First evidence of long-term effects of transcranial pulse stimulation (TPS) on the human brain

Eva Matt, Lisa Kaindl, Saskia Tenk, Anicca Egger, Teodora Kolarova, Nejla Karahasanović, Ahmad Amini, Andreas Arslan, Kardelen Sariçiçek, Alexandra Weber, Roland Beisteiner, Eva Matt, Lisa Kaindl, Saskia Tenk, Anicca Egger, Teodora Kolarova, Nejla Karahasanović, Ahmad Amini, Andreas Arslan, Kardelen Sariçiçek, Alexandra Weber, Roland Beisteiner

Abstract

Background: With the high spatial resolution and the potential to reach deep brain structures, ultrasound-based brain stimulation techniques offer new opportunities to non-invasively treat neurological and psychiatric disorders. However, little is known about long-term effects of ultrasound-based brain stimulation. Applying a longitudinal design, we comprehensively investigated neuromodulation induced by ultrasound brain stimulation to provide first sham-controlled evidence of long-term effects on the human brain and behavior.

Methods: Twelve healthy participants received three sham and three verum sessions with transcranial pulse stimulation (TPS) focused on the cortical somatosensory representation of the right hand. One week before and after the sham and verum TPS applications, comprehensive structural and functional resting state MRI investigations and behavioral tests targeting tactile spatial discrimination and sensorimotor dexterity were performed.

Results: Compared to sham, global efficiency significantly increased within the cortical sensorimotor network after verum TPS, indicating an upregulation of the stimulated functional brain network. Axial diffusivity in left sensorimotor areas decreased after verum TPS, demonstrating an improved axonal status in the stimulated area.

Conclusions: TPS increased the functional and structural coupling within the stimulated left primary somatosensory cortex and adjacent sensorimotor areas up to one week after the last stimulation. These findings suggest that TPS induces neuroplastic changes that go beyond the spatial and temporal stimulation settings encouraging further clinical applications.

Keywords: Brain stimulation; Diffusion tensor imaging; Functional connectivity; Sensorimotor functions; Transcranial pulse stimulation; Ultrasound.

Conflict of interest statement

The Imaging-based Functional Brain Diagnostics and Therapy Laboratory, led by RB, is supported by Storz Medical Inc.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Longitudinal study design. An experimental block lasted three weeks with magnetic resonance (MR) imaging and behavioral tasks (2-point orientation discrimination [23] and coin rotation [24]) one week before and after transcranial pulse stimulation (TPS). Each subject received one block with sham and one block with verum TPS (three sessions on consecutive days) using a within-subject crossover design and one week pause between the blocks
Fig. 2
Fig. 2
TPS pulse characterization. a Temporal-peak intensities (ITP) of a TPS pressure pulse through a human skull bone showing a highly focal transversal resolution of a few millimeters. b Fourier spectrum of a pressure pulse at TPS focus and under the skull demonstrating pressure attenuation through the skull across the frequency spectrum
Fig. 3
Fig. 3
Focal transcranial pulse stimulation (TPS). TPS setup included a pulse generator device, a touch screen for real-time neuronavigation and an infrared camera system tracking the positions of the handpiece and the head of the participant via goggles affixed with infrared markers (left). The TPS handpiece was fixed using a tripod with a clamp focusing the ultrasound beam on the cortical primary somatosensory representation of the right hand, in the left postcentral gyrus posterior to the individual sigmoidal hook sign (marked by a turquoise circle). The TPS pulses of one session in a representative subject are displayed on the reconstructed head surface and in top, front and left orientation of the individual brain anatomy, showing the lowest (green) to highest pulse density (magenta)
Fig. 4
Fig. 4
Diffusion tensor imaging (DTI) analysis. a For whole-brain white matter data analysis the Tract-based Spatial Statistics (TBSS) white matter skeleton (green) was used. b For the regions of interest analysis, left primary somatosensory (S1, blue) and the left primary motor (M1, orange) white matter regions, derived from the Human Sensorimotor Tracts Labels atlas, were used
Fig. 5
Fig. 5
Resting state global efficiency of the sensorimotor network. a The sensorimotor network comprised the precentral gyrus (PreCG), postcentral gyrus (PostCG), superior parietal lobule (SPL), anterior supramarginal gyrus (aSMG), posterior supramarginal gyrus (pSMG), angular gyrus (AG), superior lateral occipital cortex (sLOC), and the parietal operculum (PO). These anatomical ROIs were defined according to the Harvard–Oxford-atlas. b In the stimulated left-hemispheric sensorimotor network, global efficiency values were significantly higher in the verum compared to the sham condition. Significant hubs within the network are represented by red spheres weighted according to the T value for the contrast between the conditions (FDR 0.05 corr.). No effects were detected in the non-stimulated right hemisphere
Fig. 6
Fig. 6
Diffusion tensor imaging indices. Axial diffusivity (AD) values in the left primary somatosensory (S1, upper row) and left primary motor (M1, lower row) white matter regions of interest one week before (Pre) and one week after (Post) the sham and verum TPS applications. Data is depicted for individual subjects (S01-S12) and as mean over all subjects (black line). AD values significantly decreased after the verum stimulation, indicating an improved axonal status in the stimulated sensorimotor network

References

    1. Hsu W, Ku Y, Zanto TP, Gazzaley A, Francisco S. Effects of non-invasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: a systematic review and meta-analysis. Neurobiol Aging. 2016;36(8):2348–2359. doi: 10.1016/j.neurobiolaging.2015.04.016.
    1. Perera T, George MS, Grammer G, Janicak PG, Pascual-Leone A, Wirecki TS. The clinical TMS society consensus review and treatment recommendations for TMS therapy for major depressive disorder. Brain Stimul. 2016;9(3):336–346. doi: 10.1016/j.brs.2016.03.010.
    1. Minjoli S, Saturnino GB, Blicher JU, Stagg CJ, Siebner HR, Antunes A, et al. The impact of large structural brain changes in chronic stroke patients on the electric field caused by transcranial brain stimulation. NeuroImage Clin. 2017;15:106–17. doi: 10.1016/j.nicl.2017.04.014.
    1. Spagnolo PA, Wang H, Srivanitchapoom P, Schwandt M, Heilig M, Hallett M. Lack of target engagement following low-frequency deep transcranial magnetic stimulation of the anterior insula. Neuromodulation. 2018 doi: 10.1111/ner.12875.
    1. Mueller J, Legon W, Opitz A, Sato TF, Tyler WJ. Transcranial focused ultrasound modulates intrinsic and evoked EEG dynamics. Brain Stimul. 2014;7(6):900–8. doi: 10.1016/j.brs.2014.08.008.
    1. Legon W, Sato TF, Opitz A, Mueller J, Barbour A, Williams A, et al. Transcranial focused ultrasound modulates the activity of primary somatosensory cortex in humans. Nat Neurosci. 2014;17(2):322–9. doi: 10.1038/nn.3620.
    1. Lee W, Kim H, Jung Y, Song I-U, Chung YA, Yoo S-S. Image-guided transcranial focused ultrasound stimulates human primary somatosensory cortex. Sci Rep. 2015;5:8743. doi: 10.1038/srep08743.
    1. Lee W, Chung YA, Jung Y, Song IU, Yoo SS. Simultaneous acoustic stimulation of human primary and secondary somatosensory cortices using transcranial focused ultrasound. BMC Neurosci. 2016;17(1):1–11. doi: 10.1186/s12868-016-0303-6.
    1. Legon W, Bansal P, Tyshynsky R, Ai L, Mueller JK. Transcranial focused ultrasound neuromodulation of the human primary motor cortex. Sci Rep. 2018;8(1):10007. doi: 10.1038/s41598-018-28320-1.
    1. Legon W, Ai L, Bansal P, Mueller JK. Neuromodulation with single-element transcranial focused ultrasound in human thalamus. Hum Brain Mapp. 2018;39(5):1995–2006. doi: 10.1002/hbm.23981.
    1. Beisteiner R, Matt E, Fan C, Baldysiak H, Schönfeld M, Philippi Novak T, et al. Transcranial pulse stimulation with ultrasound in Alzheimer’s disease—a new navigated focal brain therapy. Adv Sci. 2019;7(3):1902583. doi: 10.1002/advs.201902583.
    1. Beisteiner R, Lozano A. Treating the brain at the speed of sound. Brain Stimul. 2020;13(4):1087–8. doi: 10.1016/j.brs.2020.04.020.
    1. Beisteiner R, Lozano AM. Transcranial ultrasound innovations ready for broad clinical application. Adv Sci. 2020 doi: 10.1002/advs.202002026.
    1. Darrow DP, O’Brien P, Richner TJ, Netoff TI, Ebbini ES. Reversible neuroinhibition by focused ultrasound is mediated by a thermal mechanism. Brain Stimul. 2019;12(6):1439–1447. doi: 10.1016/j.brs.2019.07.015.
    1. Mueller JK, Ai L, Bansal P, Legon W. Numerical evaluation of the skull for human neuromodulation with transcranial focused ultrasound. J Neural Eng. 2017;14(6):066012. doi: 10.1088/1741-2552/aa843e.
    1. Collins MN, Legon W, Mesce KA. The inhibitory thermal effects of focused ultrasound on an identified, single motoneuron. eneuro. 2021;8(2):ENEURO.0514-20.2021. doi: 10.1523/ENEURO.0514-20.2021.
    1. Popescu T, Pernet C, Beisteiner R. Transcranial ultrasound pulse stimulation reduces cortical atrophy in Alzheimer’s patients: a follow-up study. Alzheimer’s Dement Transl Res Clin Interv. 2021;7(1):1–6. doi: 10.1002/trc2.12121.
    1. Ai L, Bansal P, Mueller JK, Legon W. Effects of transcranial focused ultrasound on human primary motor cortex using 7T fMRI: a pilot study. BMC Neurosci. 2018;19(1):56. doi: 10.1186/s12868-018-0456-6.
    1. Gibson BC, Sanguinetti JL, Badran BW, Yu AB, Klein EP, Abbott CC, et al. Increased excitability induced in the primary motor cortex by transcranial ultrasound stimulation. Front Neurol. 2018 doi: 10.3389/fneur.2018.01007/full.
    1. Folloni D, Verhagen L, Mars RB, Fouragnan E, Constans C, Aubry J-F, et al. Manipulation of subcortical and deep cortical activity in the primate brain using transcranial focused ultrasound stimulation. Neuron. 2019;101(6):1109–1116.e5. doi: 10.1016/j.neuron.2019.01.019.
    1. Verhagen L, Gallea C, Folloni D, Constans C, Jensen DE, Ahnine H, et al. Offline impact of transcranial focused ultrasound on cortical activation in primates. Elife. 2019;8:1–28. doi: 10.7554/eLife.40541.
    1. Cirillo G, Di Pino G, Capone F, Ranieri F, Florio L, Todisco V, et al. Neurobiological after-effects of non-invasive brain stimulation. Brain Stimul. 2017;10(1):1–18. doi: 10.1016/j.brs.2016.11.009.
    1. Tong J, Mao O, Goldreich D. Two-point orientation discrimination versus the traditional two-point test for tactile spatial acuity assessment. Front Hum Neurosci. 2013;7:579. doi: 10.3389/fnhum.2013.00579.
    1. Foki T, Pirker W, Klinger N, Geißler A, Rath J, Steinkellner T, et al. FMRI correlates of apraxia in Parkinson’ s disease patients OFF medication. Exp Neurol. 2010;225(2):416–22. doi: 10.1016/j.expneurol.2010.07.019.
    1. Yang PS, Kim H, Lee W, Bohlke M, Park S, Maher TJ, et al. Transcranial focused ultrasound to the thalamus is associated with reduced extracellular GABA levels in rats. Neuropsychobiology. 2012;65:153–160. doi: 10.1159/000336001.
    1. US FDA. Marketing Clearance of diagnostic ultrasound systems and transducers—guidance for Industry and Food and Drug Administration Staff. Rockville, MD: FDA; 2019.
    1. Pasquinelli C, Hanson LG, Siebner HR, Lee HJ, Thielscher A. Safety of transcranial focused ultrasound stimulation: a systematic review of the state of knowledge from both human and animal studies. Brain Stimul. 2019;12(6):1367–80. doi: 10.1016/j.brs.2019.07.024.
    1. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–141. doi: 10.1089/brain.2012.0073.
    1. Achard S, Bullmore E. Efficiency and cost of economical brain functional networks. PLoS Comput Biol. 2007;3(2):0174–183. doi: 10.1371/journal.pcbi.0030017.
    1. Eickhoff SB, Jbabdi S, Caspers S, Laird AR, Fox PT, Zilles K, et al. Anatomical and functional connectivity of cytoarchitectonic areas within the human parietal operculum. J Neurosci. 2010;30(18):6409–6421. doi: 10.1523/JNEUROSCI.5664-09.2010.
    1. Bennett IJ, Madden DJ. Disconnected aging: cerebral white matter integrity and age-related differences in cognition. Neuroscience. 2014;276:187–205. doi: 10.1016/j.neuroscience.2013.11.026.
    1. Moritani T, Ekholm S, Westesson PL. Diffusion-weighted MR Imaging of the brain. Berlin: Springer; 2005. pp. 1–229.
    1. Kumar R, Nguyen HD, Macey PM, Woo MA, Harper RM. Regional brain axial and radial diffusivity changes during development. J Neurosci Res. 2012;90(2):346–55. doi: 10.1002/jnr.22757.
    1. Song S-K, Yoshino J, Le TQ, Lin S-J, Sun S-W, Cross AH, et al. Demyelination increases radial diffusivity in corpus callosum of mouse brain. Neuroimage. 2005;26(1):132–40. doi: 10.1016/j.neuroimage.2005.01.028.
    1. Madhyastha T, Mérillat S, Hirsiger S, Bezzola L, Liem F, Grabowski T, et al. Longitudinal reliability of tract-based spatial statistics in diffusion tensor imaging. Hum Brain Mapp. 2014;35(9):4544–55. doi: 10.1002/hbm.22493.
    1. Smith SM, Jenkinson M, Johansen-Berg H, Rueckert D, Nichols TE, Mackay CE, et al. Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage. 2006;31(4):1487–505. doi: 10.1016/j.neuroimage.2006.02.024.
    1. Archer DB, Vaillancourt DE, Coombes SA. A template and probabilistic atlas of the human sensorimotor tracts using diffusion MRI. Cereb Cortex. 2018;28(5):1685–99. doi: 10.1093/cercor/bhx066.
    1. Foki T, Pirker W, Geißler A, Haubenberger D, Hilbert M, Hoellinger I, et al. Finger dexterity deficits in Parkinson’s disease and somatosensory cortical dysfunction. Park Relat Disord. 2015;21(3):259–65. doi: 10.1016/j.parkreldis.2014.12.025.
    1. Foki T, Vanbellingen T, Lungu C, Pirker W, Bohlhalter S, Nyffeler T, et al. Limb-kinetic apraxia affects activities of daily living in Parkinson’s disease: a multi-center study. Eur J Neuro. 2016;23(8):1301–7. doi: 10.1111/ene.13021.
    1. Westlye LT, Walhovd KB, Dale AM, Bjornerud A, Due-Tonnessen P, Engvig A, et al. Life-span changes of the human brain white matter: diffusion tensor imaging (DTI) and volumetry. Cereb Cortex. 2010;20(9):2055–68. doi: 10.1093/cercor/bhp280.
    1. Volz LJ, Rehme AK, Michely J, Nettekoven C, Eickhoff SB, Fink GR, et al. Shaping early reorganization of neural networks promotes motor function after stroke. Cereb Cortex. 2016;26(6):2882–94. doi: 10.1093/cercor/bhw034.
    1. Koch G, Bonnì S, Pellicciari MC, Casula EP, Mancini M, Esposito R, et al. Transcranial magnetic stimulation of the precuneus enhances memory and neural activity in prodromal Alzheimer’s disease. Neuroimage. 2018;169:302–11. doi: 10.1016/j.neuroimage.2017.12.048.
    1. Mayo CD, Garcia-Barrera MA, Mazerolle EL, Ritchie LJ, Fisk JD, Gawryluk JR. Relationship between DTI metrics and cognitive function in Alzheimer’s disease. Front Aging Neurosci. 2019;10:436. doi: 10.3389/fnagi.2018.00436/full.
    1. Takahashi M, Ono J, Harada K, Maeda M, Hackney DB. Diffusional anisotropy in cranial nerves with maturation: quantitative evaluation with diffusion MR imaging in rats. Radiology. 2000;216(3):881–5. doi: 10.1148/radiology.216.3.r00se41881.

Source: PubMed

3
Prenumerera