Static and treatment-responsive brain biomarkers of depression relapse vulnerability following prophylactic psychotherapy: Evidence from a randomized control trial

Norman A S Farb, Philip Desormeau, Adam K Anderson, Zindel V Segal, Norman A S Farb, Philip Desormeau, Adam K Anderson, Zindel V Segal

Abstract

Background: Neural reactivity to dysphoric mood induction indexes the tendency for distress to promote cognitive reactivity and sensory avoidance. Linking these responses to illness prognosis following recovery from Major Depressive Disorder informs our understanding of depression vulnerability and provides engagement targets for prophylactic interventions.

Methods: A prospective fMRI neuroimaging design investigated the relationship between dysphoric reactivity and relapse following prophylactic intervention. Remitted depressed outpatients (N = 85) were randomized to 8 weeks of Cognitive Therapy with a Well-Being focus or Mindfulness Based Cognitive Therapy. Participants were assessed before and after therapy and followed for 2 years to assess relapse status. Neural reactivity common to both assessment points identified static biomarkers of relapse, whereas reactivity change identified dynamic biomarkers.

Results: Dysphoric mood induction evoked prefrontal activation and sensory deactivation. Controlling for past episodes, concurrent symptoms and medication status, somatosensory deactivation was associated with depression recurrence in a static pattern that was unaffected by prophylactic treatment, HR 0.04, 95% CI [0.01, 0.14], p < .001. Treatment-related prophylaxis was linked to reduced activation of the left lateral prefrontal cortex (LPFC), HR 3.73, 95% CI [1.33, 10.46], p = .013. Contralaterally, the right LPFC showed dysphoria-evoked inhibitory connectivity with the right somatosensory biomarker CONCLUSIONS: These findings support a two-factor model of depression relapse vulnerability, in which: enduring patterns of dysphoria-evoked sensory deactivation contribute to episode return, but vulnerability may be mitigated by targeting prefrontal regions responsive to clinical intervention. Emotion regulation during illness remission may be enhanced by reducing prefrontal cognitive processes in favor of sensory representation and integration.

Trial registration: ClinicalTrials.gov NCT01178424.

Keywords: Depression; Dysphoric reactivity; Mood challenge; Relapse vulnerability; Sensory deactivation; fMRI.

Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Study design summary. Smartphones and computers alternating within the follow-up period indicate bimonthly assessment points, which alternated between phone-based and online eSurvey assessments.
Fig. 2
Fig. 2
Study consort diagram.
Fig. 3
Fig. 3
Neural reactivity to dysphoric mood induction. A) Main Effect of Task (Sad – Neutral); B) past episodes covariate of neural reactivity, with a scatterplot of the relationship between past episodes and the peak covariate region located in the medial somatosensory cortex; C) residual symptom covariate of neural reactivity, with a scatterplot of the relationship between residual symptoms and the peak covariate region in the right somatosensory cortex and posterior insula. Scatterplots use data from both timepoints (baseline and post-intervention) and show linear fit within both the non-relapser and relapser sub-groups to illustrate the consistency of the relationship. Gray shaded areas around the fit lines are 95% confidence intervals.
Fig. 4
Fig. 4
Main effects of future relapse status on neural reactivity to dysphoric mood induction. A) Regions sensitive to future relapse status; B) Boxplot of right somatosensory reactivity at both timepoints with 95% confidence intervals; C) survival plot for participants over the follow-up period as a function of average right somatosensory reactivity (sad – neutral film clip viewing) across both time-points. Cross-hatches indicate participants censored due to relapse or being lost to follow-up. Please note that due to the context of sadness-evoked deactivation, ‘Above Median’ scores indicate less deactivation, whereas ‘Below Median’ scores indicate greater deactivation.
Fig. 5
Fig. 5
Effects of time (baseline vs. post-intervention) on neural reactivity to dysphoric mood induction within the non-relapse group. A) Regions demonstrating reduced reactivity over time; B) Boxplot of left lateral prefrontal cortex (LPFC) change scores over time with 95% confidence intervals; C) survival plot for participants over the follow-up period as a function of change in left LPFC change scores. Cross-hatches indicate participants censored due to relapse or being lost to follow-up. Please note that due to the context of reduced reactivity over time, ‘Above Median’ scores indicate a failure to reduce reactivity, whereas ‘Below Median’ scores indicate reduced reactivity.
Fig. 6
Fig. 6
Summary model of relapse risk. The Hazard Ratios for the combined Cox regression model for Relapse that includes neural biomarker activity from both the static marker of relapse (right somatosensory cortex) and the dynamic marker, wherein activity changed over the intervention period (left lateral prefrontal cortex), controlling for past episodes, concurrent depressive symptoms, and antidepressant medication status.
Fig. 7
Fig. 7
Effects of PPI analysis. A) Regions with altered connectivity to the right somatosensory cortex as a function of mood context (sad vs. neutral). Orange areas are FWE-corrected positive PPI score areas, whereas blue areas are negative scores. B) Sadness-evoked connectivity change with the right lateral prefrontal cortex (LPFC) is significantly related to future relapse status. C) Connectivity between the somatosensory cortex and right LPFC is responsive to dysphoric mood induction. D) The magnitude of sadness-evoked deactivation between right LPFC and somatosensory cortex distinguishes relapsers from non-relapsers. Interpretation of how this connectivity relates to the right somatosensory seed region may be challenging given that main effect within the somatosensory region was a deactivation; by this logic, orange areas were more negatively associated with the somatosensory cortex during sad-mood induction, whereas blue areas were more positively associated with the somatosensory cortex, sharing in the deactivation pattern. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

References

    1. Barnhofer T., Brennan K., Crane C., Duggan D., Williams J.M.G. A comparison of vulnerability factors in patients with persistent and remitting lifetime symptom course of depression. J. Affect. Disord. 2014;152–154:155–161. doi: 10.1016/j.jad.2013.09.001.
    1. Bartlett E.A., DeLorenzo C., Sharma P., Yang J., Zhang M., Petkova E., Weissman M., McGrath P.J., Fava M., Ogden R.T., Kurian B.T., Malchow A., Cooper C.M., Trombello J.M., McInnis M., Adams P., Oquendo M.A., Pizzagalli D.A., Trivedi M., Parsey R.V. Pretreatment and early-treatment cortical thickness is associated with SSRI treatment response in major depressive disorder. Neuropsychopharmacology. 2018;43(11):2221–2230. doi: 10.1038/s41386-018-0122-9.
    1. Bates D., Mächler M., Bolker B., Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01.
    1. Berwian I.M., Wenzel J.G., Kuehn L., Schnuerer I., Kasper L., Veer I.M., Seifritz E., Stephan K.E., Walter H., Huys Q.J.M. The relationship between resting-state functional connectivity, antidepressant discontinuation and depression relapse. Sci. Rep. 2020;10(1):22346. doi: 10.1038/s41598-020-79170-9.
    1. Birn R.M. The role of physiological noise in resting-state functional connectivity. NeuroImage. 2012;62(2):864–870. doi: 10.1016/j.neuroimage.2012.01.016.
    1. Bossier H., Roels S.P., Seurinck R., Banaschewski T., Barker G.J., Bokde A.L.W., Quinlan E.B., Desrivières S., Flor H., Grigis A., Garavan H., Gowland P., Heinz A., Ittermann B., Martinot J.-L., Artiges E., Nees F., Orfanos D.P., Poustka L., Fröhner Dipl-Psych J.H., Smolka M.N., Walter H., Whelan R., Schumann G., Moerkerke B. The empirical replicability of task-based fMRI as a function of sample size. NeuroImage. 2020;212:116601.
    1. Bulloch A., Williams J., Lavorato D., Patten S. Recurrence of major depressive episodes and previous episodes. Depress. Anxiety. 2014;31(1):72–76. doi: 10.1002/da.22173.
    1. Cox R.W. Equitable thresholding and clustering: A novel method for functional magnetic resonance imaging clustering in AFNI. Brain Connect. 2019;9(7):529–538. doi: 10.1089/brain.2019.0666.
    1. Craig A.D. How do you feel? Interoception: The sense of the physiological condition of the body. Nat. Rev. Neurosci. 2002;3(8):655–666. doi: 10.1038/nrn894.
    1. Cuijpers P., Berking M., Andersson G., Quigley L., Kleiboer A., Dobson K.S. A meta-analysis of cognitive-behavioural therapy for adult depression, alone and in comparison with other treatments. Can. J. Psychiatry Revue Canadienne De Psychiatrie. 2013;58(7):376–385. doi: 10.1177/070674371305800702.
    1. Disner S.G., Beevers C.G., Haigh E.A.P., Beck A.T. Neural mechanisms of the cognitive model of depression. Nat. Rev. Neurosci. 2011;12(8):467–477. doi: 10.1038/nrn3027.
    1. Dobson K.S., Hollon S.D., Dimidjian S., Schmaling K.B., Kohlenberg R.J., Gallop R.J., Rizvi S.L., Gollan J.K., Dunner D.L., Jacobson N.S. Randomized trial of behavioral activation, cognitive therapy, and antidepressant medication in the prevention of relapse and recurrence in major depression. J. Consult. Clin. Psychol. 2008;76(3):468–477. doi: 10.1037/0022-006X.76.3.468.
    1. Dunlop B.W., Kelley M.E., McGrath C.L., Craighead W.E., Mayberg H.S. Preliminary findings supporting insula metabolic activity as a predictor of outcome to psychotherapy and medication treatments for depression. J. Neuropsychiatry Clin. Neurosci. 2015;27(3):237–239. doi: 10.1176/appi.neuropsych.14030048.
    1. Eaton W.W., Shao H., Nestadt G., Lee B.H., Bienvenu O.J., Zandi P. Population-based study of first onset and chronicity in major depressive disorder. Arch. Gen. Psychiatry. 2008;65(5):513. doi: 10.1001/archpsyc.65.5.513.
    1. Eklund A., Nichols T.E., Knutsson H. Cluster failure: Why fMRI inferences for spatial extent have inflated false-positive rates. PNAS. 2016;113(28):7900–7905. doi: 10.1073/pnas.1602413113.
    1. Esteban O., Ciric R., Finc K., Blair R.W., Markiewicz C.J., Moodie C.A., Kent J.D., Goncalves M., DuPre E., Gomez D.E.P., Ye Z., Salo T., Valabregue R., Amlien I.K., Liem F., Jacoby N., Stojić H., Cieslak M., Urchs S., Halchenko Y.O., Ghosh S.S., De La Vega A., Yarkoni T., Wright J., Thompson W.H., Poldrack R.A., Gorgolewski K.J. Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nat. Protoc. 2020;15(7):2186–2202.
    1. Esteban O., Markiewicz C.J., Blair R.W., Moodie C.A., Isik A.I., Erramuzpe A., Kent J.D., Goncalves M., DuPre E., Snyder M., Oya H., Ghosh S.S., Wright J., Durnez J., Poldrack R.A., Gorgolewski K.J. fMRIPrep: A robust preprocessing pipeline for functional MRI. Nat. Methods. 2019;16(1):111–116. doi: 10.1038/s41592-018-0235-4.
    1. Farb N.A., Anderson A.K., Bloch R.T., Segal Z.V. Mood-linked responses in medial prefrontal cortex predict relapse in patients with recurrent unipolar depression. Biol. Psychiatry. 2011;70(4):366–372. doi: 10.1016/j.biopsych.2011.03.009.
    1. Farb N.A., Anderson A.K., Mayberg H., Bean J., McKeon D., Segal Z.V. Minding one’s emotions: Mindfulness training alters the neural expression of sadness. Emotion. 2010;10(1):25–33. doi: 10.1037/a0017151.
    1. Farb, N. A., Irving, J. A., Anderson, A. K., Segal, Z. V. 2015. A two-factor model of relapse/recurrence vulnerability in unipolar depression. J. Abnorm. Psychol., 1–17.
    1. Farb N., Anderson A., Ravindran A., Hawley L., Irving J., Mancuso E., Gulamani T., Williams G., Ferguson A., Segal Z.V. Prevention of relapse/recurrence in major depressive disorder with either mindfulness-based cognitive therapy or cognitive therapy. J. Consult. Clin. Psychol. 2018;86(2):200–204. doi: 10.1037/ccp0000266.
    1. Fava G.A. Well-being therapy: current indications and emerging perspectives. Psychother. Psychosom. 2016;85(3):136–145. doi: 10.1159/000444114.
    1. Figueroa C.A., Cabral J., Mocking R.J.T., Rapuano K.M., van Hartevelt T.J., Deco G., Expert P., Schene A.H., Kringelbach M.L., Ruhé H.G. Altered ability to access a clinically relevant control network in patients remitted from major depressive disorder. Hum. Brain Mapp. 2019;40(9):2771–2786. doi: 10.1002/hbm.24559.
    1. Fonseka T.M., MacQueen G.M., Kennedy S.H. Neuroimaging biomarkers as predictors of treatment outcome in Major Depressive Disorder. J. Affect. Disord. 2018;233:21–35. doi: 10.1016/j.jad.2017.10.049.
    1. Gadad B.S., Jha M.K., Czysz A., Furman J.L., Mayes T.L., Emslie M.P., Trivedi M.H. Peripheral biomarkers of major depression and antidepressant treatment response: Current knowledge and future outlooks. J. Affect. Disord. 2018;233:3–14. doi: 10.1016/j.jad.2017.07.001.
    1. Garland E.L. Restructuring reward processing with Mindfulness-Oriented Recovery Enhancement: Novel therapeutic mechanisms to remediate hedonic dysregulation in addiction, stress, and pain: Mindfulness and hedonic regulation. Ann. N. Y. Acad. Sci. 2016;1373(1):25–37. doi: 10.1111/nyas.13034.
    1. Godlewska B.R., Browning M., Norbury R., Igoumenou A., Cowen P.J., Harmer C.J. Predicting treatment response in depression: the role of anterior cingulate cortex. Int. J. Neuropsychopharmacol. 2018;21(11):988–996. doi: 10.1093/ijnp/pyy069.
    1. Goldapple K., Segal Z., Garson C., Lau M., Bieling P., Kennedy S., Mayberg H. Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch. Gen. Psychiatry. 2004;61(1):34. doi: 10.1001/archpsyc.61.1.34.
    1. Guidi J., Fava G.A. Sequential combination of pharmacotherapy and psychotherapy in major depressive disorder: A systematic review and meta-analysis. JAMA Psychiatry. 2020;78(3):261.
    1. Hamilton J.P., Chen M.C., Gotlib I.H. Neural systems approaches to understanding major depressive disorder: An intrinsic functional organization perspective. Neurobiol. Dis. 2013;52:4–11. doi: 10.1016/j.nbd.2012.01.015.
    1. Hamilton J.P., Etkin A., Furman D.J., Lemus M.G., Johnson R.F., Gotlib I.H. Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of base line activation and neural response data. Am. J. Psychiatry. 2012;169(7):693–703. doi: 10.1176/appi.ajp.2012.11071105.
    1. Hardeveld F., Spijker J., De Graaf R., Nolen W.A., Beekman A.T.F. Prevalence and predictors of recurrence of major depressive disorder in the adult population: Recurrence of major depressive disorder. Acta Psychiatr. Scand. 2009;122(3):184–191. doi: 10.1111/j.1600-0447.2009.01519.x.
    1. Harshaw C. Interoceptive dysfunction: Toward an integrated framework for understanding somatic and affective disturbance in depression. Psychol. Bull. 2015;141(2):311–363. doi: 10.1037/a0038101.
    1. Hollon S.D., DeRubeis R.J., Shelton R.C., Amsterdam J.D., Salomon R.M., O’Reardon J.P., Lovett M.L., Young P.R., Haman K.L., Freeman B.B., Gallop R. Prevention of relapse following cognitive therapy vs medications in moderate to severe depression. Arch. Gen. Psychiatry. 2005;62(4):417. doi: 10.1001/archpsyc.62.4.417.
    1. Kassambara, A., Kosinski, M., & Biecek, P. (2020). survminer: Drawing Survival Curves using “ggplot2”..
    1. Kazdin A.E. Mediators and mechanisms of change in psychotherapy research. Annu. Rev. Clin. Psychol. 2007;3(1):1–27. doi: 10.1146/annurev.clinpsy.3.022806.091432.
    1. Kennis M., Gerritsen L., van Dalen M., Williams A., Cuijpers P., Bockting C. Prospective biomarkers of major depressive disorder: A systematic review and meta-analysis. Mol. Psychiatry. 2020;25(2):321–338. doi: 10.1038/s41380-019-0585-z.
    1. Klein D.N., Santiago N.J., Vivian D., Blalock J.A., Kocsis J.H., Markowitz J.C., McCullough J.P., Rush A.J., Trivedi M.H., Arnow B.A., Dunner D.L., Manber R., Rothbaum B., Thase M.E., Keitner G.I., Miller I.W., Keller M.B. Cognitive-behavioral analysis system of psychotherapy as a maintenance treatment for chronic depression. J. Consult. Clin. Psychol. 2004;72(4):681–688. doi: 10.1037/0022-006X.72.4.681.
    1. Kong Y., Jenkinson M., Andersson J., Tracey I., Brooks J.C.W. Assessment of physiological noise modelling methods for functional imaging of the spinal cord. NeuroImage. 2012;60(2):1538–1549. doi: 10.1016/j.neuroimage.2011.11.077.
    1. Kruijt A.-W., Antypa N., Booij L., de Jong P.J., Glashouwer K., Penninx B.W.J.H., Van der Does W., Gray M. Cognitive reactivity, implicit associations, and the incidence of depression: a two-year prospective study. PLoS ONE. 2013;8(7):e70245.
    1. Kuyken W., Warren F.C., Taylor R.S., Whalley B., Crane C., Bondolfi G., Hayes R., Huijbers M., Ma H., Schweizer S., Segal Z., Speckens A., Teasdale J.D., Van Heeringen K., Williams M., Byford S., Byng R., Dalgleish T. Efficacy of mindfulness-based cognitive therapy in prevention of depressive relapse: an individual patient data meta-analysis from randomized trials. JAMA Psychiatry. 2016;73(6):565–574. doi: 10.1001/jamapsychiatry.2016.0076.
    1. Lemogne C., Delaveau P., Freton M., Guionnet S., Fossati P. Medial prefrontal cortex and the self in major depression. J. Affect. Disord. 2012;136(1–2):e1–e11. doi: 10.1016/j.jad.2010.11.034.
    1. Lythe K.E., Moll J., Gethin J.A., Workman C.I., Green S., Lambon Ralph M.A., Deakin J.F.W., Zahn R. Self-blame-selective hyperconnectivity between anterior temporal and subgenual cortices and prediction of recurrent depressive episodes. JAMA Psychiatry. 2015;72(11):1119. doi: 10.1001/jamapsychiatry.2015.1813.
    1. Marchetti I., Koster E.H., Sonuga-Barke E.J., De Raedt R. The default mode network and recurrent depression: A neurobiological model of cognitive risk factors. Neuropsychol. Rev. 2012;22(3):229–251. doi: 10.1007/s11065-012-9199-9.
    1. Markowitz J.C. Evidence-based psychotherapies for depression. J. Occup. Environ. Med. 2008;50(4):437–440. doi: 10.1097/JOM.0b013e318168f76e.
    1. McGrath C.L., Kelley M.E., Holtzheimer P.E., Dunlop B.W., Craighead W.E., Franco A.R., Craddock R.C., Mayberg H.S. Toward a neuroimaging treatment selection biomarker for major depressive disorder treatment-specific biomarker for major depression treatment-specific biomarker for major depression. JAMA Psychiatry. 2013;70(8):821–829.
    1. Mellick W.H., Mills J.A., Kroska E.B., Calarge C.A., Sharp C., Dindo L.N. Experiential avoidance predicts persistence of major depressive disorder and generalized anxiety disorder in late adolescence. J. Clin. Psychiatry. 2019;80(6) doi: 10.4088/JCP.18m12265.
    1. Meyer B.M., Rabl U., Huemer J., Bartova L., Kalcher K., Provenzano J., Brandner C., Sezen P., Kasper S., Schatzberg A.F., Moser E., Chen G., Pezawas L. Prefrontal networks dynamically related to recovery from major depressive disorder: A longitudinal pharmacological fMRI study. Transl. Psychiatry. 2019;9(1):64. doi: 10.1038/s41398-019-0395-8.
    1. Mikl M., Mareček R., Hluštík P., Pavlicová M., Drastich A., Chlebus P., Brázdil M., Krupa P. Effects of spatial smoothing on fMRI group inferences. Magn. Reson. Imaging. 2008;26(4):490–503. doi: 10.1016/j.mri.2007.08.006.
    1. Mumford J.A. A power calculation guide for fMRI studies. Soc. Cogn. Affect. Neurosci. 2012;7(6):738–742. doi: 10.1093/scan/nss059.
    1. Panayiotou G., Leonidou C., Constantinou E., Hart J., Rinehart K.L., Sy J.T., Björgvinsson T. Do alexithymic individuals avoid their feelings? Experiential avoidance mediates the association between alexithymia, psychosomatic, and depressive symptoms in a community and a clinical sample. Compr. Psychiatry. 2015;56:206–216. doi: 10.1016/j.comppsych.2014.09.006.
    1. Paykel E.S. Partial remission, residual symptoms, and relapse in depression. Dial. Clin. Neurosci. 2008;10(4):431–437.
    1. Poldrack R.A., Baker C.I., Durnez J., Gorgolewski K.J., Matthews P.M., Munafò M.R., Nichols T.E., Poline J.-B., Vul E., Yarkoni T. Scanning the horizon: Towards transparent and reproducible neuroimaging research. Nat. Rev. Neurosci. 2017;18(2):115–126. doi: 10.1038/nrn.2016.167.
    1. R Core Team. (2017). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. .
    1. Ray D., Bezmaternykh D., Mel’nikov M., Friston K.J., Das M. Altered effective connectivity in sensorimotor cortices is a signature of severity and clinical course in depression. Proc. Natl. Acad. Sci. U.S.A. 2021;118(40) doi: 10.1073/pnas.2105730118.
    1. Reynolds C.F., Dew M.A., Pollock B.G., Mulsant B.H., Frank E., Miller M.D., Houck P.R., Mazumdar S., Butters M.A., Stack J.A., Schlernitzauer M.A., Whyte E.M., Gildengers A., Karp J., Lenze E., Szanto K., Bensasi S., Kupfer D.J. Maintenance treatment of major depression in old age. N. Engl. J. Med. 2006;354(11):1130–1138. doi: 10.1056/NEJMoa052619.
    1. Rush A.J., Trivedi M.H., Ibrahim H.M., Carmody T.J., Arnow B., Klein D.N., Markowitz J.C., Ninan P.T., Kornstein S., Manber R., Thase M.E., Kocsis J.H., Keller M.B. The 16-Item Quick Inventory of Depressive Symptomatology (QIDS), clinician rating (QIDS-C), and self-report (QIDS-SR): A psychometric evaluation in patients with chronic major depression. Biol. Psychiatry. 2003;54(5):573–583.
    1. Rush A.J., Trivedi M.H., Wisniewski S.R., Nierenberg A.A., Stewart J.W., Warden D., Niederehe G., Thase M.E., Lavori P.W., Lebowitz B.D., McGrath P.J., Rosenbaum J.F., Sackeim H.A., Kupfer D.J., Luther J., Fava M. Acute and longer-term outcomes in depressed outpatients requiring one or several treatment steps: A STAR* D report. Am. J. Psychiatry. 2006;163(11):1905–1917.
    1. Segal Z.V., Anderson A.K., Gulamani T., Dinh Williams L.-A., Desormeau P., Ferguson A., Walsh K., Farb N.A.S. Practice of therapy acquired regulatory skills and depressive relapse/recurrence prophylaxis following cognitive therapy or mindfulness based cognitive therapy. J. Consult. Clin. Psychol. 2019;87(2):161–170. doi: 10.1037/ccp0000351.
    1. Segal Z.V., Kennedy S., Gemar M., Hood K., Pedersen R., Buis T. Cognitive reactivity to sad mood provocation and the prediction of depressive relapse. Arch. Gen. Psychiatry. 2006;63(7):749–755. doi: 10.1001/archpsyc.63.7.749.
    1. Segal Z.V., Williams J.M.G., Teasdale J.D. Guilford Press; 2012. Mindfulness-based Cognitive Therapy for Depression.
    1. Sheline Y.I., Barch D.M., Price J.L., Rundle M.M., Vaishnavi S.N., Snyder A.Z., Mintun M.A., Wang S., Coalson R.S., Raichle M.E. The default mode network and self-referential processes in depression. Proc. Natl. Acad. Sci. U. S. A. 2009;106(6):1942–1947. doi: 10.1073/pnas.0812686106.
    1. Sheline Y.I., Price J.L., Yan Z., Mintun M.A. Resting-state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. Proc. Natl. Acad. Sci. U. S. A. 2010;107(24):11020–11025. doi: 10.1073/pnas.1000446107.
    1. Smith S., Nichols T. Threshold-free cluster enhancement: Addressing problems of smoothing, threshold dependence and localisation in cluster inference. NeuroImage. 2009;44(1):83–98. doi: 10.1016/j.neuroimage.2008.03.061.
    1. Solomon D.A., Keller M.B., Leon A.C., Mueller T.I., Lavori P.W., Shea M.T., Coryell W., Warshaw M., Turvey C., Maser J.D., Endicott J. Multiple recurrences of major depressive disorder. Am. J. Psychiatry. 2000;157(2):229–233. doi: 10.1176/appi.ajp.157.2.229.
    1. Stange J.P., Hamilton J.L., Shepard R., Wu J., Fresco D.M., Alloy L.B. Inflexible autonomic responses to sadness predict habitual and real-world rumination: A multi-level, multi-wave study. Biol. Psychol. 2020;153 doi: 10.1016/j.biopsycho.2020.107886.
    1. Therneau T.M., Grambsch P.M. Springer; 2000. Modeling survival data: Extending the Cox model.
    1. Verhoeven F.E.A., Wardenaar K.J., Ruhé H.G.E., Conradi H.J., de Jonge P. Seeing the signs: Using the course of residual depressive symptomatology to predict patterns of relapse and recurrence of major depressive disorder. Depress. Anxiety. 2018;35(2):148–159. doi: 10.1002/da.22695.
    1. Wang X., Öngür D., Auerbach R.P., Yao S. Cognitive vulnerability to major depression: view from the intrinsic network and cross-network interactions. Harvard Rev. Psychiatry. 2016;24(3):188–201. doi: 10.1097/HRP.0000000000000081.
    1. Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis (2nd ed. 2016). Springer International Publishing: Imprint: Springer. .
    1. Williams K., Elliott R., McKie S., Zahn R., Barnhofer T., Anderson I.M. Changes in the neural correlates of self-blame following mindfulness-based cognitive therapy in remitted depressed participants. Psychiatry Res.: Neuroimag. 2020;304 doi: 10.1016/j.pscychresns.2020.111152.

Source: PubMed

Подписаться