):363–74. doi: 10.1194/jlr.M038786.
    1. Canto C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P, Auwerx J. AMPK regulates energy expenditure by modulating NAD+ metabolism and SIRT1 activity. Nature. 2009;458(7241):1056–60. doi: 10.1038/nature07813.
    1. Saito M. Capsaicin and related food ingredients reducing body Fat through the activation of TRP and brown Fat thermogenesis. Adv Food Nutr Res. 2015;76:1–28. doi: 10.1016/bs.afnr.2015.07.002.
    1. Kida R, Yoshida H, Murakami M, Shirai M, Hashimoto O, Kawada T, Matsui T, Funaba M. Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes. Cell Biochem Funct. 2016;34(1):34–41. doi: 10.1002/cbf.3162.
    1. Baskaran P, Krishnan V, Ren J, Thyagarajan B. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173(15):2369–89. doi: 10.1111/bph.13514.
    1. Dinis P, Charrua A, Avelino A, Nagy I, Quintas J, Ribau U, Cruz F. The distribution of sensory fibers immunoreactive for the TRPV1 (capsaicin) receptor in the human prostate. Eur Urol. 2005;48(1):162–7. doi: 10.1016/j.eururo.2005.01.009.
    1. Yiangou Y, Facer P, Dyer NH, Chan CL, Knowles C, Williams NS, Anand P. Vanilloid receptor 1 immunoreactivity in inflamed human bowel. Lancet. 2001;357(9265):1338–9. doi: 10.1016/S0140-6736(00)04503-7.
    1. Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, Koltzenburg M, Basbaum AI, Julius D. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306–13. doi: 10.1126/science.288.5464.306.
    1. Hong Q, Xia C, Xiangying H, Quan Y. Capsinoids suppress fat accumulation via lipid metabolism. Mol Med Rep. 2015;11(3):1669–74.
    1. Kawabata F, Inoue N, Masamoto Y, Matsumura S, Kimura W, Kadowaki M, Higashi T, Tominaga M, Inoue K, Fushiki T. Non-pungent capsaicin analogs (capsinoids) increase metabolic rate and enhance thermogenesis via gastrointestinal TRPV1 in mice. Biosci Biotechnol Biochem. 2009;73(12):2690–7. doi: 10.1271/bbb.90555.
    1. Ohyama K, Nogusa Y, Shinoda K, Suzuki K, Bannai M, Kajimura S. A synergistic antiobesity effect by a combination of capsinoids and cold temperature through promoting beige adipocyte biogenesis. Diabetes. 2016;65(5):1410–23. doi: 10.2337/db15-0662.
    1. Yoneshiro T, Aita S, Kawai Y, Iwanaga T, Saito M. Nonpungent capsaicin analogs (capsinoids) increase energy expenditure through the activation of brown adipose tissue in humans. Am J Clin Nutr. 2012;95(4):845–50. doi: 10.3945/ajcn.111.018606.
    1. Tamura Y, Iwasaki Y, Narukawa M, Watanabe T. Ingestion of cinnamaldehyde, a TRPA1 agonist, reduces visceral fats in mice fed a high-fat and high-sucrose diet. J Nutr Sci Vitaminol. 2012;58(1):9–13. doi: 10.3177/jnsv.58.9.
    1. Jawale A, Datusalia AK, Bishnoi M, Sharma SS. Reversal of diabetes-induced behavioral and neurochemical deficits by cinnamaldehyde. Phytomedicine. 2016;23(9):923–30. doi: 10.1016/j.phymed.2016.04.008.
    1. Giralt M, Cairo M, Villarroya F. Hormonal and nutritional signalling in the control of brown and beige adipose tissue activation and recruitment. Best Pract Res Clin Endocrinol Metab. 2016;30(4):515–25. doi: 10.1016/j.beem.2016.08.005.
    1. Iwasaki Y, Tanabe M, Kobata K, Watanabe T. TRPA1 agonists--allyl isothiocyanate and cinnamaldehyde--induce adrenaline secretion. Biosci Biotechnol Biochem. 2008;72(10):2608–14. doi: 10.1271/bbb.80289.
    1. Masamoto Y, Kawabata F, Fushiki T. Intragastric administration of TRPV1, TRPV3, TRPM8, and TRPA1 agonists modulates autonomic thermoregulation in different manners in mice. Biosci Biotechnol Biochem. 2009;73(5):1021–7. doi: 10.1271/bbb.80796.
    1. Han Y, Jung HW, Bae HS, Kang JS, Park YK. The extract of Cinnamomum cassia twigs inhibits adipocyte differentiation via activation of the insulin signaling pathway in 3 T3-L1 preadipocytes. Pharm Biol. 2013;51(8):961–7. doi: 10.3109/13880209.2013.772211.
    1. Abidov M, Ramazanov Z, Seifulla R, Grachev S. The effects of Xanthigen in the weight management of obese premenopausal women with non-alcoholic fatty liver disease and normal liver fat. Diabetes Obes Metab. 2010;12(1):72–81. doi: 10.1111/j.1463-1326.2009.01132.x.
    1. Maeda H, Hosokawa M, Sashima T, Takahashi N, Kawada T, Miyashita K. Fucoxanthin and its metabolite, fucoxanthinol, suppress adipocyte differentiation in 3 T3-L1 cells. Int J Mol Med. 2006;18(1):147–52.
    1. Kang SI, Ko HC, Shin HS, Kim HM, Hong YS, Lee NH, Kim SJ. Fucoxanthin exerts differing effects on 3 T3-L1 cells according to differentiation stage and inhibits glucose uptake in mature adipocytes. Biochem Biophys Res Commun. 2011;409(4):769–74. doi: 10.1016/j.bbrc.2011.05.086.
    1. Maeda H, Hosokawa M, Sashima T, Murakami-Funayama K, Miyashita K. Anti-obesity and anti-diabetic effects of fucoxanthin on diet-induced obesity conditions in a murine model. Mol Med Rep. 2009;2(6):897–902. doi: 10.3892/mmr_00000189.
    1. Maeda H, Hosokawa M, Sashima T, Funayama K, Miyashita K. Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochem Biophys Res Commun. 2005;332(2):392–7. doi: 10.1016/j.bbrc.2005.05.002.
    1. Maeda H, Tsukui T, Sashima T, Hosokawa M, Miyashita K. Seaweed carotenoid, fucoxanthin, as a multi-functional nutrient. Asia Pac J Clin Nutr. 2008;17(Suppl 1):196–9.

Source: PubMed

3
Subskrybuj