Association between statin use and physical performance in home-dwelling older patients receiving polypharmacy: cross-sectional study

Sigbjørn Veddeng, Håkon Madland, Espen Molden, Torgeir Bruun Wyller, Rita Romskaug, Sigbjørn Veddeng, Håkon Madland, Espen Molden, Torgeir Bruun Wyller, Rita Romskaug

Abstract

Background: In older patients with polypharmacy and multiple comorbidities, even low grades of statin-associated muscle symptoms may have clinical implications. The aim of this study was therefore to investigate the potential associations between statin use and measures of physical performance and muscle function.

Methods: Participants were aged 70+, treated with at least seven regular systemic medications, and not expected to die or become institutionalized within 6 months. Physical performance measured as gait speed and Short Physical Performance Battery (SPPB) score, and muscle function measured as grip strength, were compared between users and non-users of statins. In the subgroup of statin users, the dose-response relationship was assessed using harmonized simvastatin equivalents adjusted for statin potency, pharmacokinetic interactions and SLCO1B1 c.521 T > C genotype. Multiple linear regression analyses were applied to investigate potential associations between stain use and exposure as independent variables, and physical performance and muscle function as outcomes, adjusted for age, gender, body mass, comorbidity, disability and dementia.

Results: 174 patients (87 users and 87 non-users of statins) with a mean (SD) age of 83.3 (7.3) years were included. In analyses adjusted only for gender, grip strength was significantly higher in users than in non-users of statins [regression coefficient (B) 2.7, 95% confidence interval (CI) 1.0 to 4.4]. When adjusted for confounders, the association was no longer statistically significant (B 1.1, 95% CI - 0.5 to 2.7). SPPB and gait speed was also better in statin users than in non-users, but the differences were not statistically significant. In dose-response analyses adjusted for confounders, we found a statistically significant increase in SPPB score (B 0.01, 95% CI 0.00 to 0.02) and gait speed (B 0.001, 95% CI 0.000 to 0.002) per mg increase in simvastatin equivalents.

Conclusions: In contrast to our hypothesis, statin use and exposure was associated with better measures of physical performance and muscle function in older patients with complex drug treatment. The unexpected findings of this cross-sectional, observational study should be further investigated by comparing physical performance before and after statin initiation or statin withdrawal in prospective studies.

Trial registration: ClinicalTrials.gov identifier: NCT02379455 , registered March 5, 2015.

Keywords: Drug-drug interactions; Gait speed; Grip strength; Lipid lowering drugs; Myopathy, drug side effects; Older adults; Pharmacogenetics; Polypharmacy; Statins.

Conflict of interest statement

None of the authors have any conflicts of interest related to this work.

© 2022. The Author(s).

References

    1. Heart Protection Study Collaborative Group MRC/BHF heart protection study of cholesterol lowering with simvastatin in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet. 2002;360(9326):7–22. doi: 10.1016/S0140-6736(02)09327-3.
    1. Kashani A, Phillips CO, Foody JM, et al. Risks associated with statin therapy: a systematic overview of randomized clinical trials. Circulation. 2006;114(25):2788–2797. doi: 10.1161/CIRCULATIONAHA.106.624890.
    1. Sathasivam S. Statin induced myotoxicity. Eur J Intern Med. 2012;23(4):317–324. doi: 10.1016/j.ejim.2012.01.004.
    1. Abd TT, Jacobson TA. Statin-induced myopathy: a review and update. Rev Expert Opin Drug Saf. 2011;10(3):373–387. doi: 10.1517/14740338.2011.540568.
    1. Mangin D, Bahat G, Golomb BA, et al. International Group for Reducing Inappropriate Medication use & Polypharmacy (IGRIMUP): position statement and 10 recommendations for action. Drugs Aging. 2018;35:575–587. doi: 10.1007/s40266-018-0554-2.
    1. Parker BA, Capizzi JA, Grimaldi AS, et al. Effect of statins on skeletal muscle function. Circulation. 2013;127(1):96–103. doi: 10.1161/CIRCULATIONAHA.112.136101.
    1. Williams BR, Kim J. Cardiovascular drug therapy in the elderly: theoretical and practical considerations. Drugs Aging. 2003;20(6):445–463. doi: 10.2165/00002512-200320060-00004.
    1. Davies EA, O'Mahony MS. Adverse drug reactions in special populations - the elderly. Br J Clin Pharmacol. 2015;80(4):796–807. doi: 10.1111/bcp.12596.
    1. Neuvonen PJ, Niemi M, Backman JT. Drug interactions with lipid-lowering drugs: mechanisms and clinical relevance. Clin Pharmacol Ther. 2006;80(6):565–581. doi: 10.1016/j.clpt.2006.09.003.
    1. Link E, Parish S, Armitage J, et al. SLCO1B1 variants and statin-induced myopathy--a genomewide study. N Engl J Med. 2008;359(8):789–799. doi: 10.1056/NEJMoa0801936.
    1. Kalliokoski A, Niemi M. Impact of OATP transporters on pharmacokinetics. Br J Pharmacol. 2009;158(3):693–705. doi: 10.1111/j.1476-5381.2009.00430.x.
    1. Zazzara MB, Palmer K, Vetrano DL, et al. Adverse drug reactions in older adults: a narrative review of the literature. Eur Geriatr Med. 2021;12(3):463–473. doi: 10.1007/s41999-021-00481-9.
    1. Jennings ELM, Murphy KD, Gallagher P, et al. In-hospital adverse drug reactions in older adults; prevalence, presentation and associated drugs-a systematic review and meta-analysis. Age Ageing. 2020;49(6):948–958. doi: 10.1093/ageing/afaa188.
    1. Romskaug R, Skovlund E, Straand J, et al. Effect of clinical geriatric assessments and collaborative medication reviews by geriatrician and family physician for improving health-related quality of life in home-dwelling older patients receiving Polypharmacy: a cluster randomized clinical trial. JAMA Intern Med. 2020;180:181–189. doi: 10.1001/jamainternmed.2019.5096.
    1. Romskaug R, Molden E, Straand J, et al. Cooperation between geriatricians and general practitioners for improved pharmacotherapy in home-dwelling elderly people receiving polypharmacy – the COOP study: study protocol for a cluster randomised controlled trial. Trials. 2017;18(1):158. doi: 10.1186/s13063-017-1900-0.
    1. Tveden-Nyborg P, Bergmann TK, Jessen N, et al. BCPT policy for experimental and clinical studies. Basic Clin Pharmacol Toxicol. 2021;128(1):4–8. doi: 10.1111/bcpt.13492.
    1. Guralnik JM, Simonsick EM, Ferrucci L, et al. A short physical performance battery assessing lower extremity function: association with self-reported disability and prediction of mortality and nursing home admission. J Gerontol. 1994;49(2):M85–M94. doi: 10.1093/geronj/49.2.M85.
    1. Cruz-Jentoft AJ, Bahat G, Bauer J, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. doi: 10.1093/ageing/afy169.
    1. Salvi F, Miller MD, Grilli A, et al. A manual of guidelines to score the modified cumulative illness rating scale and its validation in acute hospitalized elderly patients. J Am Geriatrics Soc. 2008;56(10):1926–1931. doi: 10.1111/j.1532-5415.2008.01935.x.
    1. Hughes CP, Berg L, Danziger WL, et al. A new clinical scale for the staging of dementia. Br J Psychiatry. 1982;140:566–572. doi: 10.1192/bjp.140.6.566.
    1. Pollak N, Rheault W, Stoecker JL. Reliability and validity of the FIM for persons aged 80 years and above from a multilevel continuing care retirement community. Arch Phys Med Rehabil. 1996;77(10):1056–1061. doi: 10.1016/S0003-9993(96)90068-4.
    1. GlobalRPH. Statins (HMG-CoA-reductase inhibitors). [Available from: (accessed 03 Dec 2021).
    1. Norwegian Medicines agency. Drug interaction database. (accessed 22 Sept 2021).
    1. Chaturvedula A, Sale ME, Lee H. Genetic algorithm guided population pharmacokinetic model development for simvastatin, concurrently or non-concurrently co-administered with amlodipine. J Clin Pharmacol. 2014;54(2):141–149. doi: 10.1002/jcph.176.
    1. Nishio S, Watanabe H, Kosuge K, et al. Interaction between amlodipine and simvastatin in patients with hypercholesterolemia and hypertension. Hypertens Res. 2005;28(3):223–227. doi: 10.1291/hypres.28.223.
    1. Son H, Lee D, Lim LA, et al. Development of a pharmacokinetic interaction model for co-administration of simvastatin and amlodipine. Drug Metab Pharmacokinet. 2014;29(2):120–128. doi: 10.2133/dmpk.DMPK-13-RG-053.
    1. Mousa O, Brater DC, Sunblad KJ, et al. The interaction of diltiazem with simvastatin. Clin Pharmacol Ther. 2000;67(3):267–274. doi: 10.1067/mcp.2000.104609.
    1. Watanabe H, Kosuge K, Nishio S, et al. Pharmacokinetic and pharmacodynamic interactions between simvastatin and diltiazem in patients with hypercholesterolemia and hypertension. Life Sci. 2004;76(3):281–292. doi: 10.1016/j.lfs.2004.06.022.
    1. Becquemont L, Neuvonen M, Verstuyft C, et al. Amiodarone interacts with simvastatin but not with pravastatin disposition kinetics. Clin Pharmacol Ther. 2007;81(5):679–684. doi: 10.1038/sj.clpt.6100098.
    1. Niemi M. Transporter pharmacogenetics and statin toxicity. Clin Pharmacol Ther. 2010;87(1):130–133. doi: 10.1038/clpt.2009.197.
    1. PharmGKB. Annotation of CPIC guideline for simvastatin and SLCO1B1. . Accessed 22 Sept 2021.
    1. Corsonello A, Garasto S, Abbatecola AM, et al. Targeting inflammation to slow or delay functional decline: where are we? Biogerontology. 2010;11(5):603–614. doi: 10.1007/s10522-010-9289-0.
    1. Antonopoulos AS, Margaritis M, Lee R, et al. Statins as anti-inflammatory agents in atherogenesis: molecular mechanisms and lessons from the recent clinical trials. Curr Pharm Des. 2012;18(11):1519–1530. doi: 10.2174/138161212799504803.
    1. Alturki M, Liberman K, Delaere A, et al. Effect of antihypertensive and statin medication use on muscle performance in community-dwelling older adults performing strength training. Drugs Aging. 2021;38(3):253–263. doi: 10.1007/s40266-020-00831-5.
    1. Pittman DG, Chen W, Bowlin SJ, et al. Adherence to statins, subsequent healthcare costs, and cardiovascular hospitalizations. Am J Cardiol. 2011;107(11):1662–1666. doi: 10.1016/j.amjcard.2011.01.052.
    1. Verloo H, Chiolero A, Kiszio B, et al. Nurse interventions to improve medication adherence among discharged older adults: a systematic review. Age Ageing. 2017;46(5):747–754. doi: 10.1093/ageing/afx076.

Source: PubMed

Подписаться