The Summit Score Stratifies Mortality and Morbidity in Chronic Obstructive Pulmonary Disease

Benjamin D Horne, Matthew J Hegewald, Courtney Crim, Susan Rea, Tami L Bair, Denitza P Blagev, Benjamin D Horne, Matthew J Hegewald, Courtney Crim, Susan Rea, Tami L Bair, Denitza P Blagev

Abstract

Introduction: Tobacco use and other cardiovascular risk factors often accompany chronic obstructive pulmonary disease (COPD). This study derived and validated the Summit Score to predict mortality in people with COPD and cardiovascular risks.

Methods: SUMMIT trial subjects (N=16,485) ages 40-80 years with COPD were randomly assigned 50%/50% to derivation (N=8181) and internal validation (N=8304). Three external COPD validations from Intermountain Healthcare included outpatients with cardiovascular risks (N=9251), outpatients without cardiovascular risks (N=8551), and inpatients (N=26,170). Cox regression evaluated 40 predictors of all-cause mortality. SUMMIT treatments including combined fluticasone furoate (FF) 100μg/vilanterol 25μg (VI) were not included in the score.

Results: Mortality predictors were FEV1, heart rate, systolic blood pressure, body mass index, age, smoking pack-years, prior COPD hospitalizations, myocardial infarction, heart failure, diabetes, anti-thrombotics, anti-arrhythmics, and xanthines. Combined in the Summit Score (derivation: c=0.668), quartile 4 vs 1 had HR=4.43 in SUMMIT validation (p<0.001, 95% CI=3.27, 6.01, c=0.662) and HR=8.15 in Intermountain cardiovascular risk COPD outpatients (p<0.001, 95% CI=5.86, 11.34, c=0.736), and strongly predicted mortality in the other Intermountain COPD populations. Among all SUMMIT subjects with scores 14-19, FF 100μg/VI 25μg vs placebo had HR=0.76 (p=0.0158, 95% CI=0.61, 0.95), but FF 100μg/VI 25μg was not different from placebo for scores <14 or >19.

Conclusion: In this post hoc analysis of SUMMIT trial data, the Summit Score was derived and validated in multiple Intermountain COPD populations. The score was used to identify a subpopulation in which mortality risk was lower for FF 100μg/VI 25μg treatment.

Trial registration: The SUMMIT trial is registered at ClinicalTrials.gov as number NCT01313676.

Keywords: IMRS; Intermountain risk score; clinical decision tool; randomized controlled trial; risk score.

Conflict of interest statement

BDH is an inventor of clinical decision tools that are licensed to CareCentra and Alluceo and is the PI of grants related to clinical decision tools that were funded by Intermountain Healthcare’s Foundry innovation program, the Intermountain Research and Medical Foundation, CareCentra, GlaxoSmithKline, and AstraZeneca. DPB and MH received research funding through AstraZeneca. DPB received grants outside the submitted work from ProLung and ZebraMedical. CC is employed by and holds restricted shares in GlaxoSmithKline. No other potential conflicts of interest exist.

© 2020 Horne et al.

Figures

Figure 1
Figure 1
Kaplan–Meier survival curves displaying the association of the Summit Risk Score with all-cause mortality among: (A) the validation half of the SUMMIT trial population, N=8304 (for quartiles 4, 3, and 2 compared with quartile 1: Log rank p<0.001, p<0.001, and p=0.002, respectively; c-statistic: c=0.662), (B) an Intermountain Healthcare validation population of outpatients with COPD and cardiovascular risks, N=9251 (for quartiles 4, 3, and 2 compared with quartile 1: Log rank p<0.001, p<0.001, and p<0.001, respectively; c-statistic: c=0.736). Time intervals on the x-axes were designated in 365-day intervals for SUMMIT populations and years for Intermountain populations.
Figure 2
Figure 2
Hazard curves for the effects of the four SUMMIT trial randomized treatments on all-cause mortality among all SUMMIT trial subjects (ie, both the Summit Score derivation and validation groups). Trial randomizations included: once daily inhaled placebo, vilanterol (VI) 25 μg, fluticasone furoate (FF) 100 μg, or the combination of FF 100 μg and VI 25 μg. Here the combination of FF 100 μg/VI 25 μg (n=2347) had a statistically significantly lower mortality compared with placebo (n=2305) (p=0.0158, HR= 0.76, CI=0.61, 0.95) among subjects with a Summit Score ≥14 and ≤19 (n=9243, which is 56.1% of the SUMMIT trial subjects). The hazard curves for subject with Summit Score ≤13 and ≥20 are provided in Supplemental Figures S2B and S2C.

References

    1. Vogelmeier CF, Criner GJ, Martinez FJ, et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Eur Respir J. 2017;49(3):1700214. doi:10.1183/13993003.00214-2017
    1. Fabbri LM, Luppi F, Beghé B, Rabe KF. Complex chronic comorbidities of COPD. Eur Respir J. 2008;31:204–212. doi:10.1183/09031936.00114307
    1. McGarvey LP, John M, Anderson JA, Zvarich M, Wise RA. Ascertainment of cause-specific mortality in COPD: operations of the TORCH clinical endpoint committee. Thorax. 2007;62:411–415. doi:10.1136/thx.2006.072348
    1. Calverley PMA, Anderson JA, Celli B, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med. 2007;356:775–789. doi:10.1056/NEJMoa063070
    1. Vestbo J, Anderson JA, Brook RD, et al.; on behalf of the SUMMIT Investigators. Fluticasone furoate and vilanterol and survival in chronic obstructive pulmonary disease with heightened cardiovascular risk (SUMMIT): a double-blind randomized controlled trial. Lancet. 2016;387:1817–1826. doi:10.1016/S0140-6736(16)30069-1
    1. Sin DD, Wu L, Man SF. The relationship between reduced lung function and cardiovascular mortality: a population-based study and a systematic review of the literature. Chest. 2005;127(6):1952–1959. doi:10.1378/chest.127.6.1952
    1. Lee HM, Le H, Lee BT, Lopez VA, Wong ND. Forced vital capacity paired with Framingham risk score for prediction of all-cause mortality. Eur Respir J. 2010;36(5):1002–1006. doi:10.1183/09031936.00042410
    1. Smith LJE, Moore E, Ali I, Smeeth L, Stone P, Quint JK. Prognostic variables and scores identifying the end of life in COPD: a systematic review. Int J Chron Obstruct Pulmon Dis. 2017;12:2239–2256. doi:10.2147/COPD.S137868
    1. Horne BD, May HT, Muhlestein JB, et al. Exceptional mortality prediction by risk scores from common laboratory tests. Am J Med. 2009;122:550–558. doi:10.1016/j.amjmed.2008.10.043
    1. Horne BD, Hegewald M, Muhlestein JB, et al. Pulmonary-specific intermountain risk score predicts all-cause mortality via spirometry, the red cell distribution width, and other laboratory parameters. Respir Care. 2015;60:1314–1323. doi:10.4187/respcare.03370
    1. Horne BD, Lappé DL, Muhlestein JB, et al. Repeated measurement of the intermountain risk score enhances prognostication for mortality. PLoS One. 2013;8:e69160. doi:10.1371/journal.pone.0069160
    1. Majercik S, Knight S, Horne BD. The intermountain risk score predicts mortality in trauma patients. J Crit Care. 2014;29:882.e1-4. doi:10.1016/j.jcrc.2014.03.016
    1. Rassa AC, Horne BD, McCubrey RO, et al. Novel stratification of mortality risk by kidney disease stage. Am J Nephrol. 2016;42:443–450. doi:10.1159/000443776
    1. Horne BD, Anderson JL, Muhlestein JB, Ridker PM, Paynter NP. The complete blood count risk score and its components including the RDW are associated with mortality in the JUPITER Trial. Eur J Prev Cardiol. 2015;22:519–526. doi:10.1177/2047487313519347
    1. APP R, Sangoi MB, de Paiva LG, Parcianello J, da Silva JE, Moresco RN. Complete blood cell count risk score as a predictor of in-hospital mortality and morbidity among patients undergoing cardiac surgery with cardiopulmonary bypass. Int J Cardiol. 2015;187:60–62. doi:10.1016/j.ijcard.2015.03.227
    1. Horne BD, May HT, Kfoury AG, et al. The intermountain risk score (including the red cell distribution width) predicts heart failure and other morbidity endpoints. Eur J Heart Fail. 2010;12:1203–1213. doi:10.1093/eurjhf/hfq115
    1. Horne BD, Roberts CA, Rasmusson KD, et al. Risk score-guided multidisciplinary team-based care for heart failure inpatients is associated with lower 30-day readmission and lower 30-day mortality. Am Heart J. 2020;219:78–88. doi:10.1016/j.ahj.2019.09.004
    1. May HT, Anderson JL, Muhlestein JB, Lappé DL, Ronnow BS, Horne BD. Improvement in the predictive ability of the intermountain mortality risk score by adding routinely collected laboratory tests such as albumin, bilirubin, and white cell differential count. Clin Chem Lab Med. 2016;54:1619–1628. doi:10.1515/cclm-2015-1258
    1. Horne BD, Muhlestein JB, Bhandary D, et al. Clinically feasible stratification of 1- to 3-year post-myocardial infarction risk. Open Heart. 2018;5:e000723. doi:10.1136/openhrt-2017-000723
    1. Vestbo J, Anderson J, Brook RD, et al. The Study to Understand Mortality and Morbidity in COPD (SUMMIT) study protocol. Eur Respir J. 2013;41:1017–1022. doi:10.1183/09031936.00087312
    1. Puhan MA, Garcia-Aymerich J, Frey M, et al. Expansion of the prognostic assessment of patients with chronic obstructive pulmonary disease: the updated BODE index and the ADO index. Lancet. 2009;374(9691):704–711. doi:10.1016/S0140-6736(09)61301-5
    1. Blagev DP, Collingridge DS, Rea S, et al. The Laboratory-based Intermountain Validated Exacerbation (LIVE) score identifies chronic obstructive pulmonary disease patients at high mortality risk. Front Med. 2018;5:173. doi:10.3389/fmed.2018.00173
    1. Song S, Yang PS, Kim TH, et al. Relation of chronic obstructive pulmonary disease to cardiovascular disease in the general population. Am J Cardiol. 2017;120:1399–1404. doi:10.1016/j.amjcard.2017.07.032
    1. Bhatt SP, Dransfield MT. Chronic obstructive pulmonary disease and cardiovascular disease. Transl Res. 2013;162:237–251. doi:10.1016/j.trsl.2013.05.001
    1. Høiseth AD, Neukamm A, Karlsson BD, Omland T, Brekke PH, Søyseth V. Elevated high-sensitivity cardiac troponin T is associated with increased mortality after acute exacerbation of chronic obstructive pulmonary disease. Thorax. 2011;66:775–781. doi:10.1136/thx.2010.153122
    1. Celli BR, Cote CG, Marin JM, et al. The body-mass index, airflow obstruction, dyspnea, and exercise capacity index in chronic obstructive pulmonary disease. N Engl J Med. 2004;350(10):1005–1012. doi:10.1056/NEJMoa021322
    1. Jones RC, Donaldson GC, Chavannes NH, et al. Derivation and validation of a composite index of severity in chronic obstructive pulmonary disease: the DOSE index. Am J Respir Crit Care Med. 2009;180:1189–1195. doi:10.1164/rccm.200902-0271OC
    1. January CT, Wann LS, Alpert JS, et al. 2014 AHA/ACC/HRS guideline for the management of patients with atrial fibrillation: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on practice guidelines and the Heart Rhythm Society. Circulation. 2014;130:2071–2104. doi:10.1161/CIR.0000000000000040
    1. Yeh RW, Secemsky EA, Kereiakes DJ, et al.; DAPT Study Investigators. Development and validation of a prediction rule for benefit and harm of dual antiplatelet therapy beyond 1 year after percutaneous coronary intervention. JAMA. 2016;315:1735–1749. doi:10.1001/jama.2016.3775
    1. Barnes NC, Qiu YS, Pavord ID, et al.; SCO30005 Study Group. Antiinflammatory effects of salmeterol/fluticasone propionate in chronic obstructive lung disease. Am J Respir Crit Care Med. 2006;173:736–743. doi:10.1164/rccm.200508-1321OC

Source: PubMed

Подписаться