Efficacy of methylsulfonylmethane supplementation on osteoarthritis of the knee: a randomized controlled study

Eytan M Debbi, Gabriel Agar, Gil Fichman, Yaron Bar Ziv, Rami Kardosh, Nahum Halperin, Avi Elbaz, Yiftah Beer, Ronen Debi, Eytan M Debbi, Gabriel Agar, Gil Fichman, Yaron Bar Ziv, Rami Kardosh, Nahum Halperin, Avi Elbaz, Yiftah Beer, Ronen Debi

Abstract

Background: Patients with osteoarthritis (OA) take a variety of health supplements in an attempt to reduce pain and improve function. The aim of this study was to determine the efficacy of methylsulfonylmethane (MSM) in treating patients with knee OA.

Methods: This study was a prospective, randomized, double-blind, controlled clinical trial. Forty nine men and women 45-90 (mean 68 ± SD 7.3) years of age with knee OA according to the American College of Rheumatology clinical criteria for OA of the knee and with radiographic confirmed knee OA were enrolled in the study and randomly assigned into 2 groups: One received MSM in doses of 1.125 grams 3 times daily for 12 weeks and the other received a placebo in the same dosing frequency. The primary outcomes were the WOMAC Osteoarthritis Index for pain, stiffness and physical function, the Aggregated Locomotor Function (ALF) test that evaluates each patient's physical function, the SF-36 quality of life health survey and the visual-analogue-scale (VAS) for pain. The secondary outcomes were Knee Society Clinical Rating System for Knee Score (KSKS) and Function Score (KSFS). Patients were assessed at baseline, 6 weeks and 12 weeks. All continuous variables were tested by the Kolmogorov-Smirnov test for Normal distribution. Changes within the groups and differences between the groups were calculated by repeated measures of analysis (ANOVA) with one nested variable.

Results: There were significant differences between treatment groups over time in WOMAC physical function (14.6 mm [CI: 4.3, 25.0]; p = 0.04) and in WOMAC total score (15.0 mm [CI: 5.1, 24.9]; p = 0.03). Treatment groups did not differ significantly in WOMAC pain (12.4 mm [CI: 0.0, 24.8]); p = 0.08) or WOMAC stiffness (27.2 mm [CI: 8.2, 46.2]; p = 0.08). There was a non-significant difference in SF-36 total score between treatment groups (11.6 [CI: 1.0, 22.1]; p = 0.54). A significant difference was found between groups in VAS for pain (0.7 s [CI: -0.9, 2.4]; p = 0.05). Secondary outcomes showed non-significant differences between the two groups.

Conclusions: Patients with OA of the knee taking MSM for 12 weeks showed an improvement in pain and physical function. These improvements, however, are small and it is yet to be determined if they are of clinical significance.

Trial registration: ClinicalTrials.gov: NCT01188213.

Figures

Figure 1
Figure 1
Study flow chart. Flow chart of assessment, enrollment and follow-up

References

    1. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA, Gabriel S, Hirsch R, Hochberg MC, Hunder GG, Jordan JM, Katz JN, Kremers HM, Wolfe F. National Arthritis Data Workgroup. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States. Part II. Arthritis Rheum. 2008;58:26–35. doi: 10.1002/art.23176.
    1. Dillon CF, Rasch EK, Gu Q, Hirsch R. Prevalence of knee osteoarthritis in the United States: arthritis data from the Third National Health and Nutrition Examination Survey 1991-1994. J Rheumatol. 2006;33:2271–2279.
    1. Felson DT, Lawrence RC, Hochberg MC, McAlindon T, Dieppe PA, Minor MA, Blair SN, Berman BM, Fries JF, Weinberger M, Lorig KR, Jacobs JJ, Goldberg V. Osteoarthritis: new insights. Part 2. Treatment approaches. Annals of Internal Medicine. 2000;133:726–737.
    1. Geba GP, Weaver AL, Polis AB, Dixon ME, Schnitzer TJ. Efficacy of rofecoxib, celecoxib, and acetaminophen in osteoarthritis of the knee: a randomized trial. JAMA. 2002;287:64–71. doi: 10.1001/jama.287.1.64.
    1. Gottesdiener K, Schnitzer T, Fisher C, Bockow B, Markenson J, Ko A, DeTora L, Curtis S, Geissler L, Gertz BJ. Protocol 007 Study Group. Results of a randomized, dose-ranging trial of etoricoxib in patients with osteoarthritis. Rheumatology (Oxford) 2002;41:1052–1061. doi: 10.1093/rheumatology/41.9.1052.
    1. Dieppe P, Basler HD, Chard J, Croft P, Dixon J, Hurley M, Lohmander S, Raspe H. Knee replacement surgery for osteoarthritis: effectiveness, practice variations, indications and possible determinants of utilization. Rheumatology (Oxford) 1999;38:73–83. doi: 10.1093/rheumatology/38.1.73.
    1. McAlindon TE, LaValley MP, Gulin JP, Felson DT. Glucosamine and chondroitin for treatment of osteoarthritis: a systematic quality assessment and meta-analysis. JAMA. 2000;283:1469–1475. doi: 10.1001/jama.283.11.1469.
    1. Pavelka K, Gatterova J, Olejarova M, Machacek S, Giacovelli G, Rovati LC. Glucosamine sulfate use and delay of progression of knee osteoarthritis: a 3-year, randomized, placebo-controlled, double-blind study. Arch Intern Med. 2002;162:2113–2123. doi: 10.1001/archinte.162.18.2113.
    1. Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O, Glacovelli G, Henrotin Y, Dacre JE, Gossett C. Long-term effects of glucosamine sulphate on osteoarthritis progression: a randomised, placebo-controlled clinical trial. Lancet. 2001;357:251–256. doi: 10.1016/S0140-6736(00)03610-2.
    1. Hucker HB, Miller JK, Hochberg A, Brobyn RD, Riordan FH, Calesnick B. Studies on the absorption, excretion and metabolism of dimethylsulfoxide (DMSO) in man. J Pharmacol Exp Ther. 1967;155:309–317.
    1. Engelke UF, Tangerman A, Willemsen MA, Moskau D, Loss S, Mudd SH, Wevers RA. Dimethyl sulfone in human cerebrospinal fluid and blood plasma confirmed by one-dimensional (1)H and two-dimensional (1)H-(13)C NMR. NMR Biomed. 2005;18:331–336. doi: 10.1002/nbm.966.
    1. Ebisuzaki K. Aspirin and methylsulfonylmethane (MSM): a search for common mechanisms, with implications for cancer prevention. Anticancer Res. 2003;23:453–458.
    1. Alam SS, Layman DL. Dimethyl sulfoxide inhibition of prostacyclin production in cultured aortic endothelial cells. Ann N Y Acad Sci. 1983;411:318–320. doi: 10.1111/j.1749-6632.1983.tb47314.x.
    1. Beilke MA, Collins-Lech C, Sohnle PG. Effects of dimethyl sulfoxide on the oxidative function of human neutrophils. J Lab Clin Med. 1987;110:91–96.
    1. Usha P, Naidu M. Randomised, double-blind, parallel, placebo-controlled study of oral glucosamine, methylsulfonylmethane and their combination in osteoarthritis. Clin Drug Invest. 2004;24:353–263. doi: 10.2165/00044011-200424060-00005.
    1. Kim LS, Axelrod LJ, Howard P, Buratovich N, Waters RF. Efficacy of methylsulfonylmethane (MSM) in osteoarthritis pain of the knee: a pilot clinical trial. Osteoarthritis Cartilage. 2006;14:286–294. doi: 10.1016/j.joca.2005.10.003.
    1. Brien S, Prescott P, Lewith G. Meta-analysis of related nutritional supplements dimethyl sulfoxide and methylsulfonylmethane in the treatment of osteoarthritis of the knee. Evid Based Complement Alternat. in press .
    1. Brien S, Prescott P, Bashir N, Lewith H, Lewith G. Systemic review of nutritional supplements dimethyl sulfoxide (DMSO) and methylsulfonylmethane (MSM) in the treatment of osteoarthritis. Osteoarthritis Cartilage. 2008;16:1277–1288. doi: 10.1016/j.joca.2008.03.002.
    1. Jacob SW, Appleton J. MSM: The Definitive Guide. Topanga: Freedom Press; 2003.
    1. Altman R, Asch E, Bloch D, Bole G, Bronstein D, Brandt K, Christy W, Cooke TD, Greenwald R, Hochberg M, Howell D, Kaplan D, Koopman W, Longley S III, Mankin H, McShane DJ, Medsger T Jr, Meenan R, Mikkelsen W, Moskowitz R, Murphy W, Rothchild B, Segal M, Sokoloff L, Wolfe F. Development of criteria for the classification and reporting of osteoarthritis: classification of osteoarthritis of the knee. Arthritis Rheum. 1986;29:1039–1049. doi: 10.1002/art.1780290816.
    1. Kellgren JH, Lawrence JS. Atlas of Standard Radiographs. Oxford: Blackwell; 1963.
    1. Bellamy N, Buchanan WW, Goldsmith CH, Campbell J, Stitt LW. Validation study of WOMAC: a health status instrument for measuring clinically important patient relevant outcomes to antirheumatic drug therapy in patients with osteoarthritis of the hip or knee. J Rheumatol. 1988;15:1833–1840.
    1. Davies GM, Watson DJ, Bellamy N. Comparison of the responsiveness and relative effect size of the Western Ontario and McMaster Universities Osteoarthritis Index and the short-form Medical Outcomes Study Survey in a randomized, clinical trial of osteoarthritis patients. Arthritis Care Res. 1999;12:172–179. doi: 10.1002/1529-0131(199906)12:3<172::AID-ART4>;2-Y.
    1. McCarthy CJ, Oldham JA. The reliability, validity and responsiveness of an aggregated locomotor function (ALF) score in patients with osteoarthritis of the knee. Rheumatology (Oxford) 2004;43:514–517. doi: 10.1093/rheumatology/keh081.
    1. Kosinski M, Keller SD, Ware JE, Hatoum HT, Kong SX. The SF-36 health survey as a generic outcome measure in clinical trials of patients with osteoarthritis and rheumatoid arthritis: relative validity of scales in relation to clinical measures of arthritis severity. Medical Care. 1999;37(Suppl 5):MS23–39.
    1. Flaherty SA. Pain measurement tools for clinical practice and research. J Am Assoc Nurse Anesth. 1996;64:133–139.
    1. Wigler I, Neumann L, Yaron M. Validation study of a Hebrew version of WOMAC in patients with osteoarthritis of the knee. Clin Rheum. 1999;18:402–405. doi: 10.1007/s100670050126.
    1. Flandry F, Hunt JP, Terry GC, Hughston JC. Analysis of subjective knee complaints using visual analog scales. Am J Sports Med. 1991;19:112–118. doi: 10.1177/036354659101900204.
    1. Insall JN, Dorr LD, Scott RD, Scott WN. Rationale of the knee society clinical rating system. Clin Orthop Relat Res. 1989;248:13–14.
    1. Lingard EA, Katz JN, Wright RJ, Wright EA, Sledge CB. Validity and responsiveness of the knee society clinical rating system in comparison with the SF-36 and WOMAC. JBJS. 2001;83:1856–1864.
    1. Geba GP, Weaver AL, Polis AB, Dixon ME, Schnitzer TJ. Efficacy of rofecoxib, celecoxib, and acetaminophen in osteoarthritis of the knee: a randomized trial. JAMA. 2002;287:64–71. doi: 10.1001/jama.287.1.64.
    1. Bjordal JM, Ljunggren AE, Klovning A, Slordal L. Non-steroidal anti-inflammatory drugs, including cyclo-oxygenase-2 inhibitors, in osteoarthritic knee pain: meta-analysis of randomised placebo controlled trials. BMJ. 2004;329:1317. doi: 10.1136/bmj.38273.626655.63.
    1. Lin J, Zhang W, Jones A, Doherty M. Efficacy of topical non-steroidal anti-inflammatory drugs in the treatment of osteoarthritis: meta-analysis of randomised controlled trials. BMJ. 2004;329:324. doi: 10.1136/bmj.38159.639028.7C.
    1. Arrich J, Piribauer F, Mad P, Schmid D, Klaushofer K, Mullner M. Intra-articular hyaluronic acid for the treatment of osteoarthritis of the knee: systematic review and meta-analysis. CMAJ. 2005;172:1039–1043. doi: 10.1503/cmaj.1041203.
    1. Day R, Morrison B, Luza A, Castaneda O, Strusberg A, Nahir M, Helgetveit KB, Kress B, Daniels B, Bolognese J, Krupa D, Seldenberg B, Ehrich E. A randomized trial of the efficacy and tolerability of the COX-2 inhibitor rofecoxib vs ibuprofen in patients with osteoarthritis. Rofecoxib/Ibuprofen Comparator Study Group. Arch Intern Med. 2000;160:1781–1787. doi: 10.1001/archinte.160.12.1781.
    1. Watson DJ, Harper SE, Zhao PL, Quan H, Bolognese JA, Simon TJ. Gastrointestinal tolerability of the selective cyclooxygenase-2 (COX-2) inhibitor rofecoxib compared with nonselective COX-1 and COX-2 inhibitors in osteoarthritis. Arch Intern Med. 2000;160:2998–3003. doi: 10.1001/archinte.160.19.2998.

Source: PubMed

Подписаться