The relation between acute changes in the systemic inflammatory response and circulating thiamine and magnesium concentrations after elective knee arthroplasty

Donogh Maguire, Anthony Catchpole, Owen Sheerins, Dinesh Talwar, Alana Burns, Mark Blyth, Andrew Shaw, Bryn Jones, Colin Drury, Johann Harten, Innes Smith, Donald C McMillan, Donogh Maguire, Anthony Catchpole, Owen Sheerins, Dinesh Talwar, Alana Burns, Mark Blyth, Andrew Shaw, Bryn Jones, Colin Drury, Johann Harten, Innes Smith, Donald C McMillan

Abstract

Thiamine diphosphate (TDP) and magnesium are co-factors for key enzymes in human intermediary metabolism. However, their role in the systemic inflammatory response (SIR) is not clear. Therefore, the aim of the present study was to examine the relation between acute changes in the SIR and thiamine and magnesium dependent enzyme activity in patients undergoing elective knee arthroplasty (a standard reproducible surgical injury in apparently healthy individuals). Patients (n = 35) who underwent elective total knee arthroplasty had venous blood samples collected pre- and post-operatively for 3 days, for measurement of whole blood TDP, serum and erythrocyte magnesium, erythrocyte transketolase activity (ETKA), lactate dehydrogenase (LDH), glucose and lactate concentrations. Pre-operatively, TDP concentrations, erythrocyte magnesium concentrations, ETKA and plasma glucose were within normal limits for all patients. In contrast, 5 patients (14%) had low serum magnesium concentrations (< 0.75 mmol/L). On post-operative day1, both TDP concentrations (p < 0.001) and basal ETKA (p < 0.05) increased and serum magnesium concentrations decreased (p < 0.001). Erythrocyte magnesium concentrations correlated with serum magnesium concentrations (rs = 0.338, p < 0.05) and remained constant during SIR. Post-operatively 14 patients (40%) had low serum magnesium concentrations. On day1 serum magnesium concentrations were directly associated with LDH (p < 0.05), WCC (p < 0.05) and neutrophils (p < 0.01). Whole blood TDP and basal ETKA increased while serum magnesium concentrations decreased, indicating increased requirement for thiamine and magnesium dependent enzyme activity during SIR. Therefore, thiamine and magnesium represent potentially modifiable therapeutic targets that may modulate the host inflammatory response. Erythrocyte magnesium concentrations are likely to be reliable measures of status, whereas serum magnesium concentrations and whole blood TDP may not.ClinicalTrials.gov: NCT03554668.

Conflict of interest statement

The authors declare no competing interests.

Figures

Figure 1
Figure 1
The relationship between pre-operative erythrocyte thiamine diphosphate and erythrocyte transketolase activation coefficient (ETK activation coefficient: erythrocyte transketolase activation coefficient).
Figure 2
Figure 2
The relationship between day 1 post-operative erythrocyte thiamine diphosphate and erythrocyte transketolase activation coefficient (ETK activation coefficient: erythrocyte transketolase activation coefficient).
Figure 3
Figure 3
The relationship between pre-operative erythrocyte magnesium (mmol/gHb) and serum magnesium concentrations (mmol/L).
Figure 4
Figure 4
The relationship between day 1 post-operative erythrocyte magnesium (mmol/gHb) and serum magnesium concentrations (mmol/L).

References

    1. Kerns JC, Arundel C, Chawla LS. Thiamin deficiency in people with obesity. Adv Nutr. 2015;6(2):147–153. doi: 10.3945/an.114.007526.
    1. National Research Council Committee on Diet and Health . Diet and Health: Implications for Reducing Chronic Disease Risk. National Academy Press; 1989.
    1. Kimmons JE, Blanck HM, Tohill BC, Zhang J, Khan LK. Associations between body mass index and the prevalence of low micronutrient levels among US adults. MedGenMed. 2006;8(4):59.
    1. Parekh PJ, Balart LA, Johnson DA. The influence of the Gut microbiome on obesity, metabolic syndrome and gastrointestinal disease. Clin. Transl. Gastroenterol. 2015;6:e91. doi: 10.1038/ctg.2015.16.
    1. Maguire D, Talwar D, Shiels P, D M. The role of thiamine dependent enzymes in obesity and obesity related chronic disease states: A systematic review. Clin. Nutr. ESPEN2018 (2018).
    1. Cook CC, Hallwood PM, Thomson AD. B Vitamin deficiency and neuropsychiatric syndromes in alcohol misuse. Alcohol Alcohol. 1998;33(4):317–336. doi: 10.1093/oxfordjournals.alcalc.a008400.
    1. Cruickshank AM, Telfer AB, Shenkin A. Thiamine deficiency in the critically ill. Intensive Care Med. 1988;14(4):384–387. doi: 10.1007/BF00262893.
    1. Lima LF, Leite HP, Taddei JA. Low blood thiamine concentrations in children upon admission to the intensive care unit: Risk factors and prognostic significance. Am. J. Clin. Nutr. 2011;93(1):57–61. doi: 10.3945/ajcn.2009.29078.
    1. Donnino MW, Cocchi MN, Smithline H, Carney E, Chou PP, Salciccioli J, et al. Coronary artery bypass graft surgery depletes plasma thiamine levels. Nutrition. 2010;26(1):133–136. doi: 10.1016/j.nut.2009.06.004.
    1. Leite HP, de Lima LF. Metabolic resuscitation in sepsis: A necessary step beyond the hemodynamic? J Thorac Dis. 2016;8(7):E552–E557. doi: 10.21037/jtd.2016.05.37.
    1. Manzanares W, Hardy G. Thiamine supplementation in the critically ill. Curr. Opin. Clin. Nutr. Metab. Care. 2011;14(6):610–617. doi: 10.1097/MCO.0b013e32834b8911.
    1. Gray A, McMillan DC, Wilson C, Williamson C, O'Reilly DS, Talwar D. The relationship between plasma and red cell concentrations of vitamins thiamine diphosphate, flavin adenine dinucleotide and pyridoxal 5-phosphate following elective knee arthroplasty. Clin. Nutr. 2004;23(5):1080–1083. doi: 10.1016/j.clnu.2004.01.013.
    1. Quasim, T., McMillan, D.C., Talwar, D., Vasilaki, A., St J O'Reilly, D., Kinsella, J. The relationship between plasma and red cell B-vitamin concentrations in critically-ill patients. Clin. Nutr.24(6), 956–960 (2005).
    1. Ghashut RA, McMillan DC, Kinsella J, Talwar D. Erythrocyte concentrations of B1, B2, B6 but not plasma C and E are reliable indicators of nutrition status in the presence of systemic inflammation. Clin. Nutr. ESPEN. 2017;17:54–62. doi: 10.1016/j.clnesp.2016.10.007.
    1. Yamauchi T, Miyoshi D, Kubodera T, Nishimura A, Nakai S, Sugimoto N. Roles of Mg2+ in TPP-dependent riboswitch. FEBS Lett. 2005;579(12):2583–2588. doi: 10.1016/j.febslet.2005.03.074.
    1. Kochetov, G.A., Tikhomirova, N.K., Philippov, P.P. The binding of thiamine pyrophosphate with transketolase in equilibrium conditions. Biochem. Biophys. Res. Commun.63(4), 924–930 (1975).
    1. Kochetov GA, Izotova AE, Meshalkina LE. Inhibition of transketolase by analogues of the coenzyme. Biochem. Biophys. Res. Commun. 1971;43(5):1198–1203. doi: 10.1016/0006-291X(71)90590-0.
    1. Vormann J. Magnesium and kidney health—More on the 'forgotten electrolyte'. Am. J. Nephrol. 2016;44(5):379–380. doi: 10.1159/000450863.
    1. Zhang, X., Xia, J., Del Gobbo, L.C., Hruby, A., Dai, Q., Song, Y. Serum magnesium concentrations and all-cause, cardiovascular, and cancer mortality among U.S. adults: Results from the NHANES I Epidemiologic Follow-up Study. Clin. Nutr.37(5), 1541–1549 (2018).
    1. Rosanoff A, Dai Q, Shapses SA. Essential nutrient interactions: Does low or suboptimal magnesium status interact with vitamin D and/or calcium status? Adv. Nutr. 2016;7(1):25–43. doi: 10.3945/an.115.008631.
    1. Maguire, D., Neytchev, O., Talwar, D., McMillan, D., Shiels, P.G. Telomere homeostasis: Interplay with magnesium. Int. J. Mol. Sci.19(1) (2018).
    1. Wu L, Zhu X, Fan L, Kabagambe EK, Song Y, Tao M, et al. Magnesium intake and mortality due to liver diseases: Results from the Third National Health and Nutrition Examination Survey Cohort. Sci. Rep. 2017;7(1):17913. doi: 10.1038/s41598-017-18076-5.
    1. Maguire, D. et al. The relationship between low circulating magnesium concentrations, clinicopathological characteristics and 1-year mortality in alcohol withdrawal syndrome. EJCI2019.
    1. McMillan, D.C., Maguire, D., Talwar, D. Relationship between nutritional status and the systemic inflammatory response: micronutrients. Proc. Nutr. Soc. 1–12 (2018).
    1. Baines M, Davies G. The evaluation of erythrocyte thiamin diphosphate as an indicator of thiamin status in man, and its comparison with erythrocyte transketolase activity measurements. Ann. Clin. Biochem. 1988;25(Pt 6):698–705. doi: 10.1177/000456328802500617.
    1. Baines M. Improved high performance liquid chromatographic determination of thiamin diphosphate in erythrocytes. Clin. Chim. Acta. 1985;153(1):43–48. doi: 10.1016/0009-8981(85)90137-8.
    1. Reid D, Toole BJ, Knox S, Talwar D, Harten J, O'Reilly DS, et al. The relation between acute changes in the systemic inflammatory response and plasma 25-hydroxyvitamin D concentrations after elective knee arthroplasty. Am. J. Clin. Nutr. 2011;93(5):1006–1011. doi: 10.3945/ajcn.110.008490.
    1. Talwar D, Davidson H, Cooney J, St JO'Reilly D. Vitamin B(1) status assessed by direct measurement of thiamin pyrophosphate in erythrocytes or whole blood by HPLC: Comparison with erythrocyte transketolase activation assay. Clin. Chem. 2000;46(5):704–710. doi: 10.1093/clinchem/46.5.704.
    1. Bayoumi RA, Rosalki SB. Evaluation of methods of coenzyme activation of erythrocyte enzymes for detection of deficiency of vitamins B1, B2, and B6. Clin. Chem. 1976;22(3):327–335. doi: 10.1093/clinchem/22.3.327.
    1. Drabkin, D.L., Austin, J.H. Spectrophotometric studies II. Preparations from washed blood cells; nitric oxide hemoglobin and sulfhemoglobin. J. Biol. Chem. (1935).
    1. Stefanowicz F, Gashut RA, Talwar D, Duncan A, Beulshausen JF, McMillan DC, et al. Assessment of plasma and red cell trace element concentrations, disease severity, and outcome in patients with critical illness. J. Crit. Care. 2014;29(2):214–218. doi: 10.1016/j.jcrc.2013.10.012.
    1. Gabay C, Kushner I. Acute-phase proteins and other systemic responses to inflammation. N. Engl. J. Med. 1999;340(6):448–454. doi: 10.1056/NEJM199902113400607.
    1. Bone RC. Toward an epidemiology and natural history of SIRS (systemic inflammatory response syndrome) JAMA. 1992;268(24):3452–3455. doi: 10.1001/jama.1992.03490240060037.
    1. Whitfield KC, Bourassa MW, Adamolekun B, Bergeron G, Bettendorff L, Brown KH, et al. Thiamine deficiency disorders: Diagnosis, prevalence, and a roadmap for global control programs. Ann. N. Y. Acad. Sci. 2018;1430(1):3–43. doi: 10.1111/nyas.13919.
    1. Lonsdale D. Thiamine and magnesium deficiencies: Keys to disease. Med. Hypotheses. 2015;84(2):129–134. doi: 10.1016/j.mehy.2014.12.004.
    1. Peake RW, Godber IM, Maguire D. The effect of magnesium administration on erythrocyte transketolase activity in alcoholic patients treated with thiamine. Scott Med. J. 2013;58(3):139–142. doi: 10.1177/0036933013496944.
    1. Michalak S, Michałowska-Wender G, Adamcewicz G, Wender MB. Erythrocyte transketolase activity in patients with diabetic and alcoholic neuropathies. Folia Neuropathol. 2013;51(3):222–226. doi: 10.5114/fn.2013.37706.
    1. Moskowitz A, Lee J, Donnino MW, Mark R, Celi LA, Danziger J. The association between admission magnesium concentrations and lactic acidosis in critical illness. J. Intensive Care Med. 2016;31(3):187–192. doi: 10.1177/0885066614530659.
    1. Marik PE, Khangoora V, Rivera R, Hooper MH, Catravas J. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: A retrospective before-after study. Chest. 2017;151(6):1229–1238. doi: 10.1016/j.chest.2016.11.036.
    1. Obi J, Pastores SM, Ramanathan LV, Yang J, Halpern NA. Treating sepsis with vitamin C, thiamine, and hydrocortisone: Exploring the quest for the magic elixir. J. Crit. Care. 2020;57:231–239. doi: 10.1016/j.jcrc.2019.12.011.
    1. Hotamisligil GS. Foundations of immunometabolism and implications for metabolic health and disease. Immunity. 2017;47(3):406–420. doi: 10.1016/j.immuni.2017.08.009.
    1. Costello RB, Elin RJ, Rosanoff A, Wallace TC, Guerrero-Romero F, Hruby A, et al. Perspective: The case for an evidence-based reference interval for serum magnesium: The time has come. Adv. Nutr. 2016;7(6):977–993. doi: 10.3945/an.116.012765.
    1. Lutsey PL, Alonso A, Michos ED, Loehr LR, Astor BC, Coresh J, et al. Serum magnesium, phosphorus, and calcium are associated with risk of incident heart failure: The Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 2014;100(3):756–764. doi: 10.3945/ajcn.114.085167.
    1. Bertinato, J., Wang, K.C., Hayward, S. Serum magnesium concentrations in the Canadian population and associations with diabetes, glycemic regulation, and insulin resistance. Nutrients9(3) (2017).
    1. NHANES. NHANES 2009–2012 (2016) Dietary Reference Intakes for Vitamin D, Calcium, Phosphorus, and Magnesium. (U.S. Department of Agricultural Research, 2016) [
    1. Rebholz CM, Tin A, Liu Y, Kuczmarski MF, Evans MK, Zonderman AB, et al. Dietary magnesium and kidney function decline: The healthy aging in neighborhoods of diversity across the life span study. Am. J. Nephrol. 2016;44(5):381–387. doi: 10.1159/000450861.
    1. DiNicolantonio JJ, O'Keefe JH, Wilson W. Subclinical magnesium deficiency: A principal driver of cardiovascular disease and a public health crisis. Open Heart. 2018;5(1):e000668. doi: 10.1136/openhrt-2017-000668.
    1. Touvier M, Lioret S, Vanrullen I, Boclé JC, Boutron-Ruault MC, Berta JL, et al. Vitamin and mineral inadequacy in the French population: Estimation and application for the optimization of food fortification. Int. J. Vitam. Nutr. Res. 2006;76(6):343–351. doi: 10.1024/0300-9831.76.6.343.
    1. Jahnen-Dechent W, Ketteler M. Magnesium basics. Clin. Kidney J. 2012;5(Suppl 1):i3–i14. doi: 10.1093/ndtplus/sfr163.
    1. Workinger, J.L., Doyle, R.P., Bortz, J. Challenges in the diagnosis of magnesium status. Nutrients. 10(9) (2018).
    1. Costello RB, Nielsen F. Interpreting magnesium status to enhance clinical care: Key indicators. Curr. Opin. Clin. Nutr. Metab. Care. 2017;20(6):504–511. doi: 10.1097/MCO.0000000000000410.

Source: PubMed

Подписаться