Adapting and Evaluating an AI-Based Chatbot Through Patient and Stakeholder Engagement to Provide Information for Different Health Conditions: Master Protocol for an Adaptive Platform Trial (the MARVIN Chatbots Study)

Yuanchao Ma, Sofiane Achiche, Marie-Pascale Pomey, Jesseca Paquette, Nesrine Adjtoutah, Serge Vicente, Kim Engler, MARVIN chatbots Patient Expert Committee, Moustafa Laymouna, David Lessard, Benoît Lemire, Jamil Asselah, Rachel Therrien, Esli Osmanlliu, Ma'n H Zawati, Yann Joly, Bertrand Lebouché, Yuanchao Ma, Sofiane Achiche, Marie-Pascale Pomey, Jesseca Paquette, Nesrine Adjtoutah, Serge Vicente, Kim Engler, MARVIN chatbots Patient Expert Committee, Moustafa Laymouna, David Lessard, Benoît Lemire, Jamil Asselah, Rachel Therrien, Esli Osmanlliu, Ma'n H Zawati, Yann Joly, Bertrand Lebouché

Abstract

Background: Artificial intelligence (AI)-based chatbots could help address some of the challenges patients face in acquiring information essential to their self-health management, including unreliable sources and overburdened health care professionals. Research to ensure the proper design, implementation, and uptake of chatbots is imperative. Inclusive digital health research and responsible AI integration into health care require active and sustained patient and stakeholder engagement, yet corresponding activities and guidance are limited for this purpose.

Objective: In response, this manuscript presents a master protocol for the development, testing, and implementation of a chatbot family in partnership with stakeholders. This protocol aims to help efficiently translate an initial chatbot intervention (MARVIN) to multiple health domains and populations.

Methods: The MARVIN chatbots study has an adaptive platform trial design consisting of multiple parallel individual chatbot substudies with four common objectives: (1) co-construct a tailored AI chatbot for a specific health care setting, (2) assess its usability with a small sample of participants, (3) measure implementation outcomes (usability, acceptability, appropriateness, adoption, and fidelity) within a large sample, and (4) evaluate the impact of patient and stakeholder partnerships on chatbot development. For objective 1, a needs assessment will be conducted within the setting, involving four 2-hour focus groups with 5 participants each. Then, a co-construction design committee will be formed with patient partners, health care professionals, and researchers who will participate in 6 workshops for chatbot development, testing, and improvement. For objective 2, a total of 30 participants will interact with the prototype for 3 weeks and assess its usability through a survey and 3 focus groups. Positive usability outcomes will lead to the initiation of objective 3, whereby the public will be able to access the chatbot for a 12-month real-world implementation study using web-based questionnaires to measure usability, acceptability, and appropriateness for 150 participants and meta-use data to inform adoption and fidelity. After each objective, for objective 4, focus groups will be conducted with the design committee to better understand their perspectives on the engagement process.

Results: From July 2022 to October 2023, this master protocol led to four substudies conducted at the McGill University Health Centre or the Centre hospitalier de l'Université de Montréal (both in Montreal, Quebec, Canada): (1) MARVIN for HIV (large-scale implementation expected in mid-2024), (2) MARVIN-Pharma for community pharmacists providing HIV care (usability study planned for mid-2024), (3) MARVINA for breast cancer, and (4) MARVIN-CHAMP for pediatric infectious conditions (both in preparation, with development to begin in early 2024).

Conclusions: This master protocol offers an approach to chatbot development in partnership with patients and health care professionals that includes a comprehensive assessment of implementation outcomes. It also contributes to best practice recommendations for patient and stakeholder engagement in digital health research.

Trial registration: ClinicalTrials.gov NCT05789901; https://classic.clinicaltrials.gov/ct2/show/NCT05789901.

International registered report identifier (irrid): PRR1-10.2196/54668.

Keywords: Canada; adaptive platform trial design; artificial intelligence; chatbot; co-construction; conversational agent; digital health; implementation science; master protocol; mobile phone; patient and stakeholder engagement; research ethics; self-management; telehealth.

Conflict of interest statement

Conflicts of Interest: B Lebouché has received research support, consulting fees, and speaker fees from ViiV Healthcare, Merck, and Gilead. The authors are developers of the MARVIN chatbot intervention.

©Yuanchao Ma, Sofiane Achiche, Marie-Pascale Pomey, Jesseca Paquette, Nesrine Adjtoutah, Serge Vicente, Kim Engler, MARVIN chatbots MARVIN chatbots Patient Expert Committee, Moustafa Laymouna, David Lessard, Benoît Lemire, Jamil Asselah, Rachel Therrien, Esli Osmanlliu, Ma'n H Zawati, Yann Joly, Bertrand Lebouché. Originally published in JMIR Research Protocols (https://www.researchprotocols.org), 13.02.2024.

Figures

Figure 1
Figure 1
Adaptive platform trial design without control group.
Figure 2
Figure 2
Study steps for each substudy.
Figure 3
Figure 3
Operation process of MARVIN.
Figure 4
Figure 4
Example of text processing in MARVIN.
Figure 5
Figure 5
Examples of MARVIN handling bad inputs: (A) fallback policy; (B) redirection after 2 failed attempts.
Figure 6
Figure 6
Conversation example with MARVIN.
Figure 7
Figure 7
MARVIN chatbot—message data flow diagram. API: application programming interface; AWS: Amazon Web Services.

References

    1. Lorig KR, Holman HR. Self-management education: history, definition, outcomes, and mechanisms. Ann Behav Med. 2003 Aug;26(1):1–7. doi: 10.1207/S15324796ABM2601_01.
    1. Whitehead L, Seaton P. The effectiveness of self-management mobile phone and tablet apps in long-term condition management: a systematic review. J Med Internet Res. 2016 May 16;18(5):e97. doi: 10.2196/jmir.4883. v18i5e97
    1. Wong DK, Cheung MK. Online health information seeking and eHealth literacy among patients attending a primary care clinic in Hong Kong: a cross-sectional survey. J Med Internet Res. 2019 Mar 27;21(3):e10831. doi: 10.2196/10831. v21i3e10831
    1. Lee HY, Jin SW, Henning-Smith C, Lee J, Lee J. Role of health literacy in health-related information-seeking behavior online: cross-sectional study. J Med Internet Res. 2021 Jan 27;23(1):e14088. doi: 10.2196/14088. v23i1e14088
    1. Daraz L, Morrow AS, Ponce OJ, Beuschel B, Farah MH, Katabi A, Alsawas M, Majzoub AM, Benkhadra R, Seisa MO, Ding JF, Prokop L, Murad MH. Can Patients trust online health information? A meta-narrative systematic review addressing the quality of health information on the internet. J Gen Intern Med. 2019 Sep;34(9):1884–91. doi: 10.1007/s11606-019-05109-0. 10.1007/s11606-019-05109-0
    1. Sun Y, Zhang Y, Gwizdka J, Trace CB. Consumer evaluation of the quality of online health information: systematic literature review of relevant criteria and indicators. J Med Internet Res. 2019 May 02;21(5):e12522. doi: 10.2196/12522. v21i5e12522
    1. Thoër C, Millerand F, Myles D, Orange V, Gignac O. Enjeux éthiques de la recherche sur les forums Internet portant sur l’utilisation des médicaments à des fins non médicales. Communiquer. 2012;(7):1–22. doi: 10.4000/communiquer.1085.
    1. Miner H, Fatehi A, Ring D, Reichenberg JS. Clinician telemedicine perceptions during the COVID-19 pandemic. Telemed J E Health. 2021 May 01;27(5):508–12. doi: 10.1089/tmj.2020.0295.
    1. Gentili S, Huang V, Mamo J, Cuschieri S. Chronic diseases in 2021. Proceedings of the 14th European Public Health Conference; EPH '21; November 10-12, 2021; Virtual Event. 2022. /> .
    1. Gisondi MA, Barber R, Faust JS, Raja A, Strehlow MC, Westafer LM, Gottlieb M. A deadly infodemic: social media and the power of COVID-19 misinformation. J Med Internet Res. 2022 Feb 01;24(2):e35552. doi: 10.2196/35552. v24i2e35552
    1. Dubin RE, Flannery J, Taenzer P, Smith A, Smith K, Fabico R, Zhao J, Cameron L, Chmelnitsky D, Williams R, Carlin L, Sidrak H, Arora S, Furlan AD. ECHO Ontario chronic pain and opioid stewardship: providing access and building capacity for primary care providers in underserviced, rural, and remote communities. Stud Health Technol Inform. 2015;209:15–22.
    1. Henny KD, Duke CC, Geter A, Gaul Z, Frazier C, Peterson J, Buchacz K, Sutton MY. HIV-related training and correlates of knowledge, HIV screening and prescribing of nPEP and PrEP among primary care providers in southeast United States, 2017. AIDS Behav. 2019 Nov;23(11):2926–35. doi: 10.1007/s10461-019-02545-1. 10.1007/s10461-019-02545-1
    1. Xing Z, Yu F, Qanir YA, Guan T, Walker J, Song L. Intelligent conversational agents in patient self-management: a systematic survey using multi data sources. Stud Health Technol Inform. 2019 Aug 21;264:1813–4. doi: 10.3233/SHTI190661.SHTI190661
    1. Proctor E, Silmere H, Raghavan R, Hovmand P, Aarons G, Bunger A, Griffey R, Hensley M. Outcomes for implementation research: conceptual distinctions, measurement challenges, and research agenda. Adm Policy Ment Health. 2011 Mar;38(2):65–76. doi: 10.1007/s10488-010-0319-7.
    1. Boggiss A, Consedine N, Hopkins S, Silvester C, Jefferies C, Hofman P, Serlachius A. Improving the well-being of adolescents with type 1 diabetes during the COVID-19 pandemic: qualitative study exploring acceptability and clinical usability of a self-compassion chatbot. JMIR Diabetes. 2023 May 05;8:e40641. doi: 10.2196/40641. v8i1e40641
    1. Anmella G, Sanabra M, Primé-Tous M, Segú X, Cavero M, Morilla I, Grande I, Ruiz V, Mas A, Martín-Villalba I, Caballo A, Esteva J, Rodríguez-Rey A, Piazza F, Valdesoiro FJ, Rodriguez-Torrella C, Espinosa M, Virgili G, Sorroche C, Ruiz A, Solanes A, Radua J, Also MA, Sant E, Murgui S, Sans-Corrales M, H Young A, Vicens V, Blanch J, Caballeria E, López-Pelayo H, López C, Olivé V, Pujol L, Quesada S, Solé B, Torrent C, Martínez-Aran A, Guarch J, Navinés R, Murru A, Fico G, de Prisco M, Oliva V, Amoretti S, Pio-Carrino C, Fernández-Canseco M, Villegas M, Vieta E, Hidalgo-Mazzei D. Vickybot, a chatbot for anxiety-depressive symptoms and work-related burnout in primary care and health care professionals: development, feasibility, and potential effectiveness studies. J Med Internet Res. 2023 Apr 03;25:e43293. doi: 10.2196/43293. v25i1e43293
    1. Klos MC, Escoredo M, Joerin A, Lemos VN, Rauws M, Bunge EL. Artificial intelligence-based chatbot for anxiety and depression in university students: pilot randomized controlled trial. JMIR Form Res. 2021 Aug 12;5(8):e20678. doi: 10.2196/20678. v5i8e20678
    1. Prochaska JJ, Vogel EA, Chieng A, Kendra M, Baiocchi M, Pajarito S, Robinson A. A therapeutic relational agent for reducing problematic substance use (Woebot): development and usability study. J Med Internet Res. 2021 Mar 23;23(3):e24850. doi: 10.2196/24850. v23i3e24850
    1. Au J, Falloon C, Ravi A, Ha P, Le S. A beta-prototype chatbot for increasing health literacy of patients with decompensated cirrhosis: usability study. JMIR Hum Factors. 2023 Aug 15;10:e42506. doi: 10.2196/42506. v10i1e42506
    1. Kadariya D, Venkataramanan R, Yip HY, Kalra M, Thirunarayanan K, Sheth A. kBot: knowledge-enabled personalized chatbot for asthma self-managemen. Proceedings of the 2019 IEEE International Conference on Smart Computing; SMARTCOMP '19; June 12-15, 2019; Washington, DC. 2019. pp. 138–43.
    1. Milne-Ives M, de Cock C, Lim E, Shehadeh MH, de Pennington N, Mole G, Normando E, Meinert E. The effectiveness of artificial intelligence conversational agents in health care: systematic review. J Med Internet Res. 2020 Oct 22;22(10):e20346. doi: 10.2196/20346. v22i10e20346
    1. Griffin AC, Xing Z, Khairat S, Wang Y, Bailey S, Arguello J, Chung AE. Conversational agents for chronic disease self-management: a systematic review. AMIA Annu Symp Proc. 2020;2020:504–13. 084_3410598
    1. Xu L, Sanders L, Li K, Chow JC. Chatbot for health care and oncology applications using artificial intelligence and machine learning: systematic review. JMIR Cancer. 2021 Nov 29;7(4):e27850. doi: 10.2196/27850. v7i4e27850
    1. Shah SS, Gvozdanovic A. Digital health; what do we mean by clinical validation? Expert Rev Med Devices. 2021 Dec 12;18(sup1):5–8. doi: 10.1080/17434440.2021.2012447.
    1. Schachner T, Keller R, V Wangenheim F. Artificial intelligence-based conversational agents for chronic conditions: systematic literature review. J Med Internet Res. 2020 Sep 14;22(9):e20701. doi: 10.2196/20701. v22i9e20701
    1. Solomon DH, Rudin RS. Digital health technologies: opportunities and challenges in rheumatology. Nat Rev Rheumatol. 2020 Sep 24;16(9):525–35. doi: 10.1038/s41584-020-0461-x.10.1038/s41584-020-0461-x
    1. Sadasivan C, Cruz C, Dolgoy N, Hyde A, Campbell S, McNeely M, Stroulia E, Tandon P. Examining patient engagement in chatbot development approaches for healthy lifestyle and mental wellness interventions: scoping review. J Particip Med. 2023 May 22;15:e45772. doi: 10.2196/45772. v15i1e45772
    1. Kildea J, Battista J, Cabral B, Hendren L, Herrera D, Hijal T, Joseph A. Design and development of a person-centered patient portal using participatory stakeholder co-design. J Med Internet Res. 2019 Feb 11;21(2):e11371. doi: 10.2196/11371. v21i2e11371
    1. Pomey MP, Flora L, Karazivan P, Dumez V, Lebel P, Vanier MC, Débarges B, Clavel N, Jouet E. Le « Montreal model » : enjeux du partenariat relationnel entre patients et professionnels de la santé. Santé Publique. 2015;1:41–50. doi: 10.3917/spub.150.0041.
    1. Dilhac MA, Abrassart C, Voarino N. Rapport de la Déclaration de Montréal pour un développement responsable de l'intelligence artificielle. Raisons Politiques. 2020;77(1):67–81. doi: 10.3917/rai.077.0067.
    1. Gagnon MP, Desmartis M, Lepage-Savary D, Gagnon J, St-Pierre M, Rhainds M, Lemieux R, Gauvin F, Pollender H, Légaré F. Introducing patients' and the public's perspectives to health technology assessment: a systematic review of international experiences. Int J Technol Assess Health Care. 2011 Jan;27(1):31–42. doi: 10.1017/S0266462310001315.S0266462310001315
    1. Ma Y, Tu G, Lessard D, Vicente S, Engler K, Achiche S, Laymouna M, de Pokomandy A, Lebouché B. An artificial intelligence-based chatbot to promote HIV primary care self-management: a mixed method usability study. Ann Fam Med. 2023 Nov;21(Supplement 3):5267. doi: 10.1370/afm.22.s1.5267.
    1. Eldridge SM, Chan CL, Campbell MJ, Bond CM, Hopewell S, Thabane L, Lancaster GA, PAFS consensus group CONSORT 2010 statement: extension to randomised pilot and feasibility trials. Pilot Feasibility Stud. 2016;2:64. doi: 10.1186/s40814-016-0105-8. 105
    1. Eysenbach G, CONSORT-EHEALTH Group CONSORT-EHEALTH: improving and standardizing evaluation reports of web-based and mobile health interventions. J Med Internet Res. 2011 Dec 31;13(4):e126. doi: 10.2196/jmir.1923. v13i4e126
    1. Liu X, Cruz Rivera S, Moher D, Calvert MJ, Denniston AK, SPIRIT-AICONSORT-AI Working Group Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension. Nat Med. 2020 Sep;26(9):1364–74. doi: 10.1038/s41591-020-1034-x. 10.1038/s41591-020-1034-x
    1. Park JJ, Siden E, Zoratti MJ, Dron L, Harari O, Singer J, Lester RT, Thorlund K, Mills EJ. Systematic review of basket trials, umbrella trials, and platform trials: a landscape analysis of master protocols. Trials. 2019 Sep 18;20(1):572. doi: 10.1186/s13063-019-3664-1. 10.1186/s13063-019-3664-1
    1. Woodcock J, LaVange LM. Master protocols to study multiple therapies, multiple diseases, or both. N Engl J Med. 2017 Jul 06;377(1):62–70. doi: 10.1056/NEJMra1510062.
    1. Kaizer AM, Belli HM, Ma Z, Nicklawsky AG, Roberts SC, Wild J, Wogu AF, Xiao M, Sabo RT. Recent innovations in adaptive trial designs: a review of design opportunities in translational research. J Clin Transl Sci. 2023;7(1):e125. doi: 10.1017/cts.2023.537. S205986612300537X
    1. Etikan I, Musa SA, Alkassim RS. Comparison of convenience sampling and purposive sampling. Am J Theor Appl Stat. 2016;5(1):1. doi: 10.11648/j.ajtas.20160501.11.
    1. Lewis JR. Sample sizes for usability studies: additional considerations. Hum Factors. 1994 Jun 23;36(2):368–78. doi: 10.1177/001872089403600215.
    1. Lewis M, Bromley K, Sutton CJ, McCray G, Myers HL, Lancaster GA. Determining sample size for progression criteria for pragmatic pilot RCTs: the hypothesis test strikes back! Pilot Feasibility Stud. 2021 Feb 03;7(1):40. doi: 10.1186/s40814-021-00770-x. 10.1186/s40814-021-00770-x
    1. Lancaster GA, Dodd S, Williamson PR. Design and analysis of pilot studies: recommendations for good practice. J Eval Clin Pract. 2004 May;10(2):307–12. doi: 10.1111/j..2002.384.doc.x.JEP384
    1. Ma Y, Achiche S, Lebouché B. Chatbot Marvin Meta page. Meta. [2023-10-23]. .
    1. Bocklisch T, Faulkner J, Pawlowski N, Nichol A. Rasa: Open source language understanding and dialogue management. arXiv. Preprint posted online Dec 14, 2017.
    1. Vlasov V, Drissner-Schmid A, Nichol A. Few-shot generalization across dialogue tasks. arXiv. doi: 10.48550/arXiv.1811.11707. Preprint posted online November 28, 2018.
    1. Smutny P, Schreiberova P. Chatbots for learning: a review of educational chatbots for the Facebook Messenger. Comput Educ. 2020 Jul;151:103862. doi: 10.1016/j.compedu.2020.103862.
    1. Roberts AE, Davenport TA, Wong T, Moon HW, Hickie IB, LaMonica HM. Evaluating the quality and safety of health-related apps and e-tools: adapting the Mobile App Rating Scale and developing a quality assurance protocol. Internet Interv. 2021 Apr;24:100379. doi: 10.1016/j.invent.2021.100379. S2214-7829(21)00019-1
    1. Grové C. Co-developing a mental health and wellbeing chatbot with and for young people. Front Psychiatry. 2020;11:606041. doi: 10.3389/fpsyt.2020.606041.
    1. Guest G, Namey E, McKenna K. How many focus groups are enough? Building an evidence base for nonprobability sample sizes. Field Methods. 2016 Jul 24;29(1):3–22. doi: 10.1177/1525822x16639015.
    1. Lewis JR, Utesch BS, Maher DE. UMUX-LITE: when there's no time for the SUS. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; CHI '13; April 27-May 2, 2013; Paris, France. 2013. pp. 2099–102.
    1. Tariman JD, Berry DL, Halpenny B, Wolpin S, Schepp K. Validation and testing of the acceptability e-scale for web-based patient-reported outcomes in cancer care. Appl Nurs Res. 2011 Feb;24(1):53–8. doi: 10.1016/j.apnr.2009.04.003. S0897-1897(09)00069-X
    1. ISO/TS 20282-2(en) usability of consumer products and products for public use- part 2: ummative test method. International Organization for Standardization. 2013. [2024-01-18]. .
    1. Borsci S, Buckle P, Walne S. Is the LITE version of the usability metric for user experience (UMUX-LITE) a reliable tool to support rapid assessment of new healthcare technology? Appl Ergon. 2020 Apr;84:103007. doi: 10.1016/j.apergo.2019.103007.S0003-6870(19)30216-9
    1. Sauro J, Dumas JS. Comparison of three one-question, post-task usability questionnaires. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems; CHI '09; April 4-9, 2009; Boston, MA. 2009. pp. 1599–608.
    1. Chau PY, Hu PJ. Investigating healthcare professionals’ decisions to accept telemedicine technology: an empirical test of competing theories. Inf Manag. 2002 Jan;39(4):297–311. doi: 10.1016/s0378-7206(01)00098-2.
    1. Davis FD. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Q. 1989 Sep;13(3):319. doi: 10.2307/249008.
    1. Adams C, Walpola R, Schembri AM, Harrison R. The ultimate question? Evaluating the use of net promoter score in healthcare: a systematic review. Health Expect. 2022 Oct 19;25(5):2328–39. doi: 10.1111/hex.13577.
    1. Venkatesh V, Davis FD. A theoretical extension of the Technology Acceptance Model: four longitudinal field studies. Manage Sci. 2000 Feb;46(2):186–204. doi: 10.1287/mnsc.46.2.186.11926.
    1. R Core Team R: a language and environment for statistical computing. R Foundation for Statistical Computing. 2018. [2024-01-12].
    1. Braun V, Clarke V. Thematic analysis. In: Cooper H, Coutanche MN, McMullen LM, Panter AT, Rindskopf D, Sher KJ, editors. APA Handbook of Research Methods in Psychology. Washington, DC: American Psychological Association; 2012. pp. 57–71.
    1. Greenhalgh T, Abimbola S. The NASSS framework - a synthesis of multiple theories of technology implementation. Stud Health Technol Inform. 2019 Jul 30;263:193–204. doi: 10.3233/SHTI190123.SHTI190123
    1. Hornbæk K. Current practice in measuring usability: challenges to usability studies and research. Int J Hum Comput Stud. 2006 Feb;64(2):79–102. doi: 10.1016/j.ijhcs.2005.06.002.
    1. Engler K, Vicente S, Ma Y, Hijal T, Cox J, Ahmed S, Klein M, Achiche S, Pant Pai N, de Pokomandy A, Lacombe K, Lebouché B. Implementation of an electronic patient-reported measure of barriers to antiretroviral therapy adherence with the Opal patient portal: protocol for a mixed method type 3 hybrid pilot study at a large Montreal HIV clinic. PLoS One. 2021;16(12):e0261006. doi: 10.1371/journal.pone.0261006. PONE-D-20-37626
    1. Moore GC, Benbasat I. Development of an instrument to measure the perceptions of adopting an information technology innovation. Inf Syst Res. 1991 Sep;2(3):192–222. doi: 10.1287/isre.2.3.192.
    1. Weiner BJ, Lewis CC, Stanick C, Powell BJ, Dorsey CN, Clary AS, Boynton MH, Halko H. Psychometric assessment of three newly developed implementation outcome measures. Implement Sci. 2017 Aug 29;12(1):108. doi: 10.1186/s13012-017-0635-3. 10.1186/s13012-017-0635-3
    1. Coorey G, Peiris D, Scaria A, Mulley J, Neubeck L, Hafiz N, Redfern J. An internet-based intervention for cardiovascular disease management integrated with primary care electronic health records: mixed methods evaluation of implementation fidelity and user engagement. J Med Internet Res. 2021 Apr 26;23(4):e25333. doi: 10.2196/25333. v23i4e25333
    1. Anastaselos T. What is a good SaaS growth rate? ChartMogul. [2023-09-07].
    1. Standing out in the crowd: 7 causes of slow or low user growth. Specno. 2023. Feb, [2023-09-07].
    1. Staniszewska S, Brett J, Simera I, Seers K, Mockford C, Goodlad S, Altman DG, Moher D, Barber R, Denegri S, Entwistle A, Littlejohns P, Morris C, Suleman R, Thomas V, Tysall C. GRIPP2 reporting checklists: tools to improve reporting of patient and public involvement in research. BMJ. 2017 Aug 02;358:j3453. doi: 10.1136/bmj.j3453.
    1. Meta privacy policy. Meta. [2024-01-12].
    1. Meta data security terms. Meta. [2024-01-12]. .
    1. Privacy and safety on Messenger. Meta. [2024-01-12]. .
    1. Merrick R, Ryan S. Data privacy governance in the age of GDPR. Risk Manag. 2019;66(3):38–43.
    1. Geneviève D, Alexandre G, Antoine B, Vincent D. Principes directeurs – Dédommagement financier pour la recherche en partenariat avec les patients et le public. Unité de soutien SRAP du Québec. 2022. [2024-01-18]. .
    1. Siden EG, Park JJ, Zoratti MJ, Dron L, Harari O, Thorlund K, Mills EJ. Reporting of master protocols towards a standardized approach: a systematic review. Contemp Clin Trials Commun. 2019 Sep;15:100406. doi: 10.1016/j.conctc.2019.100406. S2451-8654(19)30110-3
    1. Subbiah V. The next generation of evidence-based medicine. Nat Med. 2023 Jan;29(1):49–58. doi: 10.1038/s41591-022-02160-z.10.1038/s41591-022-02160-z
    1. Meyer EL, Mesenbrink P, Dunger-Baldauf C, Fülle HJ, Glimm E, Li Y, Posch M, König F. The evolution of master protocol clinical trial designs: a systematic literature review. Clin Ther. 2020 Jul;42(7):1330–60. doi: 10.1016/j.clinthera.2020.05.010. S0149-2918(20)30244-7
    1. Huml RA, Collyar D, Antonijevic Z, Beckman RA, Quek RG, Ye J. Aiding the adoption of master protocols by optimizing patient engagement. Ther Innov Regul Sci. 2023 Nov;57(6):1136–47. doi: 10.1007/s43441-023-00570-w.10.1007/s43441-023-00570-w
    1. Pearce FJ, Cruz Rivera S, Liu X, Manna E, Denniston AK, Calvert MJ. The role of patient-reported outcome measures in trials of artificial intelligence health technologies: a systematic evaluation of records (1997-2022) Lancet Digit Health. 2023 Mar;5(3):e160–7. doi: 10.1016/S2589-7500(22)00249-7. S2589-7500(22)00249-7
    1. Thirunavukarasu AJ, Ting DS, Elangovan K, Gutierrez L, Tan TF, Ting DS. Large language models in medicine. Nat Med. 2023 Aug;29(8):1930–40. doi: 10.1038/s41591-023-02448-8.10.1038/s41591-023-02448-8
    1. Lee P, Goldberg C, Kohane I. The AI Revolution in Medicine: GPT-4 and Beyond. New York, NY: Pearson; 2023.
    1. Greene A, Greene CC, Greene C. Artificial intelligence, chatbots, and the future of medicine. Lancet Oncol. 2019 Apr;20(4):481–2. doi: 10.1016/S1470-2045(19)30142-1.S1470-2045(19)30142-1
    1. Surani A, Das S. Understanding privacy and security postures of healthcare chatbots. Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems; CHI '22; April 29-May 5, 2022; New Orleans, LA. 2022. pp. 1–7.

Source: PubMed

Подписаться