Microbiome recovery in adult females with uncomplicated urinary tract infections in a randomised phase 2A trial of the novel antibiotic gepotidacin (GSK140944)

Andrea Nuzzo, Stephanie Van Horn, Christopher Traini, Caroline R Perry, Etienne F Dumont, Nicole E Scangarella-Oman, David F Gardiner, James R Brown, Andrea Nuzzo, Stephanie Van Horn, Christopher Traini, Caroline R Perry, Etienne F Dumont, Nicole E Scangarella-Oman, David F Gardiner, James R Brown

Abstract

Background: With increasing concerns about the impact of frequent antibiotic usage on the human microbiome, it is important to characterize the potential for such effects in early antibiotic drug development clinical trials. In a randomised Phase 2a clinical trial study that evaluated the pharmacokinetics of repeated oral doses of gepotidacin, a first-in-chemical-class triazaacenaphthylene antibiotic with a distinct mechanism of action, in adult females with uncomplicated urinary tract infections for gepotidacin (GSK2140944) we evaluated the potential changes in microbiome composition across multiple time points and body-sites ( ClinicalTrials.gov : NCT03568942).

Results: Samples of gastrointestinal tract (GIT), pharyngeal cavity and vaginal microbiota were collected with consent from 22 patients at three time points relative to the gepotidacin dosing regimen; Day 1 (pre-dose), Day 5 (end of dosing) and Follow-up (Day 28 ± 3 days). Microbiota composition was determined by DNA sequencing of 16S rRNA gene variable region 4 amplicons. By Day 5, significant changes were observed in the microbiome diversity relative to pre-dose across the tested body-sites. However, by the Follow-up visit, microbiome diversity changes were reverted to compositions comparable to Day 1. The greatest range of microbiome changes by body-site were GIT followed by the pharyngeal cavity then vagina. In Follow-up visit samples we found no statistically significant occurrences of pathogenic taxa.

Conclusion: Our findings suggest that gepotidacin alteration of the human microbiome after 5 days of dosing is temporary and rebound to pre-dosing states is evident within the first month post-treatment. We recommend that future antibiotic drug trials include similar exploratory investigations into the duration and context of microbiome modification and recovery.

Trial registration: NCT03568942 . Registered 26 June 2018.

Keywords: Antibiotic; Clinical trial; Gepotidacin; Microbiome; Urinary tract infection.

Conflict of interest statement

A.N., S.V.H., C.T., C.R.P., and N.E.S-O., are employees of GlaxoSmithKline and hold restricted shares. E.F.D, D.F.G. and J.R.B. were employees and restricted shareholder when this work was completed.

Figures

Fig. 1
Fig. 1
Overview of microbiome dynamics during gepotidacin Phase 2a clinical trial. (A) Phylum level changes in the relative abundance of microbiota across different body sites and time points. (B) Changes in microbiota community as measured by different indices of alpha diversity. The initial, lower placed value in each comparison is from the overall ANOVA (* P value ≤0.05; ** P value ≤0.005, ns = nonsignificant)
Fig. 2
Fig. 2
Beta diversity index of microbial communities using unweighted UniFrac distances with PCoA (A) or NMDS (B) projections on different body sites over time. (C) Violin plots showing the distribution of the first CCA scores for each visit and body type (* P value ≤0.05; ** P value ≤0.005; *** P value ≤0.0001 ns = nonsignificant, Wilcoxon test with Benjamini-Hochberg FDR correction)
Fig. 3
Fig. 3
Changes in specific microbiota genera at Day 5 and Follow-up compared to Day 1 for the (A) gastro-intestinal tract (GIT); (B) pharyngeal cavity and (C) vagina. Size represents -log10 of FDR-adjusted P-value and lines represent CI at 95%
Fig. 4
Fig. 4
Overall trends in changes for specific pathogenic genera including Bacillus, Clostridioides, Escherichia-Shigella, Haemophilus, Neisseria, Staphylococcus and Streptococcus. (* P value ≤0.05; ** P value ≤0.005; *** P value ≤0.0001 ns = nonsignificant)
Fig. 5
Fig. 5
Species level changes in abundance for E. coli species using phylogenetic analyses of their 16S rRNA-V4 sequences and closely related sequences from the NCBI public database

References

    1. Bax BD, Chan PF, Eggleston DS, Fosberry A, Gentry DR, Gorrec F, Giordano I, Hann MM, Hennessy A, Hibbs M, Huang J, Jones E, Jones J, Brown KK, Lewis CJ, May EW, Saunders MR, Singh O, Spitzfaden CE, Shen C, Shillings A, Theobald AJ, Wohlkonig A, Pearson ND, Gwynn MN. Type IIA topoisomerase inhibition by a new class of antibacterial agents. Nature. 2010;466(7309):935–940. doi: 10.1038/nature09197.
    1. O’riordan W, Tiffany C, Scangarella-Oman N, Perry C, Hossain M, Ashton T, et al. Efficacy, safety, and tolerability of gepotidacin (GSK2140944) in the treatment of patients with suspected or confirmed gram-positive acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2017;61(6). 10.1128/AAC.02095-16.
    1. Scangarella-Oman NE, Ingraham KA, Tiffany CA, Tomsho L, van Horn SF, Mayhew DN, et al. In vitro activity and microbiological efficacy of gepotidacin from a phase 2, randomized, multicenter, dose-ranging study in patients with acute bacterial skin and skin structure infections. Antimicrob Agents Chemother. 2020;64.
    1. Scangarella-Oman NE, Hossain M, Dixon PB, Ingraham K, Min S, Tiffany CA, et al. Microbiological analysis from a phase 2 randomized study in adults evaluating single oral doses of gepotidacin in the treatment of uncomplicated urogenital gonorrhea caused by neisseria gonorrhoeae. Antimicrob Agents Chemother. 2018;62(12). 10.1128/AAC.01221-18.
    1. Abt MC, McKenney PT, Pamer EG. Clostridium difficile colitis: pathogenesis and host defence. Nat Rev Microbiol. 2016;14(10):609–620. doi: 10.1038/nrmicro.2016.108.
    1. Shaw SY, Blanchard JF, Bernstein CN. Association between the use of antibiotics in the first year of life and pediatric inflammatory bowel disease. Am J Gastroenterol. 2010;105(12):2687–2692. doi: 10.1038/ajg.2010.398.
    1. Dydensborg Sander S, Nybo Andersen AM, Murray JA, Karlstad Ø, Husby S, Størdal K. Association between antibiotics in the first year of life and celiac disease. Gastroenterology. 2019;156(8):2217–2229. doi: 10.1053/j.gastro.2019.02.039.
    1. Maier L, Pruteanu M, Kuhn M, Zeller G, Telzerow A, Anderson EE, Brochado AR, Fernandez KC, Dose H, Mori H, Patil KR, Bork P, Typas A. Extensive impact of non-antibiotic drugs on human gut bacteria. Nature. 2018;555(7698):623–628. doi: 10.1038/nature25979.
    1. Iizumi T, Taniguchi T, Yamazaki W, Vilmen G. Alekseyenko a v., Gao Z, et al. effect of antibiotic pre-treatment and pathogen challenge on the intestinal microbiota in mice. Gut Pathogens. 2016;8(1):1–10. doi: 10.1186/s13099-016-0143-z.
    1. Arat S, Spivak A, van Horn S, Thomas E, Traini C, Sathe G, Livi GP, Ingraham K, Jones L, Aubart K, Holmes DJ, Naderer O, Brown JR. Microbiome changes in healthy volunteers treated with GSK1322322, a novel antibiotic targeting bacterial peptide deformylase. Antimicrob Agents Chemother. 2015;59(2):1182–1192. doi: 10.1128/AAC.04506-14.
    1. Chng KR, Ghosh TS, Tan YH, Nandi T, Lee IR, Ng AHQ, Li C, Ravikrishnan A, Lim KM, Lye D, Barkham T, Raman K, Chen SL, Chai L, Young B, Gan YH, Nagarajan N. Metagenome-wide association analysis identifies microbial determinants of post-antibiotic ecological recovery in the gut. Nature Ecology and Evolution. 2020;4(9):1256–1267. doi: 10.1038/s41559-020-1236-0.
    1. Overcash JS, Tiffany CA, Scangarella-Oman NE, Perry CR, Tao Y, Hossain M, et al. Phase 2a pharmacokinetic, safety, and exploratory efficacy evaluation of oral gepotidacin (GSK2140944) in female participants with uncomplicated urinary tract infection (acute uncomplicated cystitis). Antimicrob Agents Chemother. 2020;64(7). 10.1128/AAC.00199-20.
    1. Guglietta A. Recurrent urinary tract infections in women: risk factors, etiology, pathogenesis and prophylaxis. Future Microbiol. 2017;12(3):239–246. doi: 10.2217/fmb-2016-0145.
    1. Tang ZZ, Chen G, Alekseyenko A v. PERMANOVA-S: Association test for microbial community composition that accommodates confounders and multiple distances. In: Bioinformatics. Oxford University Press; 2016. p. 2618–2625. doi:10.1093/bioinformatics/btw311.
    1. Biedenbach DJ, Bouchillon SK, Hackel M, Miller LA, Scangarella-Oman NE, Jakielaszek C, Sahm DF. In vitro activity of gepotidacin, a novel triazaacenaphthylene bacterial topoisomerase inhibitor, against a broad spectrum of bacterial pathogens. Antimicrob Agents Chemother. 2016;60(3):1918–1923. doi: 10.1128/AAC.02820-15.
    1. Jacobsson S, Golparian D, Scangarella-Oman N, Unemo M. In vitro activity of the novel triazaacenaphthylene gepotidacin (GSK2140944) against MDR Neisseria gonorrhoeae. J Antimicrob Chemother. 2018;73(8):2072–2077. doi: 10.1093/jac/dky162.
    1. Smith SB, Ravel J. The vaginal microbiota, host defence and reproductive physiology. J Physiol. 2017;595(2):451–463. doi: 10.1113/JP271694.
    1. Dethlefsen L, Relman DA. Incomplete recovery and individualized responses of the human distal gut microbiota to repeated antibiotic perturbation. Proc Natl Acad Sci U S A. 2011;108(SUPPL. 1):4554–4561. doi: 10.1073/pnas.1000087107.
    1. Willmann M, Vehreschild MJGT, Biehl LM, Vogel W, Dörfel D, Hamprecht A, Seifert H, Autenrieth IB, Peter S. Distinct impact of antibiotics on the gut microbiome and resistome: a longitudinal multicenter cohort study. BMC Biol. 2019;17(1):76. doi: 10.1186/s12915-019-0692-y.
    1. de Lastours V, Maugy E, Mathy V, Chau F, Rossi B, Guérin F, Cattoir V, Fantin B, for the CIPHARES Study Group Ecological impact of ciprofloxacin on commensal enterococci in healthy volunteers. J Antimicrob Chemother. 2017;72(6):1574–1580. doi: 10.1093/jac/dkx043.
    1. Cannon K, Byrne B, Happe J, Wu K, Ward L, Chesnel L, Louie T. Enteric microbiome profiles during a randomized phase 2 clinical trial of surotomycin versus vancomycin for the treatment of Clostridium difficile infection. J Antimicrob Chemother. 2017;72(12):3453–3461. doi: 10.1093/jac/dkx318.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A. 2011;108(SUPPL. 1):4516–4522. doi: 10.1073/pnas.1000080107.
    1. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012;6(8):1621–1624. doi: 10.1038/ismej.2012.8.
    1. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl Environ Microbiol. 2013;79(17):5112–5120. doi: 10.1128/AEM.01043-13.
    1. Langmead B, Trapnell C, Pop M, Salzberg SL. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009;10(3):R25. doi: 10.1186/gb-2009-10-3-r25.
    1. Zhang J, Kobert K, Flouri T, Stamatakis A. PEAR: a fast and accurate Illumina paired-end reAd mergeR. Bioinformatics. 2014;30(5):614–620. doi: 10.1093/bioinformatics/btt593.
    1. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, et al. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol. 2019;37(8):852–857. doi: 10.1038/s41587-019-0209-9.
    1. Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP. DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods. 2016;13(7):581–583. doi: 10.1038/nmeth.3869.
    1. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41.
    1. Bokulich NA, Kaehler BD, Rideout JR, Dillon M, Bolyen E, Knight R, Huttley GA, Gregory Caporaso J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome. 2018;6(1):90. doi: 10.1186/s40168-018-0470-z.
    1. Katoh K, Misawa K, Kuma KI, Miyata T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 2002;30(14):3059–3066. doi: 10.1093/nar/gkf436.
    1. Price MN, Dehal PS, Arkin AP. FastTree 2 - approximately maximum-likelihood trees for large alignments. PLoS One. 2010;5(3):e9490. doi: 10.1371/journal.pone.0009490.
    1. McDonald D, Clemente JC, Kuczynski J, Rideout JR, Stombaugh J, Wendel D, et al. The biological observation matrix (BIOM) format or: how I learned to stop worrying and love the ome-ome. GigaScience. 2012;464(1). 10.1186/2047-217X-1-7.
    1. McMurdie PJ, Holmes S. Phyloseq: a bioconductor package for handling and analysis of high-throughput phylogenetic sequence data. In: Pacific Symposium on Biocomputing; 2012.
    1. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin P, O’Hara RB, et al. vegan: Ordination methods, diversity analysis and other functions for community and vegetation ecologists. Community Ecology Package Vegan Available at: , . 2013.
    1. Lahti L, Shetty S. microbiome R package. 2019.
    1. Kembel SW, Cowan PD, Helmus MR, Cornwell WK, Morlon H, Ackerly DD, Blomberg SP, Webb CO. Picante: R tools for integrating phylogenies and ecology. Bioinformatics. 2010;26(11):1463–1464. doi: 10.1093/bioinformatics/btq166.
    1. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, Gonzalez A, Kosciolek T, McCall LI, McDonald D, Melnik AV, Morton JT, Navas J, Quinn RA, Sanders JG, Swafford AD, Thompson LR, Tripathi A, Xu ZZ, Zaneveld JR, Zhu Q, Caporaso JG, Dorrestein PC. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410–422. doi: 10.1038/s41579-018-0029-9.
    1. McMurdie PJ, Holmes S. Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput Biol. 2014;10(4):e1003531. doi: 10.1371/journal.pcbi.1003531.
    1. Lozupone CA, Hamady M, Kelley ST, Knight R. Quantitative and qualitative β diversity measures lead to different insights into factors that structure microbial communities. Appl Environ Microbiol. 2007;73(5):1576–1585. doi: 10.1128/AEM.01996-06.
    1. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi: 10.1186/s13059-014-0550-8.
    1. Yoav B, Yosef H. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Royal Statistical Soc Series B. 1995;72:405–416.

Source: PubMed

3
Prenumerera