n-3 fatty acids, inflammation, and immunity--relevance to postsurgical and critically ill patients

Philip C Calder, Philip C Calder

Abstract

Excessive or inappropriate inflammation and immunosuppression are components of the response to surgery, trauma, injury, and infection in some individuals and these can lead, progressively, to sepsis and septic shock. The hyperinflammation is characterized by the production of inflammatory cytokines, arachidonic acid-derived eicosanoids, and other inflammatory mediators, while the immunosuppression is characterized by impairment of antigen presentation and of T helper cell type-1 responses. Long-chain n-3 FA from fish oil decrease the production of inflammatory cytokines and eicosanoids. They act both directly (by replacing arachidonic acid as an eicosanoid substrate and by inhibiting arachidonic acid metabolism) and indirectly (by altering the expression of inflammatory genes through effects on transcription factor activation). Thus, long-chain n-3 FA are potentially useful anti-inflammatory agents and may be of benefit in patients at risk of developing sepsis. As such, an emerging application of n-3 FA is in surgical or critically ill patients where they may be added to parenteral or enteral formulas. Parenteral or enteral nutrition including n-3 FA appears to preserve immune function better than standard formulas and appears to partly prevent some aspects of the inflammatory response. Studies to date are suggestive of clinical benefits from these approaches, especially in postsurgical patients.

References

    1. Bone R.C., Balk R.A., Cerra F.B., Dellinger R.P., Fein A.M., Knaus W.A., Schein R.M., Sibbald W.J. Definitions for Sepsis and Organ Failure and Guidelines for the Use of Innovative Therapies in Sepsis. Chest. 1997;101:1644–1655.
    1. Warren H.S. Strategies for the Treatment of Sepsis. N. Engl. J. Med. 1997;336:952–953. doi: 10.1056/NEJM199703273361311.
    1. Angus D.C., Linde-Zwirble W.T., Lidicker J., Clermont G., Carcillo J., Pinsky M.R. Epidemiology of Severe Sepsis in the United States: Analysis of Incidence, Outcome, and Associated Costs of Care. Crit. Care Med. 2001;29:1303–1310. doi: 10.1097/00003246-200107000-00002.
    1. Friedman G., Silva E., Vincent J.-L. Has the Mortality of Septic Shock Changed with Time? Crit. Care Med. 1998;26:2078–2086. doi: 10.1097/00003246-199812000-00045.
    1. Brun-Buisson C. The Epidemiology of the Systemic Inflammatory Response Syndrome. Intensive Care Med. 2000;26:S64–S74. doi: 10.1007/s001340051121.
    1. Vervloet M.G., Thijs L.G., Hack C.E. Derangements of Coagulation and Fibrinoloysis in Critically Ill Patients with Sepsis and Septic Shock. Semin. Thromb. Hemostas. 1998;24:33–44.
    1. Girardin E., Grau G.E., Dayer J.-M., Roux-Lombard P., Jr., Study Group, Lambert P.H. Tumor Necrosis Factor and Interleukin-1 in the Serum of Children with Severe Infectious Purpura. N. Engl. J. Med. 1988;319:397–400. doi: 10.1056/NEJM198808183190703.
    1. Hatherill M., Tibby S.M., Turner C., Ratnavel N., Murdoch I.A. Procalcitonin and Cytokine Levels: Relationship to Organ Failure and Mortality in Pediatric Septic Shock. Crit. Care Med. 2000;28:2591–2594. doi: 10.1097/00003246-200007000-00068.
    1. Arnalich F., Garcia-Palomero E., Lopez J., Jimenez M., Madero R., Renart J., Vazquez J.J., Montiel C. Predictive Value of Nuclear Factor κB Activity and Plasma Cytokine Levels in Patients with Sepsis. Infect. Immun. 2000;68:1942–1945. doi: 10.1128/IAI.68.4.1942-1945.2000.
    1. Beutler B., Milsark I.W., Cerami A.C. Passive Immunization Against Cachectin/Tumor Necrosis Factor Protects Mice from Lethal Effect of Endotoxin. Science. 1985;229:869–871. doi: 10.1126/science.3895437.
    1. Tracey K.J., Fong Y., Hesse D.G., Manogue K.R., Lee A.T., Kuo G.C., Lowry S.F., Cerami A.C. Anti-Cachectin/TNF Monoclonal Antibodies Prevent Septic Shock During Lethal Bacteraemia. Nature. 1987;330:662–664. doi: 10.1038/330662a0.
    1. Alexander H.R., Doherty G.M., Buresh C.M., Venzon D.J., Norton J.A. A Recombinant Human Receptor Antagonist to Interkeukin 1 Improves Survival After Lethal Endotoxemia in Mice. J. Exp. Med. 1991;173:1029–1032. doi: 10.1084/jem.173.4.1029.
    1. Marchant A., Bruyns C., Vandenabeele P., Ducarme M., Gerard C., Delvaux A., De Groote D., Abramowicz D., Velu T., Goldman M. Interleukin-10 Controls Interferon-Gamma and Tumor Necrosis Factor Production During Experimental Endotoxemia. Eur. J. Immunol. 1994;24:1167–1171.
    1. Pfeffer K., Matsuyama T., Kundig T.M., Wakeham A., Kishihara K., Shahinlan A., Wiegmann K., Ohashi P.S., Kronke M., Mak T.W. Mice Deficient for the 55 Kd Tumor Necrosis Factor Receptor are Resistant to Endotoxic Shock, Yet Succumb to L. monocytogenes Infection. Cell. 1993;73:457–467. doi: 10.1016/0092-8674(93)90134-C.
    1. Debets J.M.H., Kampmeijer R., van der Linden M.P.M.H., Buurman W.A., van der Linden C.J. Plasma Tumor Necrosis Factor and Mortality in Critically Ill Septic Patients. Crit. Care Med. 1989;17:489–494. doi: 10.1097/00003246-198906000-00001.
    1. Rogy M.A., Coyle S.M., Oldenburg H.S., Rock C.S., Barie P.S., Van Zee K.J., Smith C.G., Moldawer L.L., Lowry S.F. Persistently Elevated Soluble Tumor Necrosis Factor Receptor and Interleukin-1 Receptor Antagonist Levels in Critically Ill Patients. J. Am. Coll. Surg. 1994;178:132–138.
    1. Pruitt J.H., Welborn M.B., Edwards P.D., Harward T.R., Seeger J.W., Martin T.D., Smith C., Kenney J.A., Wesdrop R.I., Meijer S., Cuesta M.A., Abouhanze A., Copeland E.M., 3rd, Giri J., Sims J.E., Moldawer L.L., Oldenburg H.S. Increased Soluble Interleukin-1 Type II Receptor Concentrations in Postoperative Patients and in Patients with Sepsis Syndrome. Blood. 1996;87:3282–3288.
    1. Oberholzer A., Oberholzer C., Moldawer L.L. Cytokine Signalling—Regulation of the Immune Response in Normal and Critically Ill States. Crit. Care Med. 2000;28(Suppl.):N3–N12. doi: 10.1097/00003246-200004001-00002.
    1. Eskandari M.K., Bolgos G., Miller C., Nguyen D.T., De-Forge L.E., Remick D.G. Anti-Tumor Necrosis Factor Antibody Therapy Fails to Prevent Lethality After Cecal Ligation and Puncture or Endotoxemia. J. Immunol. 1992;148:2724–2730.
    1. Opal S.M., Cross A.S., Jhung J.W., Young L.D., Palardy J.E., Parejo N.A., Donsky C. Potential Hazards of Combination Immunotherapy in the Treatment of Experimental Septic Shock. J. Infect. Dis. 1996;173:1415–1421.
    1. Echtenacher B., Weigl K., Lehn N., Mannel D.N. Tumor Necrosis Factor-Dependent Adhesions as a Major Protective Mechanism Early in Septic Peritonitis in Mice. Infect. Immun. 2001;69:3550–3555. doi: 10.1128/IAI.69.6.3550-3555.2001.
    1. Fisher C.J., Jr., Agosti J.M., Opal S.M., Lowry S.F., Balk R.A., Sadoff J.C., Abraham E., Schein R.M., Benjamin E. Treatment of Septic Shock with the Tumor Necrosis Factor Receptor:Fc Fusion Protein. N. Engl. J. Med. 1996;334:1697–1702. doi: 10.1056/NEJM199606273342603.
    1. Howell W.M., Calder P.C., Grimble R.F. Gene Polymorphisms, Inflammatory Diseases and Cancer. Proc. Nutr. Soc. 2002;61:447–456. doi: 10.1079/PNS2002186.
    1. Louis E., Franchimont D., Piron A., Gevaert Y., Schaaf-Lafontaine N., Roland S., Mahieu P., Malaise M., De Groote D., Louis R., Belaiche J. Tumour Necrosis Factor (TNF) Gene Polymorphism Influences TNF-Alpha Production in Lipopolysaccharide (LPS)-Stimulated Whole Blood Cell Culture in Healthy Humans. Clin. Exp. Immunol. 1998;113:401–406. doi: 10.1046/j.1365-2249.1998.00662.x.
    1. Pociot F., Briant L., Jongeneel C.V., Molvig J., Worsaae H., Abbal M., Thomsen M., Nerup J., Cambon-Thomsen A. Association of Tumor Necrosis Factor (TNF) and Class II Major Histocompatibility Complex Alleles with the Secretion of TNF-Alpha and TNF-Beta by Human Mononuclear Cells: A Possible Link to Insulin-Dependent Diabetes Mellitus. Eur. J. Immunol. 1993;23:224–231.
    1. Mira J.P., Cariou A., Grall F., Delclaux C., Losser M.-R., Heshmati F., Cheval C., Monchi M., Teboul J.-L., Riche F., Leleu G., Arbibe L., Mignon A., Delpech M., Dhainaut J.-F. Association of TNF2, a TNF-α Promoter Polymorphism, with Septic Shock Susceptibility and Mortality. J. Am. Med. Assoc. 1999;282:561–568. doi: 10.1001/jama.282.6.561.
    1. Stuber F., Peterson M., Bokelmann F., Schade U. A Genetic Polymorphism Within the Tumor Necrosis Factor Locus Influences Plasma Tumor Necrosis Factor-α Concentrations and Outcome of Patients with Severe Sepsis. Crit. Care Med. 1996;24:381–384. doi: 10.1097/00003246-199603000-00004.
    1. Kahlke V., Schafmayer C., Schniewind B., Seegert D., Schreiber S., Schroder J. Are Postoperative Complications Genetically Determined by TNF-β NcoI Gene Polymprophism? Surgery. 2004;135:365–373. doi: 10.1016/j.surg.2003.08.012.
    1. Grbic J.T., Mannick J.A., Gough D.B., Rodrick M.L. The Role of Prostaglandin E2 in Immune Suppression Following Injury. Ann. Surg. 1991;214:253–263.
    1. Ertel W., Morrison M.H., Meldrum D.R., Ayala A., Chaudry I.H. Ibuprofen Restores Cellular Immunity and Decreases Susceptibility to Sepsis Following Hemorrhage. J. Surg. Res. 1992;53:55–61. doi: 10.1016/0022-4804(92)90013-P.
    1. Kollef M.H., Schuster D.P. The Acute Respiratory Distress Syndrome. N. Engl. J. Med. 1995;332:27–37. doi: 10.1056/NEJM199501053320106.
    1. Meakins J.L., Pietsch J.B., Bubenick O., Kelly R., Rode H., Gordon J., MacLean L.D. Delayed Hypersensitivity: Indicator of Acquired Failure of Host Defenses in Sepsis and Trauma. Ann. Surg. 1977;186:241–250. doi: 10.1097/00000658-197709000-00002.
    1. Lederer J.A., Rodrick M.L., Mannick J.A. The Effects of Injury on the Adaptive Immune Response. Shock. 1999;11:153–159. doi: 10.1097/00024382-199903000-00001.
    1. Oberholzer A., Oberholzer C., Moldawer L.L. Sepsis Syndromes: Understanding the Role of Innate and Acquired Immunity. Shock. 2001;16:83–96.
    1. O'Sullivan S.T., Lederer J.A., Horgan A.F., Chin D.H.L., Mannick J.A., Rodrick M.L. Major Injury Leads to Predominance of the T Helper-2 Lymphocyte Phenotype and Diminished Interleukin-12 Production Associated with Decreased Resistance to Infection. Ann. Surg. 1995;222:482–492.
    1. Opal S.M., DePalo V.A. Anti-Inflammatory Cytokines. Chest. 2000;117:1162–1172. doi: 10.1378/chest.117.4.1162.
    1. Gerard C., Bruyns C., Marchant A., Abramowicz D., Vandenabeele P., Delvaux A., Fiers W., Goldman M., Velu T. Interleukin 10 Reduces the Release of Tumor Necrosis Factor and Prevents Lethality in Experimental Endotoxemia. J. Exp. Med. 1993;177:547–550. doi: 10.1084/jem.177.2.547.
    1. Howard M., Muchamuel T., Andrade S., Menon S. Interleukin 10 Protects Mice from Lethal Endotoxemia. J. Exp. Med. 1993;177:1205–1208. doi: 10.1084/jem.177.4.1205.
    1. Smith S.R., Terminelli C., Kenworthy-Bott L., Calzetta A., Donkin J. The Cooperative Effects of TNF-α and IFN-γ are Determining Factors in the Ability of IL-10 to Protect Mice from Lethal Endotoxemia. J. Leuk. Biol. 1994;55:711–718.
    1. Hershman M., Cheadle W., Wellhausen S., Davidson P., Polk H. Monocyte HLA-DR Antigen Expression Characterises Clinical Outcome in the Trauma Patients. Br. J. Surg. 1990;77:204–207.
    1. Wakefield C., Carey P., Fould S., Monson J., Guillou P. Changes in Major Histocompatibility Complex Class II Expression in Monocytes and T Cells of Patients Developing Infection After Surgery. Br. J. Surg. 1993;80:205–209.
    1. Astiz M., Saha D., Lustbader D., Lin R., Rackow E. Monocyte Response to Bacterial Toxins, Expression of Cell Surface Receptors, and Release of Anti-Inflammatory Cytokines During Sepsis. J. Lab. Clin. Med. 1996;128:594–600. doi: 10.1016/S0022-2143(96)90132-8.
    1. Manjuck J., Saha D.C., Astiz M., Eales L.-J., Rackow E.C. Decreased Response to Recall Antigens is Associated with Depressed Costimulatory Receptor Expression in Septic Critically Ill Patients. J. Lab. Clin. Med. 2000;135:153–1260. doi: 10.1067/mlc.2000.104306.
    1. Munoz C., Carlet J., Fitting C., Missett B., Bieriot J., Cavaillon J. Dysregulation of in vitro Cytokine Production by Monocytes During Sepsis. J. Clin. Invest. 1991;88:1747–1754.
    1. Brandtzaeg P., Osnes L., Ovstebo R., Joo G., Westvik A., Kierulf P. Net Inflammatory Capacity of Human Septic Shock Plasma Evaluated by a Monocyte-Based Target Cell Assay: Identification of Interleukin-10 as a Major Functional Deactivator of Human Monocytes. J. Exp. Med. 1996;184:51–60. doi: 10.1084/jem.184.1.51.
    1. Heidecke C.D., Hensler T., Weighardt H., Zantl N., Wagner H., Siewert J.R., Holzmann B. Selective Defects of T Lymphocyte Function in Patients with Lethal Intraabdominal Infection. Am. J. Surg. 1999;178:288–292. doi: 10.1016/S0002-9610(99)00183-X.
    1. Pellegrini J.D., De A.K.K., Puyana J.C., Furse R.K., Miller-Graziano C. Relationships Between T Lymphocyte Apoptosis and Anergy Following Trauma. J. Surg. Res. 2000;88:200–206. doi: 10.1006/jsre.1999.5797.
    1. Weighardt H., Heidecke C.D., Emmanuilidis K., Maier S., Bartels H., Siewert J.R., Holzmann B. Sepsis After Major Visceral Surgery is Associated with Sustained and Interferon-γ-Resistant Defects of Monocyte Cytokine Production. Surgery. 2000;127:309–315. doi: 10.1067/msy.2000.104118.
    1. Tschaikowsky K., Hedwig-Geissing M., Schiele A., Bremer F., Schywalsky M., Schutter J. Coincidence of Proand Anti-Inflammatory Responses in the Early Phase of Severe Sepsis: Longitudinal Study of Mononuclear Histocompatibility Leukocyte Antigen-DR Expression, Procalcitonin, C-Reactive Protein, and Changes in T-Cell Subsets in Septic and Postoperative Patients. Crit. Care Med. 2000;30:1015–1023.
    1. Calder P.C. n−3 Polyunsaturated FA, Inflammation and Immunity: Pouring Oil on Troubled Waters or Another Fishy Tale? Nutr. Res. 2001;21:309–341. doi: 10.1016/S0271-5317(00)00287-6.
    1. Kinsella J.E., Lokesh B., Broughton S., Whelan J. Dietary Polyunsaturated Fatty Acids and Eicosanoids: Potential Effects on the Modulation of Inflammatory and Immune Cells: An Overview. Nutrition. 1990;6:24–44.
    1. Calder P.C. Polyunsaturated Fatty Acids, Inflammation and Immunity. Lipids. 2001;36:1007–1024.
    1. Calder P.C. Dietary Modification of Inflammation with Lipids. Proc. Nutr. Soc. 2002;61:345–358. doi: 10.1079/PNS2002186.
    1. Calder P.C. n−3 Polyunsaturated Fatty Acids and Inflammation: From Molecular Biology to the Clinic. Lipids. 2003;38:342–352.
    1. Miles E.A., Allen E., Calder P.C. In vitro Effects of Eicosanoids Derived from Different 20-Carbon Fatty Acids on Production of Monocyte-Derived Cytokines in Human Whole Blood Cultures. Cytokine. 2002;20:215–223. doi: 10.1006/cyto.2002.2007.
    1. Dooper M.M.B.W., Wassink L., M'Rabet L., Graus Y.M.F. The Modulatory Effects of Prostaglandin-E on Cytokine Production by Human Peripheral Blood Mononuclear Cells are Independent of the Prostaglandin Subtype. Immunology. 2002;107:152–159. doi: 10.1046/j.1365-2567.2002.01474.x.
    1. Vassiliou E., Jing H., Ganea D. Prostaglandin E2 Inhibits TNF Production in Murine Bone Marrow-Derived Dendritic Cells. Cell. Immunol. 2003;223:120–132. doi: 10.1016/S0008-8749(03)00158-8.
    1. van der Pouw Kraan T.C., Boeije L.C., Smeenk R.J., Wijdenes J., Aarden L.A. Prostaglandin E2 is a Potent Inhibitor of Human Interleukin 12 Production in Murine Bone Marrow-Derived Dendritic Cells. J. Exp. Med. 1995;181:775–779. doi: 10.1084/jem.181.2.775.
    1. Rola-Pleszczynski M., Thivierge M., Gagnon N., Lacasse C., Stankova J. Differential Regulation of Cytokine and Cytokine Receptor Genes by PAF, LTB4 and PGE2. J. Lipid Mediat. 1993;6:175–181.
    1. Bagga D., Wang L., Farias-Eisner R., Glaspy J.A., Reddy S.T. Differential Effects of Prostaglandin Derived From ω-6 and ω-3 Polyunsaturated Fatty Acids on COX-2 Expression and IL-6 Secretion. Proc. Natl. Acad. Sci. USA. 2003;100:1751–1756. doi: 10.1073/pnas.0334211100.
    1. Levy B.D., Clish C.B., Schmidt B., Gronert K., Serhan C.N. Lipid Mediator Class Switching During Acute Inflammation: Signals in Resolution. Nature Immunol. 2001;2:612–619. doi: 10.1038/89759.
    1. Vachier I., Chanez P., Bonnans C., Godard P., Bousquet J., Chavis C. Endogenous Anti-Inflammatory Mediators from Arachidonate in Human Neutrophils. Biochem. Biophys. Res. Commun. 2002;290:219–224. doi: 10.1006/bbrc.2001.6155.
    1. Gewirtz A.T., Collier-Hyams L.S., Young A.N., Kucharzik T., Guilford W.J., Parkinson J.F., Williams I.R., Neish A.S., Madara J.L. Lipoxin A4 Analogs Attenuate Induction of Intestinal Epithelial Proinflammatory Gene Expression and Reduce the Severity of Dextran Sodium Sulfate-Induced Colitis. J. Immunol. 2002;168:5260–5267.
    1. Serhan C.N., Jain A., Marleau S., Clish C., Kantarci A., Beh-behani B., Colgan S.P., Stahl G.L., Merched A., Petasis N.A., Chan L., Van Dyke T.E. Reduced Inflammation and Tissue Damage in Transgenic Rabbits Overexpressing 15-Lipoxygenase and Endogenous Anti-Inflammatory Lipid Mediators. J. Immunol. 2003;171:6856–6865.
    1. Calder P.C., Bevan S.J., Newsholme E.A. The Inhibition of T-Lymphocyte Proliferation by Fatty Acids is Via an Eicosanoid-Independent Mechanism. Immunology. 1992;75:108–115.
    1. Miles E.A., Aston L., Calder P.C. In Vitro Effects of Eicosanoids Derived from Different 20-Carbon Fatty Acids on T Helper Type 1 and T Helper Type 2 Cytokine Production in Human Whole-Blood Cultures. Clin. Exp. Allergy. 2003;33:624–632. doi: 10.1046/j.1365-2222.2003.01637.x.
    1. Camandola S., Leonarduzzi G., Musso T., Varesio L., Carini R., Scavazza A., Chiarpotto E., Baeuerle P.A., Poli G. Nuclear κB is Activated by Arachidonic Acid but Not by Eicosapentaenoic Acid. Biochem. Biophys. Res. Commun. 1996;229:643–647. doi: 10.1006/bbrc.1996.1857.
    1. Priante G., Bordin L., Musacchio E., Clari G., Baggio B. Fatty Acids and Cytokine mRNA Expression in Human Osteoblastic Cells: A Specific Effect of Arachidonic Acid. Clin. Sci. 2002;102:403–409. doi: 10.1042/CS20010213.
    1. Bordin L., Prianti G., Musacchio E., Giunco S., Tibaldi E., Clari G., Baggio B. Arachidonic Acid-Induced IL-6 Expression is Mediated by PKC-α Activation in Osteoblastic Cells. Biochemistry. 2003;42:4485–4491. doi: 10.1021/bi026842n.
    1. Hennig B., Toborek M., Joshi-Barve S., Barger S.W., Barve S., Mattson M.P., McClain C.J. Linoleic Acid Activates Nuclear Transcription Factor-Kappa B (NF-kappa B) and Induces NF-kappa B-Dependent Transcription in Cultured Endothelial Cells. Am. J. Clin. Nutr. 1996;63:322–328.
    1. Hennig B., Meerarani P., Ramadass P., Watkins B.A., Toborek M. Fatty Acid-Induced Activation of Vascular Endothelial Cells. Metabolism. 2000;49:1006–1013. doi: 10.1053/meta.2000.7736.
    1. Toborek M., Blanc E.M., Kaiser S., Mattson M.P., Hennig B. Linoleic Acid Potentiates TNF-Mediated Oxidative Stress, Disruption of Calcium Homeostasis, and Apoptosis of Cultured Vascular Endothelial Cells. J. Lipid Res. 1997;38:2155–2167.
    1. Toborek M., Lee Y.W., Garrido R.S., Hennig B. Unsaturated Fatty Acids Selectively Induce an, Inflammatory Environment in Human Endothelial Cells. Am. J. Clin. Nutr. 2002;75:119–125.
    1. Young V.M., Toborek M., Yang F.J., McClain C.J., Hennig B. Effect of Linoleic Acid on Endothelial Cell Inflammatory Mediators. Metabolism. 1998;47:566–572. doi: 10.1016/S0026-0495(98)90241-4.
    1. Park H.J., Lee Y.W., Hennig B., Toborek M. Linoleic Acid-Induced VCAM-1 Expression in Human Microvascular Endothelial Cells is Mediated by NF-kappa B-Dependent Pathway. Nutr. Cancer. 2001;41:126–134. doi: 10.1207/S15327914NC41-1&2_18.
    1. Dichtl W., Ares M.P.S., Niemann Jonson A., Jovinge S., Pachinger O., Giachelli C.M., Hamsten A., Eriksson P., Nilsson J. Linoleic Acid-Stimulated Vascular Adhesion Molecule-1 Expression in Endothelial Cells Depends on Nuclear Factor-κB Activation. Metabolism. 2002;51:327–333. doi: 10.1053/meta.2002.29963.
    1. Gibney M.J., Hunter B. The Effects of Short- and Long-Term Supplementation with Fish Oil on the Incorporation of n−3 Polyunsaturated Fatty Acids into Cells of the Immune System in Healthy Volunteers. Eur. J. Clin. Nutr. 1993;47:255–259.
    1. Yaqoob P., Pala H.S., Cortina-Borja M., Newsholme E.A., Calder P.C. Encapsulated Fish Oil Enriched in α-Tocopherol Alters Plasma Phospholipid and Mononuclear Cell Fatty Acid Compositions but not Mononuclear Cell Functions. Eur. J. Clin. Invest. 2000;30:260–274. doi: 10.1046/j.1365-2362.2000.00623.x.
    1. Healy D.A., Wallace F.A., Miles E.A., Calder P.C., Newsholme P. The Effect of Low to Moderate Amounts of Dietary Fish Oil on Neutrophil Lipid Composition and Function. Lipids. 2000;35:763–768.
    1. Endres S., Ghorbani R., Kelley V.E., Georgilis K., Lonnemann G., van der Meer J.M.W., Cannon J.G., Rogers T.S., Klempner M.S., Weber P.C., Schaeffer E.J., Wolff S.M., Dinarello C.A. The Effect of Dietary Supplementation with n−3 Polyunsaturated Fatty Acids on the Synthesis of Interleukin-1 and Tumor Necrosis Factor by Mononuclear Cells. N. Eng. J. Med. 1989;320:265–271. doi: 10.1056/NEJM198902023200501.
    1. Meydani S.N., Endres S., Woods M.M., Goldin B.R., Soo C., Morrill-Labrode A., Dinarello C., Gorbach S.L. Oral (n−3) Fatty Acid Supplementation Suppresses Cytokine Production and Lymphocyte Proliferation: Comparison Between Young and Older Women. J. Nutr. 1991;121:547–555.
    1. Caughey G.E., Mantzioris E., Gibson R.A., Cleland L.G., James M.J. The Effect on Human Tumor Necrosis Factor a and Interleukin 1β Production of Diets Enriched in n−3 Fatty Acids from Vegetable Oil or Fish Oil. Am. J. Clin. Nutr. 1996;63:116–122.
    1. Trebble T.M., Wootton S.A., Miles E.A., Mullee M., Arden N.K., Ballinger A.B., Stroud M.A., Calder P.C. Prostaglandin E2 Production and T-Cell Function After Fish-Oil Supplementation: Response to Antioxidant Co-supplementation. Am. J. Clin. Nutr. 2003;78:376–382.
    1. Lee T.H., Hoover R.L., Williams J.D., Sperling R.I., Ravalese J., Spur B.W., Robinson D.R., Corey E.J., Lewis R.A., Austen K.F. Effects of Dietary Enrichment with Eicosapentaenoic Acid and Docosahexaenoic Acid on In Vitro Neutrophil and Monocyte Leukotriene Generation and Neutrophil Function. N. Eng. J. Med. 1985;312:1217–1224. doi: 10.1056/NEJM198505093121903.
    1. Sperling R.I., Benincaso A.I., Knoell C.T., Larkin J.K., Austen K.F., Robinson D.R. Dietary ω-3 Polyunsaturated Fatty Acids Inhibit Phosphoinositide Formation and Chemotaxis in Neutrophils. J. Clin. Invest. 1993;91:651–660. doi: 10.1172/JCI116245.
    1. Von Schacky C., Kiefl R., Jendraschak E., Kaminski W.E. n−3 Fatty Acids and Cysteinyl-Leukotriene Formation in Humans in vitro, ex vivo and in vivo. J. Lab. Clin. Med. 1993;121:302–309.
    1. Needleman P., Whitaker M.O., Wyche A., Watters K., Sprecher H., Raz A. Manipulation of Platelet Aggregation by Prostaglandins and Their Fatty Acid Precursors: Pharmacological Basis for a Therapeutic Approach. Prostaglandins. 1980;19:165–181. doi: 10.1016/0090-6980(80)90163-X.
    1. Kulmacz R.J., Pendleton R.B., Lands W.E.M. Interaction Between Peroxidase and Cyclooxygenase Activities in Prostaglandin-Endoperoxide Synthase. J. Biol. Chem. 1994;269:5527–5536.
    1. Obata T., Nagakura T., Masaki T., Maekawa K., Yamashita K. Eicosapentaenoic Acid Inhibits Prostaglandin D2 Generation by Inhibiting Cyclo-oxygenase-2 in Cultured Human Mast Cells. Clin. Exp. Allergy. 1999;29:1129–1135. doi: 10.1046/j.1365-2222.1999.00604.x.
    1. Lee T.H., Mencia-Huerta J.M., Shih C., Corey E.J., Lewis R.A., Austen F.A. Effects of Exogenous Arachidonic Eicosapentaenoic, and Docosahexaenoic Acids on the Generation of 5-Lipoxygenase Pathway Products by Ionophore-Activated Human Neutrophils. J. Clin. Invest. 1984;74:1922–1933.
    1. Rao G.H., Radha E., White J.G. Effect of Docosahexaenoic Acid (DHA) on Arachidonic Acid Metabolism and Platelet Function. Biochem. Biophys. Res. Commun. 1983;16:549–55. doi: 10.1016/0006-291X(83)91235-4.
    1. Corey E.J., Shih C., Cashman J.R. Docosahexaenoic Acid is a Strong Inhibitor of Prostaglandin but Not Leukotriene Biosynthesis. Proc. Natl. Acad. Sci. USA. 1983;80:3581–3584. doi: 10.1073/pnas.80.12.3581.
    1. Curtis C.L., Hughes C.E., Flannery C.R., Little C.B., Harwood J.L., Caterson B. n−3 Fatty Acids Specifically Modulate Catabolic Factors Involved in Articular Cartilage Degradation. J. Biol. Chem. 2000;275:721–724. doi: 10.1074/jbc.275.2.721.
    1. Curtis C.L., Rees S.G., Little C.B., Flannery C.R., Hughes C.E., Wilson C., Dent C.M., Otterness I.G., Harwood J.L., Caterson B. Pathologic Indicators of Degradation and Inflammation in Human Osteoarthritic Cartilage are Abrogated by Exposure to n−3 Fatty Acids. Arthritis Rheum. 2002;46:1544–1553. doi: 10.1002/art.10305.
    1. Laneuville O., Breuer D.K., Xu N., Huang Z.H., Gage D.A., Watson J.T., Lagarde M., DeWitt D.L., Smith W.L. Fatty Acid Substrate Specificities of Human Prostaglandin-Endoperoxide H Synthase-1 and-2. J. Biol. Chem. 1995;270:19330–19336. doi: 10.1074/jbc.270.33.19330.
    1. Malkowski M.G., Thuresson E.D., Lakkides K.M., Rieke C.J., Micielli R., Smith W.L., Garavito R.M. Structure of Eicosapentaenoic and Linoleic Acids in the Cyclooxygenase Site of Prostaglandin Endoperoxidase H Synthase-1. J. Biol. Chem. 2001;276:37547–37555. doi: 10.1074/jbc.M105982200.
    1. Hawkes J.S., James M.J., Cleland L.G. Separation and Quantification of PGE3 Following Derivatization with Panacyl Bromide by High Pressure Liquid Chromatography with Fluorometric Detection. Prostaglandins. 1991;42:355–368. doi: 10.1016/0090-6980(91)90084-S.
    1. Goldman D.W., Pickett W.C., Goetzl E.J. Human Neutrophil Chemotactic and Degranulating Activities of Leukotriene B5 (LTB5) Derived from Eicosapentaenoic Acid. Biochem. Biophys. Res. Commun. 1983;117:282–288. doi: 10.1016/0006-291X(83)91572-3.
    1. Lee T.H., Mencia-Huerta J.M., Shih C., Corey E.J., Lewis R.A., Austen K.F. Characterization and Biologic Properties of 5,12-Dihydroxy Derivatives of Eicosapentaenoic Acid, Including Leukotriene-B5 and the Double Lipoxygenase Product. J. Biol. Chem. 1984;259:2383–2389.
    1. Grimminger F., Mayer K., Kiss L., Wahn H., Walmrath D., Bahkdi S., Seeger W. Synthesis of 4-Series and 5-Series Leukotrienes in the Lung Microvasculature Challenged with Escherichia coli Hemolysin: Critical Dependence on Exogenous Free Fatty Acid Supply. Am. J. Resp. Cell. Mol. Biol. 1997;16:317–324.
    1. Grimminger F., Wahn H., Mayer K., Kiss L., Walmrath D., Seeger W. Impact of Arachidonic Acid Versus Eicosapentaenoic Acid on Exotoxin-Induced Lung Vascular Leakage—Relation to 4-Series Versus 5-Series Leukotriene Generation. Am. J. Resp. Crit. Care Med. 1997;155:513–519.
    1. Breil I., Koch T., Heller A., Schlotzer E., Grunert A., van Ackern K., Neuhof H. Alteration of n−3 Fatty Acid Composition in Lung Tissue After Short-Term Infusion of Fish Oil Emulsion Attenuates Inflammatory Vascular Reaction. Crit. Care Med. 1996;24:1893–1902. doi: 10.1097/00003246-199611000-00021.
    1. Serhan C.N., Clish C.B., Brannon J., Colgan S.P., Gronert K., Chiang N. Anti-Inflammatory Lipid Signals Generated From Dietary n−3 Fatty Acids via Cyclooxygenase-2 and Transcellular Processing: A Novel Mechanism for NSAID and n−3 PUFA Therapeutic Actions. J. Physiol. Pharmacol. 2000;4:643–654.
    1. Serhan C.N., Clish C.B., Brannon J., Colgan S.P., Chiang N., Gronert K. Novel Functional Sets of Lipid-derived Mediators with Anti-inflammatory Actions Generated From Omega-3 Fatty Acids Via Cyclooxygenase 2-Nonsteroidal Antiinflammatory Drugs and Transcellular Processing. J. Exp. Med. 2000;192:1197–1204. doi: 10.1084/jem.192.8.1197.
    1. Serhan C.N., Hong S., Gronert K., Colgan S.P., Devchand P.R., Mirick G., Moussignac R-L. Resolvins: A Family of Bioactive Products of Omega-3 Fatty Acid Transformation Circuits Initiated by Aspirin Treatment That Counter Pro-Inflammation Signals. J. Exp. Med. 2002;196:1025–1037. doi: 10.1084/jem.20020760.
    1. Hong S., Gronert K., Devchand P., Moussignac R.-L., Serhan C.N. Novel Docosatrienes and 17S-Resolvins Generated from Docosahexaenoic Acid in Urine Brain, Human Blood and Glial Cells: Autocoids in Anti-inflammation. J. Biol. Chem. 2003;278:14677–14687. doi: 10.1074/jbc.M300218200.
    1. Marcheselli V.L., Hong S., Lukiw W.J., Hua Tian X., Gronert K., Musto A., Hardy M., Gimenez J.M., Chiang N., Serhan C.N., Bazan N.G. Novel Docosanoids Inhibit Brain Ischemia-Reperfusion-Mediated Leukocyte Infiltration and Pro-Inflammatory Gene Expression. J. Biol. Chem. 2003;278:43807–43817. doi: 10.1074/jbc.M305841200.
    1. Mukherjee P.K., Marcheselli V.L., Serhan C.N., Bazan N.G. Neutroprotectin D1: A Docosahexaenoic Acid-Derived Docosatriene Protects Human Retinal Pigment Epithelial Cells from Oxidative Stress. Proc. Natl. Acad. Sci. USA. 2004;101:8491–8496. doi: 10.1073/pnas.0402531101.
    1. De Caterina R., Cybulsky M.I., Clinton S.K., Gimbrone M.A., Libby P. The Omega-3 Fatty Acid Docosahexaenoate Reduces Cytokine-Induced Expression of Proatherogenic and Proinflammatory Proteins in Human Endothelial Cells. Arterioscler. Thromb. 1994;14:1829–1836.
    1. Khalfoun B., Thibault F., Watier H., Bardos P., Lebranchu Y. Docosahexaenoic and Eicosapentaenoic Acids Inhibits in vitro Human Endothelial Cell Production of Interleukin-6. Adv. Exp. Biol. Med. 1997;400:589–597.
    1. Lo C.J., Chiu K.C., Fu M., Lo R., Helton S. Fish Oil Decreases Macrophage Tumor Necrosis Factor Gene Transcription by Altering the NFκB Activity. J. Surg. Res. 1999;82:216–222. doi: 10.1006/jsre.1998.5524.
    1. Babcock T.A., Novak T., Ong E., Jho D.H., Helton W.S., Espat N.J. Modulation of Lipopolysaccharide-Stimulated Macrophage Tumor Necrosis Factor-α Production by ω-3 Fatty Acid Is Associated with Differential Cyclooxygenase-2 Protein Expression and is Independent of Interleukin-10. J. Surg. Res. 2002;107:135–139.
    1. Novak T.E., Babcock T.A., Jho D.H., Helton W.S., Espat N.J. NF-κB Inhibition by ω-3 Fatty Acids Modulates LPS-Stimulated Macrophage TNF-α Transcription. Am. J. Physiol. 2003;284:L84–L89.
    1. Zhao Y., Joshi-Barve S., Barve S., Chen L.H. Eicosapentaenoic Acid Prevents LPS-Induced TNF-α Expression by Preventing NF-κB Activation. J. Am. Coll. Nutr. 2004;23:71–78.
    1. Ross J.A., Moses A.G.W., Fearon K.C.H. The Anti-catabolic Effects of n−3 Fatty Acids. Curr. Opin. Clin. Nutr. Metab. Care. 1999;2:219–226. doi: 10.1097/00075197-199905000-00005.
    1. Lo C.J., Chiu K.C., Fu M.J., Chu A., Helton S. Fish Oil Modulates Macrophage P44/42 Mitogen-Activated Protein Kinase Activity Induced by Lipopolysaccharide. J. Parent. Ent. Nutr. 2000;24:159–163.
    1. Xi S., Cohen D., Barve S., Cohen L.H. Fish Oil Suppressed Cytokines and Nuclear Factor kappaB Induced by Murine AIDS Virus Infection. Nutr. Res. 2001;21:865–878. doi: 10.1016/S0271-5317(01)00290-1.
    1. Sadeghi S., Wallace F.A., Calder P.C. Dietary Lipids Modify the Cytokine Response to Bacterial Lipopolysaccharide in Mice. Immunology. 1999;96:404–410. doi: 10.1046/j.1365-2567.1999.00701.x.
    1. Abbate R., Gori A.M., Martini F., Brunelli T., Filippini M., Francalanci I., Paniccia R., Prisco D., Gensini G.F., Serneri G.G.N. n−3 PUFA Supplementation, Monocyte PCA Expression and Interleukin-6 Production. Prostaglandins Leukot. Essent. Fatty Acids. 1996;54:439–444. doi: 10.1016/S0952-3278(96)90028-9.
    1. Trebble T., Arden N.K., Stroud M.A., Wootton S.A., Burdge G.C., Miles E.A., Ballinger A.B., Thompson R.L., Calder P.C. Inhibition of Tumour Necrosis Factor-α and Inter-leukin-6 Production by Mononuclear Cells Following Dietary Fish-Oil Supplementation in Healthy Men and Response to Antioxidant Co-Supplementation. Br. J. Nutr. 2003;90:405–412. doi: 10.1079/BJN2003892.
    1. Wallace F.A., Miles E.A., Calder P.C. Comparison of the Effects of Linseed Oil and Different Doses of Fish Oil on Mononuclear Cell Function in Healthy Human Subjects. Br. J. Nutr. 2003;89:679–689. doi: 10.1079/BJN2002821.
    1. Grimble R.F., Howell W.M., O'Reilly G., Turner S.J., Markovic O., Hirrell S., East J.M., Calder P.C. The Ability of Fish Oil to Suppress Tumor Necrosis Factor-α Production by Peripheral Blood Mononuclear Cells in Healthy Men is Associated with Polymorphisms in Genes that Influence Tumor Necrosis Factor α Production. Am. J. Clin. Nutr. 2002;76:454–459.
    1. Mascioli E.A., Leader L., Flores E., Trimbo S., Bistrian B., Blackburn G. Enhanced Survival to Endotoxin in Guinea Pigs Fed IV Fish Oil Emulsion. Lipids. 1988;23:623–625.
    1. Mascioli E.A., Iwasa Y., Trimbo S., Leader L., Bistrian B.R., Blackburn G.L. Endotoxin Challenge After Menhaden Oil Diet: Effects on Survival of Guinea Pigs. Am. J. Clin. Nutr. 1989;49:277–282.
    1. Utsunomiya T., Chavali S.R., Zhong W.W., Forse R.A. Effects of Continuous Tube Feeding of Dietary Fat Emulsions on Eicosanoid Production and on Fatty Acid Composition During an Acute Septic Shock in Rats. Biochim. Biophys. Acta. 1994;1214:333–339.
    1. Sane S., Baba M., Kusano C., Shirao K., Andoh T., Kamada T., Aikou T. Eicosapentaenoic Acid Reduces Pulmonary Edema in Endotoxemic Rats. J. Surg. Res. 2000;93:21–27. doi: 10.1006/jsre.2000.5960.
    1. Mulrooney H.M., Grimble R.F. Influence of Butter and of Corn, Coconut and Fish Oils on the Effects of Recombinant Human Tumour Necrosis Factor-α in Rats. Clin. Sci. 1994;84:105–112.
    1. Pomposelli J., Mascioli E.A., Bistrian B.R., Flores S.M. Attenuation of the Febrile Response in Guinea Pigs by Fish Oil Enriched Diets. J. Parent. Ent. Nutr. 1990;13:136–140.
    1. Pomposelli J.J., Flores E.A., Blackburn G., Zeisel S.H., Bistrian B.R. Diets Enriched with n−3 Fatty Acids Ameliorate Lactic Acidosis by Improving Endotoxin-Induced Tissue Hypoperfusion in Guinea Pigs. Ann. Surg. 1991;213:166–176.
    1. Teo T.C., Selleck K.M., Wan J.M.F., Pomposelli J.J., Babayan V.K., Blackburn G.L., Bistrian B.R. Long-Term Feeding with Structured Lipid Composed of Medium-Chain and n−3 Fatty Acids Ameliorates Endotoxic Shock in Guinea-Pigs. Metabolism. 1991;40:1152–1159. doi: 10.1016/0026-0495(91)90209-F.
    1. Murray M.J., Kanazi G., Moukabary K., Tazelaar H.D., DeMichele S.J. Effects of Eicosapentaenoic and γ-Linolenic Acids (Dietary Lipids) on Pulmonary Surfactant Composition and Function During Porcine Endotoxemia. Chest. 2000;117:1720–1727. doi: 10.1378/chest.117.6.1720.
    1. Mancuso P., Whelan J., DeMichele S.J., Snider C.C., Guszcza J.A., Karlstad M.D. Dietary Fish Oil and Fish and Borage Oil Suppress Intrapulmonary Proinflammatory Eicosanoids Biosynthesis and Attenuate Pulmonary Neutrophil Accumulation in Endotoxic Rats. Crit. Care Med. 1997;25:1198–1206. doi: 10.1097/00003246-199707000-00023.
    1. Mancuso P., Whelan J., DeMichele S.J., Snider C.C., Guszcza J.A., Claycombe K.J., Smith G.T., Gregory T.J., Karlstad M.D. Effects of Eicosapentaenoic and Gamma-Linolenic Acid on Lung Permeability and Alveolar Macrophage Eicosanoid Synthesis in Endotoxic Rats. Crit. Care Med. 1997;25:523–532. doi: 10.1097/00003246-199703000-00024.
    1. Murray M.J., Svinger B.A., Holman R.T., Yaksh T.L. Effects of a Fish Oil Diet on Pig's Cardiopulmonary Response to Bacteremia. J. Parent. Ent. Nutr. 1991;15:152–158.
    1. Murray M.J., Svinger B.A., Yaksh T.L., Holman R.T. Effects of Endotoxin on Pigs Prefed Omega-3 Vs. Omega-6 Fatty Acids-Enriched Diets. Am. J. Physiol. 1993;265:E920–E927.
    1. Murray M.J., Kumar M., Gregory T.J., Banks P.L., Tazelaar H.D., DeMichele S.J. Select Dietary Fatty Acids Attenuate Cardiopulmonary Dysfunction During Acute Lung Injury in Pigs. Am. J. Physiol. 1995;269:H2090–H2097.
    1. Calder P.C., Yaqoob P., Thies F., Wallace F.A., Miles E.A. Fatty Acids and Lymphocyte Functions. Br. J. Nutr. 2002;87:S31–S48. doi: 10.1079/BJN2001482.
    1. Halvorsen D.A., Hansen J-B, Grimsgaard S., Bonna K.H., Kierulf P., Nordoy A. The Effect of Highly Purified Eicosapentaenoic and Docosahexaenoic Acids on Monocyte Phagocytosis in Man. Lipids. 1997;32:935–942. doi: 10.1007/s11745-997-0120-2.
    1. Thies F., Miles E.A., Nebe-von-Caron G., Powell J.R., Hurst T.L., Newsholme E.A., Calder P.C. Influence of Dietary Supplementation with Long-Chain n−3 or n−6 Polyunsaturated Fatty Acids on Blood Inflammatory Cell Populations and Functions and on Plasma Soluble Adhesion Molecules in Healthy Adults. Lipids. 2001;36:1183–1193. doi: 10.1007/s11745-001-0831-4.
    1. Kew S., Banerjee T., Minihane A.M., Finnegan Y.E., Muggli R., Albers R., Williams C.M., Calder P.C. Lack of Effect of Foods Enriched with Plant- or Marine-Derived n−3 Fatty Acids on Human Immune Function. Am. J. Clin. Nutr. 2003;77:1287–1295.
    1. Miles E.A., Banerjee T., Dooper M.W.B.W., M'Rabet L., Graus Y.M.F., Calder P.C. The Influence of Different Combinations of γ-Linolenic Acid, Stearidonic Acid and EPA on Immune Function in Healthy Young Male Subjects. Brit. J. Nutr. 2004;91:893–903. doi: 10.1079/BJN20041131.
    1. Hughes D.A., Pinder A.C., Piper Z., Johnson I.T., Lund E.K. Fish Oil Supplementation Inhibits the Expression of Major Histocompatibility Complex Class II Molecules and Adhesion Molecules on Human Monocytes. Am. J. Clin. Nutr. 1996;63:267–272.
    1. Meydani M., Natiello F., Goldin B., Free N., Woods M., Schaefer E., Blumberg J.B., Gorbach S.L. Effect of Long-Term Fish Oil Supplementation on Vitamin E Status and Lipid Peroxidation in Women. J. Nutr. 1991;121:484–491.
    1. Molvig J., Pociot F., Worsaae H., Wogensen L.D., Baek L., Christensen P., Mandruppoulsen T., Andersen K., Madsen P., Dyerberg J., Nerup J. Dietary Supplementation with Omega 3 Polyunsaturated Fatty Acids Decreases Mononuclear Cell Proliferation and Interleukin 1 Beta Content but Not Monokine Secretion in Healthy and Insulin Dependent Diabetic Individuass. Scand. J. Immunol. 1991;34:399–410. doi: 10.1111/j.1365-3083.1991.tb01563.x.
    1. Thies F., Nebe-von-Caron G., Powell J.R., Yaqoob P., Newsholme E.A., Calder P.C. Dietary Supplementation with γ-Linolenic Acid or Fish Oil Decreases T Lymphocyte Proliferation in Healthy Older Humans. J. Nutr. 2001;131:1918–1927.
    1. Pscheidl E., Schywalsky M., Schywalsky M., Tschaikowsky K., Boke-Prols T. Fish Oil-Supplemented Parenteral Diets Normalize Splanchnic Blood Flow and Improve Killing of Translocated Bacteria in a Low-Dose Endotoxin Rat Model. Crit. Care Med. 2000;28:1489–1496. doi: 10.1097/00003246-200005000-00039.
    1. Barton R.G., Wells C.L., Carlson A., Singh R., Sullivan J.J., Cerra F.B. Dietary Omega-3 Fatty Acids Decrease Mortality and Kupffer Cell Prostaglandin E2 Production in a Rat Model of Chronic Sepsis. J. Trauma. 1991;31:768–774.
    1. Rayon J.I., Carver J.D., Wyble L.E., Wiener D., Dickey S.S., Benford V.J., Chen L.T., Lim D.V. The Fatty Acid Composition of Maternal Diet Affects Lung Prostaglandin E2 Levels and Survival from Group B Streptococcal Sepsis in Neonatal Rat Pups. J. Nutr. 1997;127:1989–1992.
    1. Lanza-Jacoby S., Flynn J.T., Miller S. Parenteral Supplementation with a Fish Oil Emulsion Prolong Survival and Improves Lymphocyte Function During Sepsis. Nutrition. 2001;17:112–116. doi: 10.1016/S0899-9007(00)00512-8.
    1. Johnson J.A., Griswold J.A., Muakkassa F.F., Meyer A.A., Maier R.V., Chaudry I.H., Cerra F. Essential Fatty Acids Influence Survival in Stress. J. Trauma. 1993;35:128–131.
    1. Blok W.L., Vogels M.T.E., Curfs J.H.A.J., Eling W.M.C., Buurmann W.A., van der Meer J.M.W. Dietary Fish Oil Supplementation in Experimental Gram Negative Infection and in cerebral malaria in Mice. J. Infect. Dis. 1992;165:898–903.
    1. Chang H.R., Dulloo A.G., Vladoianu I.R., Piguet P.F., Arsenijevic D., Girardier L., Pechere J.C. Fish Oil Decreases Natural Rresistance of Mice to Infection with Salmonella typhimurium. Metabolism. 1992;41:1–2. doi: 10.1016/0026-0495(92)90181-9.
    1. Fritsche K.L., Shahbazian L.M., Feng C., Berg J.N. Dietaey Fish Oil Reduces Survival and Impairs Bacterial Clearance in C3H/Hen Mice Challenged with Listeria monocytogenes. Clin. Sci. 1997;92:95–101.
    1. Mayatepek E., Paul K., Leichsenring M., Pfisterer M., Wagener D., Domann M., Sonntag H.G., Brener H.J. Influence of Dietary (n−3) Polyunsaturated Fatty Acids on Leukotriene B4 and Prostaglandin E2 Synthesis and the Time Course of Experimental Tuberculosis in Guinea Pigs. Infection. 1994;22:106–112. doi: 10.1007/BF01739016.
    1. D'Ambola J.B., Aeberhard E.E., Trang N., Gaffar S., Barrett C.T., Sherman M.P. Effect of Dietary (n−3) and (n−6) Fatty Acids on in vivo Pulmonary Bacterial clearance by Neonatal Rabbits. J. Nutr. 1991;121:1262–1269.
    1. Kronberg D., Hansen B., Aaby P. Analysis of the Incubation Period for Measles in the Epidemic in Greenland in 1951 Using a Variance Components Model. Stat. Med. 1992;11:579–590.
    1. Heyland D.K., MacDonald S., Keefe L., Drover J.W. Total Parenteral Nutrition in the Critically Ill Patient: A Meta-Analysis. JAMA. 1998;280:2013–2019. doi: 10.1001/jama.280.23.2013.
    1. Calder P.C., Sherrington E.J., Askanazi J., Newsholme E.A. Inhibition of Lymphocyte Proliferation in vitro by Two Lipid Emulsions with Different Fatty Acid Compositions. Clin. Nutr. 1994;13:69–74. doi: 10.1016/0261-5614(94)90062-0.
    1. Battistella F.D., Widergren J.T., Anderson J.T., Siepler J.K., Weber J.C., MacColl K. A Prospective, Randomized Trial of Intravenous Fat Emulsion Administration in Trauma Victims Requiring Total Parenteral Nutrition. J. Trauma. 1997;43:52–58.
    1. Furukawa K., Yamamori H., Takagi K., Hayashi N., Suzuki R., Nakajima N., Tashiro T. Influence of Soybean Oil Emulsion on Stress Response and Cell-Mediated Immune Function in Moderately or Severely Stressed Patients. Nutrition. 2002;18:235–240. doi: 10.1016/S0899-9007(01)00784-5.
    1. Gogos C.A., Kalfarentzos F.E., Zoumbos N.C. Effect of Different Types of Total Parenteral Nutrition on T-Lymphocyte Subpopulations and NK Cells. Am. J. Clin. Nutr. 1990;51:119–122.
    1. Sedman P.C., Somers S.S., Ramsden C.W., Brennan T.G., Guillou P.J. Effects of Different Lipid Emulsions on Lymphocyte Function During Total Parenteral Nutrition. Br. J. Surg. 1991;78:1396–1399.
    1. Lenssen P., Bruemmer B.A., Bowden R.A., Gooley T., Aker S.N., Mattson D. Intravenous Lipid Dose and Incidence of Bacteremia and Fungemia in Patients Undergoing Bone Marrow Transplantation. Am. J. Clin. Nutr. 1998;67:927–933.
    1. Morlion B.J., Torwesten E., Lessire A., Sturm G., Peskar B.M., Furst P., Puchstein C. The Effect of Parenteral Fish Oil on Leukocyte Membrane Fatty Acid Composition and Leukotriene-Synthesizing Capacity in Postoperative Trauma. Metabolism. 1996;45:1208–1213. doi: 10.1016/S0026-0495(96)90237-1.
    1. Koller M., Senkal M., Kemen M., Konig W., Zumtobel V., Muhr G. Impact of Omega-3 Fatty Acid Enriched TPN on Leukotriene Synthesis by Leukocytes After Major Surgery. Clin. Nutr. 2003;22:59–64. doi: 10.1054/clnu.2002.0592.
    1. Wachtler P., Konig W., Senkal M., Kemen M., Koller M. Influence of a Total Parenteral Nutrition Enriched with ω-3 Fatty Acids on Leukotriene Synthesis of Peripheral Leukocytes and Systemic Cytokine Levels in Patients with Major Surgery. J. Trauma. 1997;42:191–198.
    1. Weiss G., Meyer F., Matthies B., Pross M., Koenig W., Lippert H. Immunomodulation by Perioperative Administration of n−3 Fatty Acids. Br. J. Nutr. 2002;87:S89–S94. doi: 10.1079/BJN2001461.
    1. Schauder P., Rohn U., Schafer G., Korff G., Schenk H.-D. Impact of Fish Oil Enriched Total Parenteral Nutrition on DNA Synthesis, Cytokine Release and Receptor Expression by Lymphocytes in the Postoperative Period. Br. J. Nutr. 2002;87:S103–S110. doi: 10.1079/BJN2001463.
    1. Tsekos E., Reuter C., Stehle P., Boeden G. Perioperative Administration of Parenteral Fish Oil Supplements in a Routine Clinical Setting Improves Patient Outcome After Major Abdominal Surgery. Clin. Nutr. 2004;23:325–330. doi: 10.1016/j.clnu.2003.07.008.
    1. Daly J.M., Weintraub F.N., Shou J., Rosato E.F., Lucia M. Enteral Nutrition During Multimodality Therapy in Upper Gastrointestinal Cancer Patients. Ann. Surg. 1995;221:327–338. doi: 10.1097/00000658-199504000-00002.
    1. Schilling J., Vranjes N., Fierz W., Joller H., Gyurech D., Ludwig E., Marathias K., Geroulanos S. Clinical Outcome and Immunology of Postoperative Arginine, ω-3 Fatty Acids, and Nucleotide-Enriched Enteral Feeding: A Randomized Prospective Comparison with Standard Enteral and Low Calories/Low Fat IV Solutions. Nutrition. 1996;12:423–429. doi: 10.1016/S0899-9007(96)00096-2.
    1. Braga M., Vignali A., Gianotti L., Cestari A., Profili M., Di Carlo V. Immune and Nutritional Effects of Early Enteral Nutrition After Major Abdominal Operations. Eur. J. Surg. 1996;162:105–112.
    1. Daly J.M., Lieberman M.D., Golfine J., Shou J., Weintraub F., Rosato E.F., Lavin P. Enteral Nutrition with Supplemental Arginine, RNA, and Omega-3 Fatty Acids in Patients after Operation: Immunologic, Metabolic, and Clinical Outcome. Surgery. 1992;112:56–67.
    1. Gianotti L., Braga M., Fortis C., Soldini L., Vignali A., Colombo S., Radaelli G., Di Carlo V. A Prospective, Randomised Clinical Trial on Perioperative Feeding with an Arginine-, Omega-3 Fatty Acid-, and RNA-Enriched Enteral Diet: Effect on Host Response and Nutritional Status. J. Parent. Ent. Nutr. 1999;23:314–320. doi: 10.1177/0148607199023006314.
    1. Braga M., Gianotti L., Radaelli G., Vignali A., Mari G., Gentilini O., Di Carlo V. Perioperative Immunonutrition in Patients Undergoing Cancer Surgery. Arch. Surg. 1999;134:428–433. doi: 10.1001/archsurg.134.4.428.
    1. Heys S.D., Walker L.G., Smith I., Eremin O. Enteral Nutritional Supplementation with Key Nutrients in Patients with Critical Illness and Cancer—A Meta-Analysis of Randomized Controlled Clinical Trials. Ann. Surg. 1999;229:467–477. doi: 10.1097/00000658-199904000-00004.
    1. Beale R.J., Bryg D.J., Bihari D.J. Immunonutrition in the Critically Ill: A Systematic Review of Clinical Outcome. Crit. Care Med. 1999;27:2799–2805. doi: 10.1097/00003246-199912000-00032.
    1. Heyland D.K., Novak F., Drover J.W., Jain A., Su X.Y., Suchner U. Should Immunonutrition Become Routine in Critically Ill Patients? A Systematic Review of the Evidence. JAMA. 2001;286:944–953. doi: 10.1001/jama.286.8.944.
    1. Cerra F.B., Lehman S., Konstantinides N., Konstantinides F., Shronts E.P., Holman R. Effect of Enteral Nutrition on in vitro Tests of Immune Function in ICU Patients: A Preliminary Report. Nutrition. 1990;6:84–87.
    1. Weimann A., Bastian L., Bischoff W.E., Grotz M., Hansel M., Lotz J., Trautwein C., Tusch G., Schlitt H.J., Regel G. Influence of Arginine, Omega-3 Fatty Acids and Nucleotide-Supplemented Enteral Support on Systemic Inflammatory Response Syndrome and Multiple Organ Failure in Patients After Severe Trauma. Nutrition. 1998;14:165–172. doi: 10.1016/S0899-9007(97)00429-2.
    1. Gadek J.E., DeMichele S.J., Karlstad M.D., Pacht E.R., Donahoe M., Albertson T.E., Van Hoozen C., Wennberg A.K., Nelson J., Noursalehi M., the Enteral Nutrition in ARDS Study Group Effect of Enteral Feeding with Eicosapentaenoic Acid γ-Linolenic Acid, and Antioxidants in Patients with Acute Respiratory Distress Syndrome. Crit. Care Med. 1999;27:1409–1420. doi: 10.1097/00003246-199908000-00001.
    1. Pacht E.R., DeMichele S.J., Nelson J.L., Hart J., Wennberg A.K., Gadek J.E. Enteral Nutrition with Eicosapentaenoic Acid, Gamma-Linolenic Acid, and Antioxidants Reduces Alveolar Inflammatory Mediators and Protein Influx in Patients with Acute Respiratory Distress Syndrome. Crit. Care Med. 2003;31:491–500. doi: 10.1097/01.CCM.0000049952.96496.3E.
    1. Mayer K., Fegbeutel C., Hattar K., Sibelius U., Kramer H.J., Heuer K.U., Temmesfeld-Wollbruck B., Gokorsch S., Grimminger F., Seeger W. ω-3 vs, ω-6 Lipid Emulsions Exert Differential Influence on Neutrophils in Septic Shock Patients: Impact on Plasma Fatty Acids and Lipid Mediator Generation. Intensive Care Med. 2003;29:1472–1481. doi: 10.1007/s00134-003-1900-2.
    1. Mayer K., Gokorsch S., Fegbeutel C., Hattar K., Rosseau S., Walmrath D., Seeger W., Grimminger F. Parenteral Nutrition with Fish Oil Modulates Cytokine Response in Patients with Sepsis. Am. J. Respir. Crit. Care Med. 2003;167:1321–1328. doi: 10.1164/rccm.200207-674OC.

Source: PubMed

3
Prenumerera