Timing of transcranial direct current stimulation (tDCS) combined with speech and language therapy (SLT) for aphasia: study protocol for a randomized controlled trial

Sameer A Ashaie, Samantha Engel, Leora R Cherney, Sameer A Ashaie, Samantha Engel, Leora R Cherney

Abstract

Background: Studies suggest that language recovery in aphasia may be improved by pairing speech-language therapy with transcranial direct current stimulation. However, results from many studies have been inconclusive regarding the impact transcranial direct current stimulation may have on language recovery in individuals with aphasia. An important factor that may impact the efficacy of transcranial direct current stimulation is its timing relative to speech-language therapy. Namely, online transcranial direct current stimulation (paired with speech-language therapy) and offline transcranial direct current stimulation (prior to or following speech-language therapy) may have differential effects on language recovery in post-stroke aphasia. Transcranial direct current stimulation provided immediately before speech-language therapy may prime the language system whereas stimulation provided immediately after speech-language therapy may aid in memory consolidation. The main aim of this study is to investigate the differential effects of offline and online transcranial direct stimulation on language recovery (i.e., conversation) in post-stroke aphasia.

Methods/design: The study is a randomized, parallel-assignment, double-blind treatment study. Participants will be randomized to one of four treatment conditions and will participate in 15 treatment sessions. All groups receive speech-language therapy in the form of computer-based script practice. Three groups will receive transcranial direct current stimulation: prior to speech-language therapy, concurrent with speech-language therapy, or following speech-language therapy. One group will receive sham stimulation (speech-language therapy only). We aim to include 12 participants per group (48 total). We will use fMRI-guided neuronavigation to determine placement of transcranial direct stimulation electrodes on participants' left angular gyrus. Participants will be assessed blindly at baseline, immediately post-treatment, and at 4 weeks and 8 weeks following treatment. The primary outcome measure is change in the rate and accuracy of the trained conversation script from baseline to post-treatment.

Discussion: Results from this study will aid in determining the optimum timing to combine transcranial direct current stimulation with speech-language therapy to facilitate better language outcomes for individuals with aphasia. In addition, effect sizes derived from this study may also inform larger clinical trials investigating the impact of transcranial direct current stimulation on functional communication in individuals with aphasia.

Trial registration: ClinicalTrials.gov NCT03773406. December 12, 2018.

Keywords: Anodal; Aphasia; Cathodal; Randomized controlled trial; Speech-language therapy; Stroke; Transcranial direct current stimulation; tDCS.

Conflict of interest statement

The authors declare that they have no competing interests.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Treatment timeline by tDCS condition. A tDCS concurrent with the first 20 min of SLT, B tDCS prior to SLT, C tDCS post-SLT, and D sham tDCS (only SLT)
Fig. 2
Fig. 2
Flowchart of the study timeline. Schematic diagram of the study protocol
Fig. 3
Fig. 3
Example of target electrode location. Subjects’ heads are co-registered with MR images in a 3-D space to identify target location for the tDCS stimulation site. The red dot denotes the location of the target tDCS electrode
Fig. 4
Fig. 4
The AphasiaScripts software. A Example of a single conversational sentence. The highlighted word reflects the word that is being read aloud by the participant. B Example of a full conversation that participant practices with PAT (virtual therapist) and YOU (participant). Highlighted sentences reflect what the participant is practicing

References

    1. National Aphasia Association. Available from: . Accessed 11 June 2022.
    1. Brady MC, Godwin J, Enderby P, Kelly H, Campbell P. Speech and language therapy for aphasia after stroke: an updated systematic review and meta-analyses. Stroke. 2016;47(10):e236–e2e7. doi: 10.1161/STROKEAHA.116.014439.
    1. Shah-Basak PP, Wurzman R, Purcell JB, Gervits F, Hamilton R. Fields or flows? A comparative metaanalysis of transcranial magnetic and direct current stimulation to treat post-stroke aphasia. Restor Neurol Neurosci. 2016;34(4):537–558.
    1. Bikson M, Inoue M, Akiyama H, Deans JK, Fox JE, Miyakawa H, et al. Effects of uniform extracellular DC electric fields on excitability in rat hippocampal slices in vitro. J Physiol. 2004;557(1):175–190. doi: 10.1113/jphysiol.2003.055772.
    1. Nitsche MA, Paulus W. Excitability changes induced in the human motor cortex by weak transcranial direct current stimulation. J Physiol. 2000;527(3):633–639. doi: 10.1111/j.1469-7793.2000.t01-1-00633.x.
    1. de Aguiar V, Paolazzi CL, Miceli G. tDCS in post-stroke aphasia: the role of stimulation parameters, behavioral treatment and patient characteristics. Cortex. 2015;63:296–316. doi: 10.1016/j.cortex.2014.08.015.
    1. Galletta EE, Vogel-Eyny A. Translational treatment of aphasia combining neuromodulation and behavioral intervention for lexical retrieval: implications from a single case study. Front Hum Neurosci. 2015;9:447. doi: 10.3389/fnhum.2015.00447.
    1. Baker JM, Rorden C, Fridriksson J. Using transcranial direct-current stimulation to treat stroke patients with aphasia. Stroke. 2010;41(6):1229–1236. doi: 10.1161/STROKEAHA.109.576785.
    1. Fiori V, Coccia M, Marinelli CV, Vecchi V, Bonifazi S, Ceravolo MG, et al. Transcranial direct current stimulation improves word retrieval in healthy and nonfluent aphasic subjects. J Cogn Neurosci. 2011;23(9):2309–2323. doi: 10.1162/jocn.2010.21579.
    1. Marangolo P. tDCS over the left inferior frontal cortex improves speech production in aphasia. Front Hum Neurosci. 2013;7:539. doi: 10.3389/fnhum.2013.00539.
    1. Kang EK, Kim YK, Sohn HM, Cohen LG, Paik N-J. Improved picture naming in aphasia patients treated with cathodal tDCS to inhibit the right Broca’s homologue area. Restor Neurol Neurosci. 2011;29(3):141–152.
    1. You DS, Kim D-Y, Chun MH, Jung SE, Park SJ. Cathodal transcranial direct current stimulation of the right Wernicke’s area improves comprehension in subacute stroke patients. Brain Lang. 2011;119(1):1–5. doi: 10.1016/j.bandl.2011.05.002.
    1. Hamilton RH, Chrysikou EG, Coslett B. Mechanisms of aphasia recovery after stroke and the role of noninvasive brain stimulation. Brain Lang. 2011;118(1-2):40–50. doi: 10.1016/j.bandl.2011.02.005.
    1. Jacobson L, Koslowsky M, Lavidor M. tDCS polarity effects in motor and cognitive domains: a meta-analytical review. Exp Brain Res. 2012;216(1):1–10. doi: 10.1007/s00221-011-2891-9.
    1. Monti A, Cogiamanian F, Marceglia S, Ferrucci R, Mameli F, Mrakic-Sposta S, et al. Improved naming after transcranial direct current stimulation in aphasia. J Neurol Neurosurg Psychiatry. 2008;79(4):451–453. doi: 10.1136/jnnp.2007.135277.
    1. Shah-Basak PP, Norise C, Garcia G, Torres J, Faseyitan O, Hamilton RH. Individualized treatment with transcranial direct current stimulation in patients with chronic non-fluent aphasia due to stroke. Front Hum Neurosci. 2015;9:201. doi: 10.3389/fnhum.2015.00201.
    1. Binney RJ, Ashaie SA, Zuckerman BM, Hung J, Reilly J. Frontotemporal stimulation modulates semantically-guided visual search during confrontation naming: a combined tDCS and eye tracking investigation. Brain Lang. 2018;180:14–23. doi: 10.1016/j.bandl.2018.04.004.
    1. Cherney LR, Babbitt EM, Wang X, Pitts LL. Extended fMRI-guided anodal and cathodal transcranial direct current stimulation targeting perilesional areas in post-stroke aphasia: a pilot randomized clinical trial. Brain Sci. 2021;11(3):306. doi: 10.3390/brainsci11030306.
    1. Campana S, Caltagirone C, Marangolo P. Combining voxel-based lesion-symptom mapping (VLSM) with A-tDCS language treatment: predicting outcome of recovery in nonfluent chronic aphasia. Brain Stimul. 2015;8(4):769–776. doi: 10.1016/j.brs.2015.01.413.
    1. Polanowska KE, Leśniak MM, Seniów JB, Czepiel W, Członkowska A. Anodal transcranial direct current stimulation in early rehabilitation of patients with post-stroke non-fluent aphasia: a randomized, double-blind, sham-controlled pilot study. Restor Neurol Neurosci. 2013;31(6):761–771.
    1. Rosso C, Perlbarg V, Valabregue R, Arbizu C, Ferrieux S, Alshawan B, et al. Broca’s area damage is necessary but not sufficient to induce after-effects of cathodal tDCS on the unaffected hemisphere in post-stroke aphasia. Brain Stimul. 2014;7(5):627–635. doi: 10.1016/j.brs.2014.06.004.
    1. DeMarco AT, Dvorak E, Lacey E, Stoodley CJ, Turkeltaub PE. An exploratory study of cerebellar transcranial direct current stimulation in individuals with chronic stroke aphasia. Cogn Behav Neurol. 2021;34(2):96–106. doi: 10.1097/WNN.0000000000000270.
    1. Sebastian R, Saxena S, Tsapkini K, Faria AV, Long C, Wright A, et al. Cerebellar tDCS: a novel approach to augment language treatment post-stroke. Front Hum Neurosci. 2017;10:695. doi: 10.3389/fnhum.2016.00695.
    1. Lefaucheur J-P, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, et al. Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS) Clin Neurophysiol. 2017;128(1):56–92. doi: 10.1016/j.clinph.2016.10.087.
    1. Fertonani A, Miniussi C. Transcranial electrical stimulation: what we know and do not know about mechanisms. Neuroscientist. 2017;23(2):109–123. doi: 10.1177/1073858416631966.
    1. Miniussi C, Harris JA, Ruzzoli M. Modelling non-invasive brain stimulation in cognitive neuroscience. Neurosci Biobehav Rev. 2013;37(8):1702–1712. doi: 10.1016/j.neubiorev.2013.06.014.
    1. Pirulli C, Fertonani A, Miniussi C. Is neural hyperpolarization by cathodal stimulation always detrimental at the behavioral level? Front Behav Neurosci. 2014;8:226. doi: 10.3389/fnbeh.2014.00226.
    1. Christova M, Rafolt D, Gallasch E. Cumulative effects of anodal and priming cathodal tDCS on pegboard test performance and motor cortical excitability. Behav Brain Res. 2015;287:27–33. doi: 10.1016/j.bbr.2015.03.028.
    1. Karabanov A, Ziemann U, Hamada M, George MS, Quartarone A, Classen J, et al. Consensus paper: probing homeostatic plasticity of human cortex with non-invasive transcranial brain stimulation. Brain Stimul. 2015;8(5):993–1006. doi: 10.1016/j.brs.2015.06.017.
    1. Turrigiano GG, Nelson SB. Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci. 2004;5(2):97–107. doi: 10.1038/nrn1327.
    1. Kertesz A. WAB-R: Western aphasia battery-revised. San Antonio, TX: PsychCorp; 2007.
    1. Boggio PS, Ferrucci R, Rigonatti SP, Covre P, Nitsche M, Pascual-Leone A, et al. Effects of transcranial direct current stimulation on working memory in patients with Parkinson’s disease. J Neurol Sci. 2006;249(1):31–38. doi: 10.1016/j.jns.2006.05.062.
    1. Marangolo P, Fiori V, Sabatini U, De Pasquale G, Razzano C, Caltagirone C, et al. Bilateral transcranial direct current stimulation language treatment enhances functional connectivity in the left hemisphere: preliminary data from aphasia. J Cogn Neurosci. 2016;28(5):724–738. doi: 10.1162/jocn_a_00927.
    1. Datta A, Baker JM, Bikson M, Fridriksson J. Individualized model predicts brain current flow during transcranial direct-current stimulation treatment in responsive stroke patient. Brain Stimul. 2011;4(3):169–174. doi: 10.1016/j.brs.2010.11.001.
    1. Nasseri P, Nitsche MA, Ekhtiari H. A framework for categorizing electrode montages in transcranial direct current stimulation. Front Hum Neurosci. 2015;9:54. doi: 10.3389/fnhum.2015.00054.
    1. Bonner MF, Peelle JE, Cook PA, Grossman M. Heteromodal conceptual processing in the angular gyrus. Neuroimage. 2013;71:175–186. doi: 10.1016/j.neuroimage.2013.01.006.
    1. Uddin LQ, Supekar K, Amin H, Rykhlevskaia E, Nguyen DA, Greicius MD, et al. Dissociable connectivity within human angular gyrus and intraparietal sulcus: evidence from functional and structural connectivity. Cereb Cortex. 2010;20(11):2636–2646. doi: 10.1093/cercor/bhq011.
    1. Turken AU, Dronkers NF. The neural architecture of the language comprehension network: converging evidence from lesion and connectivity analyses. Front Syst Neurosci. 2011;5:1. doi: 10.3389/fnsys.2011.00001.
    1. Luft CDB, Pereda E, Banissy MJ, Bhattacharya J. Best of both worlds: promise of combining brain stimulation and brain connectome. Front Syst Neurosci. 2014;8:132. doi: 10.3389/fnsys.2014.00132.
    1. Kaye RC, Cherney LR. Script templates: a practical approach to script training in aphasia. Top Lang Disord. 2016;36(2):136–153. doi: 10.1097/TLD.0000000000000086.
    1. Cherney LR. Aphasia treatment: intensity, dose parameters, and script training. Int J Speech Lang Pathol. 2012;14(5):424–431. doi: 10.3109/17549507.2012.686629.
    1. Manheim LM, Halper AS, Cherney L. Patient-reported changes in communication after computer-based script training for aphasia. Arch Phys Med Rehabil. 2009;90(4):623–627. doi: 10.1016/j.apmr.2008.10.022.
    1. Fertonani A, Ferrari C, Miniussi C. What do you feel if I apply transcranial electric stimulation? Safety, sensations and secondary induced effects. Clin Neurophysiol. 2015;126(11):2181–2188. doi: 10.1016/j.clinph.2015.03.015.
    1. Dundas JE, Thickbroom GW, Mastaglia FL. Perception of comfort during transcranial DC stimulation: effect of NaCl solution concentration applied to sponge electrodes. Clin Neurophysiol. 2007;118(5):1166–1170. doi: 10.1016/j.clinph.2007.01.010.
    1. Woods AJ, Antal A, Bikson M, Boggio PS, Brunoni AR, Celnik P, et al. A technical guide to tDCS, and related non-invasive brain stimulation tools. Clin Neurophysiol. 2016;127(2):1031–1048. doi: 10.1016/j.clinph.2015.11.012.

Source: PubMed

Подписаться