Accuracy Evaluation of a Stereolithographic Surgical Template for Dental Implant Insertion Using 3D Superimposition Protocol

Corina Marilena Cristache, Silviu Gurbanescu, Corina Marilena Cristache, Silviu Gurbanescu

Abstract

The aim: of this study was to evaluate the accuracy of a stereolithographic template, with sleeve structure incorporated into the design, for computer-guided dental implant insertion in partially edentulous patients.

Materials and methods: Sixty-five implants were placed in twenty-five consecutive patients with a stereolithographic surgical template. After surgery, digital impression was taken and 3D inaccuracy of implants position at entry point, apex, and angle deviation was measured using an inspection tool software. Mann-Whitney U test was used to compare accuracy between maxillary and mandibular surgical guides. A p value < .05 was considered significant.

Results: Mean (and standard deviation) of 3D error at the entry point was 0.798 mm (±0.52), at the implant apex it was 1.17 mm (±0.63), and mean angular deviation was 2.34 (±0.85). A statistically significant reduced 3D error was observed at entry point p = .037, at implant apex p = .008, and also in angular deviation p = .030 in mandible when comparing to maxilla.

Conclusions: The surgical template used has proved high accuracy for implant insertion. Within the limitations of the present study, the protocol for comparing a digital file (treatment plan) with postinsertion digital impression may be considered a useful procedure for assessing surgical template accuracy, avoiding radiation exposure, during postoperative CBCT scanning.

Figures

Figure 1
Figure 1
Planned implant insertion in R2GATE® software.
Figure 2
Figure 2
The stereolithographic surgical guide utilized in all cases had the guide sleeve incorporated in the design, eliminating the need for additional insertion of metal guide sleeves. All surgical drills used had 3 parts: the stopper part, the guide part, and the drilling part [19]. Stopper and guide parts are identical for all drills and especially designed for R2Gate® surgical template. Drilling part varies in length and diameter according to the drilling protocol.
Figure 3
Figure 3
(a) Surgical template applied over the edentulous area and adjacent teeth. (b) Second drill used for flapless implant site preparation.
Figure 4
Figure 4
Implant insertion with hand ratchet. The ratchet connector has six green vertical landmarks (corresponding to implant hex) and a horizontal reference line. In order to reproduce the planned implant position, the horizontal reference line should match with the upper border and the green vertical landmark with the window of the surgical template.
Figure 5
Figure 5
Digital impression of the implants after screwing the scan abutment.
Figure 6
Figure 6
Study workflow.
Figure 7
Figure 7
Measurement of 3D accuracy of the planned (reference) and effective implant insertion (test), represents degree symbol (°) as it measures an angle.
Figure 8
Figure 8
Qualitative color-codded graphical analysis of implants planned (reference) and placed (test) in Geomagic Qualify® software.
Figure 9
Figure 9
Mean 3D error at entry point, measured at the center of the implant in mandible and maxilla.
Figure 10
Figure 10
Mean 3D error at the apex measured at the center of the implant in mandible and maxilla.
Figure 11
Figure 11
Mean angular deviation for implants inserted in mandible and maxilla.

References

    1. Guerrero M. E., Jacobs R., Loubele M., Schutyser F., Suetens P., van Steenberghe D. State-of-the-art on cone beam CT imaging for preoperative planning of implant placement. Clinical Oral Investigations. 2006;10(1):1–7. doi: 10.1007/s00784-005-0031-2.
    1. Pauwels R., Jacobs R., Singer S. R., Mupparapu M. CBCT-based bone quality assessment: are hounsfield units applicable? Dentomaxillofacial Radiology. 2015;44(1) doi: 10.1259/dmfr.20140238.20140238
    1. Rungcharassaeng K., Caruso J. M., Kan J. Y., Schutyser F., Boumans T. Accuracy of computer-guided surgery: a comparison of operator experience. Journal of Prosthetic Dentistry. 2015;114(3):407–413. doi: 10.1016/j.prosdent.2015.04.004.
    1. van Assche N., Vercruyssen M., Coucke W., Teughels W., Jacobs R., Quirynen M. Accuracy of computer-aided implant placement. Clinical Oral Implants Research. 2012;23(supplement 6):112–123. doi: 10.1111/j.1600-0501.2012.02552.x.
    1. Jung R. E., Schneider D., Ganeles J., Wismeijer D., Zwahlen M., Hammerle C. H., et al. Computer technology applications in surgical implant dentistry: a systematic review. The International Journal of Oral & Maxillofacial Implants. 2009;24:92–109.
    1. Schneider D., Marquardt P., Zwahlen M., Jung R. E. A systematic review on the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clinical Oral Implants Research. 2009;20(supplement 4):73–86. doi: 10.1111/j.1600-0501.2009.01788.x.
    1. Hultin M., Svensson K. G., Trulsson M. Clinical advantages of computer-guided implant placement: a systematic review. Clinical Oral Implants Research. 2012;23(supplement 6):124–135. doi: 10.1111/j.1600-0501.2012.02545.x.
    1. Scherer U., Stoetzer M., Ruecker M., Gellrich N.-C., von See C. Template-guided vs. non-guided drilling in site preparation of dental implants. Clinical Oral Investigations. 2015;19(6):1339–1346. doi: 10.1007/s00784-014-1346-7.
    1. Ismail A. I., Saeed M. H., Afsharinia S. A survey on dental implant in use among UAE and Iranian dentists. Journal of International Dental and Medical Research. 2013;6(2, article 59)
    1. Koparal M., Alan H., Gulsun B., Celik F. Sedation during implant surgery. Journal of International Dental and Medical Research. 2015;8(3):151–154.
    1. Zortuk M., Kilic E., Yildiz P., Leblebicioglu I. Effect of parafunctional force on dental implant treatment in bruxism: a case report (two year results) Journal of International Dental and Medical Research. 2011;4(1):25–29.
    1. Vercruyssen M., Laleman I., Jacobs R., Quirynen M. Computer-supported implant planning and guided surgery: a narrative review. Clinical Oral Implants Research. 2015;26:69–76. doi: 10.1111/clr.12638.
    1. Dreiseidler T., Neugebauer J., Ritter L., et al. Accuracy of a newly developed integrated system for dental implant planning. Clinical Oral Implants Research. 2009;20(11):1191–1199. doi: 10.1111/j.1600-0501.2009.01764.x.
    1. Al-Harbi S. A., Sun A. Y. T. Implant placement accuracy when using stereolithographic template as a surgical guide: preliminary results. Implant Dentistry. 2009;18(1):46–56. doi: 10.1097/ID.0b013e31818c6a50.
    1. D'haese J., Van De Velde T., Elaut L., De Bruyn H. A prospective study on the accuracy of mucosally supported stereolithographic surgical guides in fully edentulous maxillae. Clinical Implant Dentistry and Related Research. 2012;14(2):293–303. doi: 10.1111/j.1708-8208.2009.00255.x.
    1. Di Giacomo G. A., Da Silva J. V., Da Silva A. M., Paschoal G. H., Cury P. R., Szarf G. Accuracy and complications of computer-designed selective laser sintering surgical guides for flapless dental implant placement and immediate definitive prosthesis installation. Journal of Periodontology. 2012;83(4):410–419. doi: 10.1902/jop.2011.110115.
    1. Tahmaseb A., Wismeijer D., Coucke W., Derksen W. Computer technology applications in surgical implant dentistry: a systematic review. The International Journal of Oral & Maxillofacial Implants. 2014;29:25–42. doi: 10.11607/jomi.2014suppl.g1.2.
    1. McGarry T. J., Nimmo A., Skiba J. F., et al. Classification system for partial edentulism. Journal of Prosthodontics. 2002;11(3):181–193. doi: 10.1053/jpro.2002.126094. doi: 10.1053/jopr.2002.126094.
    1. Lee D. H., An S. Y., Hong M. H., Jeon K. B., Lee K. B. Accuracy of a direct drill-guiding system with minimal tolerance of surgical instruments used for implant surgery: a prospective clinical study. Journal of Advanced Prosthodontics. 2016;8(3):207–213.
    1. Rhee Y.-K., Huh Y.-H., Cho L.-R., Park C.-J. Comparison of intraoral scanning and conventional impression techniques using 3-Dimensional superimposition. Journal of Advanced Prosthodontics. 2015;7(6):460–467. doi: 10.4047/jap.2015.7.6.460.
    1. Dewi R. S., Himawan L. S., Soekanto S. A., Kusdhany L. S. Low resonance frequency analyzer (Lrfa) as a potential tool for evaluating dental implant osseointegration. Journal of International Dental & Medical Research. 2016;9(article 9):376–381.
    1. Gallucci G. O., Benic G. I., Eckert S. E., et al. Consensus statements and clinical recommendations for implant loading protocols. The International Journal of Oral & Maxillofacial Implants. 2014;29:287–290. doi: 10.11607/jomi.2013.g4.
    1. Bornstein M. M., Al-Nawas B., Kuchler U., Tahmaseb A. Consensus statements and recommended clinical procedures regarding contemporary surgical and radiographic techniques in implant dentistry. The International Journal of Oral & Maxillofacial Implants. 2014;29:78–82. doi: 10.11607/jomi.2013.g1.
    1. Rudolph H., Salmen H., Moldan M., et al. Accuracy of intraoral and extraoral digital data acquisition for dental restorations. Journal of Applied Oral Science. 2016;24(1):85–94. doi: 10.1590/1678-775720150266.
    1. Turbush S. K., Turkyilmaz I. Accuracy of three different types of stereolithographic surgical guide in implant placement: an in vitro study. The Journal of Prosthetic Dentistry. 2012;108(3):181–188. doi: 10.1016/s0022-3913(12)60145-0.
    1. Verhamme L. M., Meijer G. J., Boumans T., Schutyser F., Bergé S. J., Maal T. J. J. A clinically relevant validation method for implant placement after virtual planning. Clinical Oral Implants Research. 2013;24(11):1265–1272. doi: 10.1111/j.1600-0501.2012.02565.x.
    1. Yatzkair G., Cheng A., Brodie S., Raviv E., Boyan B. D., Schwartz Z. Accuracy of computer-guided implantation in a human cadaver model. Clinical Oral Implants Research. 2015;26(10):1143–1149. doi: 10.1111/clr.12482.
    1. Ozan O., Orhan K., Turkyilmaz I. Correlation between bone density and angular deviation of implants placed using CT-generated surgical guides. Journal of Craniofacial Surgery. 2011;22(5):1755–1761. doi: 10.1097/SCS.0b013e31822e6305.
    1. Vasak C., Kohal R. J., Lettner S., Rohner D., Zechner W. Clinical and radiological evaluation of a template-guided (NobelGuide™) treatment concept. Clinical Oral Implants Research. 2014;25(1):116–123. doi: 10.1111/clr.12038.
    1. Pettersson A., Kero T., Gillot L., et al. Accuracy of CAD/CAM-guided surgical template implant surgery on human cadavers: Part I. Journal of Prosthetic Dentistry. 2010;103(6):334–342. doi: 10.1016/S0022-3913(10)60072-8.
    1. Cassetta M., Di Mambro A., Giansanti M., Stefanelli L. V., Cavallini C. The intrinsic error of a stereolithographic surgical template in implant guided surgery. International Journal of Oral and Maxillofacial Surgery. 2013;42(2):264–275. doi: 10.1016/j.ijom.2012.06.010.
    1. Tahmaseb A., van de Weijden J. J., Mercelis P., De Clerck R., Wismeijer D. Parameters of passive fit using a new technique to mill implant-supported superstructures: an in vitro study of a novel three-dimensional force measurement-misfit method. The International Journal of Oral & Maxillofacial Implants. 2010;25(2):247–257.
    1. Vercruyssen M., Hultin M., Van Assche N., Svensson K., Naert I., Quirynen M. Guided surgery: accuracy and efficacy. Periodontology 2000. 2014;66(1):228–246. doi: 10.1111/prd.12046.

Source: PubMed

3
Subskrybuj